Merge remote-tracking branch 'origin/x86/boot' into x86/mm2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/apic.h>
30 #include <asm/desc.h>
31 #include <asm/i387.h>
32 #include <asm/fpu-internal.h>
33 #include <asm/mtrr.h>
34 #include <linux/numa.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/mce.h>
38 #include <asm/msr.h>
39 #include <asm/pat.h>
40
41 #ifdef CONFIG_X86_LOCAL_APIC
42 #include <asm/uv/uv.h>
43 #endif
44
45 #include "cpu.h"
46
47 /* all of these masks are initialized in setup_cpu_local_masks() */
48 cpumask_var_t cpu_initialized_mask;
49 cpumask_var_t cpu_callout_mask;
50 cpumask_var_t cpu_callin_mask;
51
52 /* representing cpus for which sibling maps can be computed */
53 cpumask_var_t cpu_sibling_setup_mask;
54
55 /* correctly size the local cpu masks */
56 void __init setup_cpu_local_masks(void)
57 {
58 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
59 alloc_bootmem_cpumask_var(&cpu_callin_mask);
60 alloc_bootmem_cpumask_var(&cpu_callout_mask);
61 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
62 }
63
64 static void __cpuinit default_init(struct cpuinfo_x86 *c)
65 {
66 #ifdef CONFIG_X86_64
67 cpu_detect_cache_sizes(c);
68 #else
69 /* Not much we can do here... */
70 /* Check if at least it has cpuid */
71 if (c->cpuid_level == -1) {
72 /* No cpuid. It must be an ancient CPU */
73 if (c->x86 == 4)
74 strcpy(c->x86_model_id, "486");
75 else if (c->x86 == 3)
76 strcpy(c->x86_model_id, "386");
77 }
78 #endif
79 }
80
81 static const struct cpu_dev __cpuinitconst default_cpu = {
82 .c_init = default_init,
83 .c_vendor = "Unknown",
84 .c_x86_vendor = X86_VENDOR_UNKNOWN,
85 };
86
87 static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
88
89 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
90 #ifdef CONFIG_X86_64
91 /*
92 * We need valid kernel segments for data and code in long mode too
93 * IRET will check the segment types kkeil 2000/10/28
94 * Also sysret mandates a special GDT layout
95 *
96 * TLS descriptors are currently at a different place compared to i386.
97 * Hopefully nobody expects them at a fixed place (Wine?)
98 */
99 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
100 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
101 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
102 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
103 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
104 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
105 #else
106 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
110 /*
111 * Segments used for calling PnP BIOS have byte granularity.
112 * They code segments and data segments have fixed 64k limits,
113 * the transfer segment sizes are set at run time.
114 */
115 /* 32-bit code */
116 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
117 /* 16-bit code */
118 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
119 /* 16-bit data */
120 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
121 /* 16-bit data */
122 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
123 /* 16-bit data */
124 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
125 /*
126 * The APM segments have byte granularity and their bases
127 * are set at run time. All have 64k limits.
128 */
129 /* 32-bit code */
130 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 /* 16-bit code */
132 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 /* data */
134 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
135
136 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
137 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
138 GDT_STACK_CANARY_INIT
139 #endif
140 } };
141 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
142
143 static int __init x86_xsave_setup(char *s)
144 {
145 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
146 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
147 setup_clear_cpu_cap(X86_FEATURE_AVX);
148 setup_clear_cpu_cap(X86_FEATURE_AVX2);
149 return 1;
150 }
151 __setup("noxsave", x86_xsave_setup);
152
153 static int __init x86_xsaveopt_setup(char *s)
154 {
155 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
156 return 1;
157 }
158 __setup("noxsaveopt", x86_xsaveopt_setup);
159
160 #ifdef CONFIG_X86_32
161 static int cachesize_override __cpuinitdata = -1;
162 static int disable_x86_serial_nr __cpuinitdata = 1;
163
164 static int __init cachesize_setup(char *str)
165 {
166 get_option(&str, &cachesize_override);
167 return 1;
168 }
169 __setup("cachesize=", cachesize_setup);
170
171 static int __init x86_fxsr_setup(char *s)
172 {
173 setup_clear_cpu_cap(X86_FEATURE_FXSR);
174 setup_clear_cpu_cap(X86_FEATURE_XMM);
175 return 1;
176 }
177 __setup("nofxsr", x86_fxsr_setup);
178
179 static int __init x86_sep_setup(char *s)
180 {
181 setup_clear_cpu_cap(X86_FEATURE_SEP);
182 return 1;
183 }
184 __setup("nosep", x86_sep_setup);
185
186 /* Standard macro to see if a specific flag is changeable */
187 static inline int flag_is_changeable_p(u32 flag)
188 {
189 u32 f1, f2;
190
191 /*
192 * Cyrix and IDT cpus allow disabling of CPUID
193 * so the code below may return different results
194 * when it is executed before and after enabling
195 * the CPUID. Add "volatile" to not allow gcc to
196 * optimize the subsequent calls to this function.
197 */
198 asm volatile ("pushfl \n\t"
199 "pushfl \n\t"
200 "popl %0 \n\t"
201 "movl %0, %1 \n\t"
202 "xorl %2, %0 \n\t"
203 "pushl %0 \n\t"
204 "popfl \n\t"
205 "pushfl \n\t"
206 "popl %0 \n\t"
207 "popfl \n\t"
208
209 : "=&r" (f1), "=&r" (f2)
210 : "ir" (flag));
211
212 return ((f1^f2) & flag) != 0;
213 }
214
215 /* Probe for the CPUID instruction */
216 static int __cpuinit have_cpuid_p(void)
217 {
218 return flag_is_changeable_p(X86_EFLAGS_ID);
219 }
220
221 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
222 {
223 unsigned long lo, hi;
224
225 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
226 return;
227
228 /* Disable processor serial number: */
229
230 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
231 lo |= 0x200000;
232 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
233
234 printk(KERN_NOTICE "CPU serial number disabled.\n");
235 clear_cpu_cap(c, X86_FEATURE_PN);
236
237 /* Disabling the serial number may affect the cpuid level */
238 c->cpuid_level = cpuid_eax(0);
239 }
240
241 static int __init x86_serial_nr_setup(char *s)
242 {
243 disable_x86_serial_nr = 0;
244 return 1;
245 }
246 __setup("serialnumber", x86_serial_nr_setup);
247 #else
248 static inline int flag_is_changeable_p(u32 flag)
249 {
250 return 1;
251 }
252 /* Probe for the CPUID instruction */
253 static inline int have_cpuid_p(void)
254 {
255 return 1;
256 }
257 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
258 {
259 }
260 #endif
261
262 static __init int setup_disable_smep(char *arg)
263 {
264 setup_clear_cpu_cap(X86_FEATURE_SMEP);
265 return 1;
266 }
267 __setup("nosmep", setup_disable_smep);
268
269 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
270 {
271 if (cpu_has(c, X86_FEATURE_SMEP))
272 set_in_cr4(X86_CR4_SMEP);
273 }
274
275 static __init int setup_disable_smap(char *arg)
276 {
277 setup_clear_cpu_cap(X86_FEATURE_SMAP);
278 return 1;
279 }
280 __setup("nosmap", setup_disable_smap);
281
282 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
283 {
284 unsigned long eflags;
285
286 /* This should have been cleared long ago */
287 raw_local_save_flags(eflags);
288 BUG_ON(eflags & X86_EFLAGS_AC);
289
290 if (cpu_has(c, X86_FEATURE_SMAP))
291 set_in_cr4(X86_CR4_SMAP);
292 }
293
294 /*
295 * Some CPU features depend on higher CPUID levels, which may not always
296 * be available due to CPUID level capping or broken virtualization
297 * software. Add those features to this table to auto-disable them.
298 */
299 struct cpuid_dependent_feature {
300 u32 feature;
301 u32 level;
302 };
303
304 static const struct cpuid_dependent_feature __cpuinitconst
305 cpuid_dependent_features[] = {
306 { X86_FEATURE_MWAIT, 0x00000005 },
307 { X86_FEATURE_DCA, 0x00000009 },
308 { X86_FEATURE_XSAVE, 0x0000000d },
309 { 0, 0 }
310 };
311
312 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
313 {
314 const struct cpuid_dependent_feature *df;
315
316 for (df = cpuid_dependent_features; df->feature; df++) {
317
318 if (!cpu_has(c, df->feature))
319 continue;
320 /*
321 * Note: cpuid_level is set to -1 if unavailable, but
322 * extended_extended_level is set to 0 if unavailable
323 * and the legitimate extended levels are all negative
324 * when signed; hence the weird messing around with
325 * signs here...
326 */
327 if (!((s32)df->level < 0 ?
328 (u32)df->level > (u32)c->extended_cpuid_level :
329 (s32)df->level > (s32)c->cpuid_level))
330 continue;
331
332 clear_cpu_cap(c, df->feature);
333 if (!warn)
334 continue;
335
336 printk(KERN_WARNING
337 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
338 x86_cap_flags[df->feature], df->level);
339 }
340 }
341
342 /*
343 * Naming convention should be: <Name> [(<Codename>)]
344 * This table only is used unless init_<vendor>() below doesn't set it;
345 * in particular, if CPUID levels 0x80000002..4 are supported, this
346 * isn't used
347 */
348
349 /* Look up CPU names by table lookup. */
350 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
351 {
352 const struct cpu_model_info *info;
353
354 if (c->x86_model >= 16)
355 return NULL; /* Range check */
356
357 if (!this_cpu)
358 return NULL;
359
360 info = this_cpu->c_models;
361
362 while (info && info->family) {
363 if (info->family == c->x86)
364 return info->model_names[c->x86_model];
365 info++;
366 }
367 return NULL; /* Not found */
368 }
369
370 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
371 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
372
373 void load_percpu_segment(int cpu)
374 {
375 #ifdef CONFIG_X86_32
376 loadsegment(fs, __KERNEL_PERCPU);
377 #else
378 loadsegment(gs, 0);
379 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
380 #endif
381 load_stack_canary_segment();
382 }
383
384 /*
385 * Current gdt points %fs at the "master" per-cpu area: after this,
386 * it's on the real one.
387 */
388 void switch_to_new_gdt(int cpu)
389 {
390 struct desc_ptr gdt_descr;
391
392 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
393 gdt_descr.size = GDT_SIZE - 1;
394 load_gdt(&gdt_descr);
395 /* Reload the per-cpu base */
396
397 load_percpu_segment(cpu);
398 }
399
400 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
401
402 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
403 {
404 unsigned int *v;
405 char *p, *q;
406
407 if (c->extended_cpuid_level < 0x80000004)
408 return;
409
410 v = (unsigned int *)c->x86_model_id;
411 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
412 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
413 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
414 c->x86_model_id[48] = 0;
415
416 /*
417 * Intel chips right-justify this string for some dumb reason;
418 * undo that brain damage:
419 */
420 p = q = &c->x86_model_id[0];
421 while (*p == ' ')
422 p++;
423 if (p != q) {
424 while (*p)
425 *q++ = *p++;
426 while (q <= &c->x86_model_id[48])
427 *q++ = '\0'; /* Zero-pad the rest */
428 }
429 }
430
431 void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
432 {
433 unsigned int n, dummy, ebx, ecx, edx, l2size;
434
435 n = c->extended_cpuid_level;
436
437 if (n >= 0x80000005) {
438 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
439 c->x86_cache_size = (ecx>>24) + (edx>>24);
440 #ifdef CONFIG_X86_64
441 /* On K8 L1 TLB is inclusive, so don't count it */
442 c->x86_tlbsize = 0;
443 #endif
444 }
445
446 if (n < 0x80000006) /* Some chips just has a large L1. */
447 return;
448
449 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
450 l2size = ecx >> 16;
451
452 #ifdef CONFIG_X86_64
453 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
454 #else
455 /* do processor-specific cache resizing */
456 if (this_cpu->c_size_cache)
457 l2size = this_cpu->c_size_cache(c, l2size);
458
459 /* Allow user to override all this if necessary. */
460 if (cachesize_override != -1)
461 l2size = cachesize_override;
462
463 if (l2size == 0)
464 return; /* Again, no L2 cache is possible */
465 #endif
466
467 c->x86_cache_size = l2size;
468 }
469
470 u16 __read_mostly tlb_lli_4k[NR_INFO];
471 u16 __read_mostly tlb_lli_2m[NR_INFO];
472 u16 __read_mostly tlb_lli_4m[NR_INFO];
473 u16 __read_mostly tlb_lld_4k[NR_INFO];
474 u16 __read_mostly tlb_lld_2m[NR_INFO];
475 u16 __read_mostly tlb_lld_4m[NR_INFO];
476
477 /*
478 * tlb_flushall_shift shows the balance point in replacing cr3 write
479 * with multiple 'invlpg'. It will do this replacement when
480 * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
481 * If tlb_flushall_shift is -1, means the replacement will be disabled.
482 */
483 s8 __read_mostly tlb_flushall_shift = -1;
484
485 void __cpuinit cpu_detect_tlb(struct cpuinfo_x86 *c)
486 {
487 if (this_cpu->c_detect_tlb)
488 this_cpu->c_detect_tlb(c);
489
490 printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
491 "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
492 "tlb_flushall_shift: %d\n",
493 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
494 tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
495 tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
496 tlb_flushall_shift);
497 }
498
499 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
500 {
501 #ifdef CONFIG_X86_HT
502 u32 eax, ebx, ecx, edx;
503 int index_msb, core_bits;
504 static bool printed;
505
506 if (!cpu_has(c, X86_FEATURE_HT))
507 return;
508
509 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
510 goto out;
511
512 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
513 return;
514
515 cpuid(1, &eax, &ebx, &ecx, &edx);
516
517 smp_num_siblings = (ebx & 0xff0000) >> 16;
518
519 if (smp_num_siblings == 1) {
520 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
521 goto out;
522 }
523
524 if (smp_num_siblings <= 1)
525 goto out;
526
527 index_msb = get_count_order(smp_num_siblings);
528 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
529
530 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
531
532 index_msb = get_count_order(smp_num_siblings);
533
534 core_bits = get_count_order(c->x86_max_cores);
535
536 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
537 ((1 << core_bits) - 1);
538
539 out:
540 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
541 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
542 c->phys_proc_id);
543 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
544 c->cpu_core_id);
545 printed = 1;
546 }
547 #endif
548 }
549
550 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
551 {
552 char *v = c->x86_vendor_id;
553 int i;
554
555 for (i = 0; i < X86_VENDOR_NUM; i++) {
556 if (!cpu_devs[i])
557 break;
558
559 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
560 (cpu_devs[i]->c_ident[1] &&
561 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
562
563 this_cpu = cpu_devs[i];
564 c->x86_vendor = this_cpu->c_x86_vendor;
565 return;
566 }
567 }
568
569 printk_once(KERN_ERR
570 "CPU: vendor_id '%s' unknown, using generic init.\n" \
571 "CPU: Your system may be unstable.\n", v);
572
573 c->x86_vendor = X86_VENDOR_UNKNOWN;
574 this_cpu = &default_cpu;
575 }
576
577 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
578 {
579 /* Get vendor name */
580 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
581 (unsigned int *)&c->x86_vendor_id[0],
582 (unsigned int *)&c->x86_vendor_id[8],
583 (unsigned int *)&c->x86_vendor_id[4]);
584
585 c->x86 = 4;
586 /* Intel-defined flags: level 0x00000001 */
587 if (c->cpuid_level >= 0x00000001) {
588 u32 junk, tfms, cap0, misc;
589
590 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
591 c->x86 = (tfms >> 8) & 0xf;
592 c->x86_model = (tfms >> 4) & 0xf;
593 c->x86_mask = tfms & 0xf;
594
595 if (c->x86 == 0xf)
596 c->x86 += (tfms >> 20) & 0xff;
597 if (c->x86 >= 0x6)
598 c->x86_model += ((tfms >> 16) & 0xf) << 4;
599
600 if (cap0 & (1<<19)) {
601 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
602 c->x86_cache_alignment = c->x86_clflush_size;
603 }
604 }
605 }
606
607 void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
608 {
609 u32 tfms, xlvl;
610 u32 ebx;
611
612 /* Intel-defined flags: level 0x00000001 */
613 if (c->cpuid_level >= 0x00000001) {
614 u32 capability, excap;
615
616 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
617 c->x86_capability[0] = capability;
618 c->x86_capability[4] = excap;
619 }
620
621 /* Additional Intel-defined flags: level 0x00000007 */
622 if (c->cpuid_level >= 0x00000007) {
623 u32 eax, ebx, ecx, edx;
624
625 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
626
627 c->x86_capability[9] = ebx;
628 }
629
630 /* AMD-defined flags: level 0x80000001 */
631 xlvl = cpuid_eax(0x80000000);
632 c->extended_cpuid_level = xlvl;
633
634 if ((xlvl & 0xffff0000) == 0x80000000) {
635 if (xlvl >= 0x80000001) {
636 c->x86_capability[1] = cpuid_edx(0x80000001);
637 c->x86_capability[6] = cpuid_ecx(0x80000001);
638 }
639 }
640
641 if (c->extended_cpuid_level >= 0x80000008) {
642 u32 eax = cpuid_eax(0x80000008);
643
644 c->x86_virt_bits = (eax >> 8) & 0xff;
645 c->x86_phys_bits = eax & 0xff;
646 }
647 #ifdef CONFIG_X86_32
648 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
649 c->x86_phys_bits = 36;
650 #endif
651
652 if (c->extended_cpuid_level >= 0x80000007)
653 c->x86_power = cpuid_edx(0x80000007);
654
655 init_scattered_cpuid_features(c);
656 }
657
658 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
659 {
660 #ifdef CONFIG_X86_32
661 int i;
662
663 /*
664 * First of all, decide if this is a 486 or higher
665 * It's a 486 if we can modify the AC flag
666 */
667 if (flag_is_changeable_p(X86_EFLAGS_AC))
668 c->x86 = 4;
669 else
670 c->x86 = 3;
671
672 for (i = 0; i < X86_VENDOR_NUM; i++)
673 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
674 c->x86_vendor_id[0] = 0;
675 cpu_devs[i]->c_identify(c);
676 if (c->x86_vendor_id[0]) {
677 get_cpu_vendor(c);
678 break;
679 }
680 }
681 #endif
682 }
683
684 /*
685 * Do minimum CPU detection early.
686 * Fields really needed: vendor, cpuid_level, family, model, mask,
687 * cache alignment.
688 * The others are not touched to avoid unwanted side effects.
689 *
690 * WARNING: this function is only called on the BP. Don't add code here
691 * that is supposed to run on all CPUs.
692 */
693 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
694 {
695 #ifdef CONFIG_X86_64
696 c->x86_clflush_size = 64;
697 c->x86_phys_bits = 36;
698 c->x86_virt_bits = 48;
699 #else
700 c->x86_clflush_size = 32;
701 c->x86_phys_bits = 32;
702 c->x86_virt_bits = 32;
703 #endif
704 c->x86_cache_alignment = c->x86_clflush_size;
705
706 memset(&c->x86_capability, 0, sizeof c->x86_capability);
707 c->extended_cpuid_level = 0;
708
709 if (!have_cpuid_p())
710 identify_cpu_without_cpuid(c);
711
712 /* cyrix could have cpuid enabled via c_identify()*/
713 if (!have_cpuid_p())
714 return;
715
716 cpu_detect(c);
717
718 get_cpu_vendor(c);
719
720 get_cpu_cap(c);
721
722 if (this_cpu->c_early_init)
723 this_cpu->c_early_init(c);
724
725 c->cpu_index = 0;
726 filter_cpuid_features(c, false);
727
728 if (this_cpu->c_bsp_init)
729 this_cpu->c_bsp_init(c);
730 }
731
732 void __init early_cpu_init(void)
733 {
734 const struct cpu_dev *const *cdev;
735 int count = 0;
736
737 #ifdef CONFIG_PROCESSOR_SELECT
738 printk(KERN_INFO "KERNEL supported cpus:\n");
739 #endif
740
741 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
742 const struct cpu_dev *cpudev = *cdev;
743
744 if (count >= X86_VENDOR_NUM)
745 break;
746 cpu_devs[count] = cpudev;
747 count++;
748
749 #ifdef CONFIG_PROCESSOR_SELECT
750 {
751 unsigned int j;
752
753 for (j = 0; j < 2; j++) {
754 if (!cpudev->c_ident[j])
755 continue;
756 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
757 cpudev->c_ident[j]);
758 }
759 }
760 #endif
761 }
762 early_identify_cpu(&boot_cpu_data);
763 }
764
765 /*
766 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
767 * unfortunately, that's not true in practice because of early VIA
768 * chips and (more importantly) broken virtualizers that are not easy
769 * to detect. In the latter case it doesn't even *fail* reliably, so
770 * probing for it doesn't even work. Disable it completely on 32-bit
771 * unless we can find a reliable way to detect all the broken cases.
772 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
773 */
774 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
775 {
776 #ifdef CONFIG_X86_32
777 clear_cpu_cap(c, X86_FEATURE_NOPL);
778 #else
779 set_cpu_cap(c, X86_FEATURE_NOPL);
780 #endif
781 }
782
783 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
784 {
785 c->extended_cpuid_level = 0;
786
787 if (!have_cpuid_p())
788 identify_cpu_without_cpuid(c);
789
790 /* cyrix could have cpuid enabled via c_identify()*/
791 if (!have_cpuid_p())
792 return;
793
794 cpu_detect(c);
795
796 get_cpu_vendor(c);
797
798 get_cpu_cap(c);
799
800 if (c->cpuid_level >= 0x00000001) {
801 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
802 #ifdef CONFIG_X86_32
803 # ifdef CONFIG_X86_HT
804 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
805 # else
806 c->apicid = c->initial_apicid;
807 # endif
808 #endif
809 c->phys_proc_id = c->initial_apicid;
810 }
811
812 get_model_name(c); /* Default name */
813
814 detect_nopl(c);
815 }
816
817 /*
818 * This does the hard work of actually picking apart the CPU stuff...
819 */
820 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
821 {
822 int i;
823
824 c->loops_per_jiffy = loops_per_jiffy;
825 c->x86_cache_size = -1;
826 c->x86_vendor = X86_VENDOR_UNKNOWN;
827 c->x86_model = c->x86_mask = 0; /* So far unknown... */
828 c->x86_vendor_id[0] = '\0'; /* Unset */
829 c->x86_model_id[0] = '\0'; /* Unset */
830 c->x86_max_cores = 1;
831 c->x86_coreid_bits = 0;
832 #ifdef CONFIG_X86_64
833 c->x86_clflush_size = 64;
834 c->x86_phys_bits = 36;
835 c->x86_virt_bits = 48;
836 #else
837 c->cpuid_level = -1; /* CPUID not detected */
838 c->x86_clflush_size = 32;
839 c->x86_phys_bits = 32;
840 c->x86_virt_bits = 32;
841 #endif
842 c->x86_cache_alignment = c->x86_clflush_size;
843 memset(&c->x86_capability, 0, sizeof c->x86_capability);
844
845 generic_identify(c);
846
847 if (this_cpu->c_identify)
848 this_cpu->c_identify(c);
849
850 /* Clear/Set all flags overriden by options, after probe */
851 for (i = 0; i < NCAPINTS; i++) {
852 c->x86_capability[i] &= ~cpu_caps_cleared[i];
853 c->x86_capability[i] |= cpu_caps_set[i];
854 }
855
856 #ifdef CONFIG_X86_64
857 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
858 #endif
859
860 /*
861 * Vendor-specific initialization. In this section we
862 * canonicalize the feature flags, meaning if there are
863 * features a certain CPU supports which CPUID doesn't
864 * tell us, CPUID claiming incorrect flags, or other bugs,
865 * we handle them here.
866 *
867 * At the end of this section, c->x86_capability better
868 * indicate the features this CPU genuinely supports!
869 */
870 if (this_cpu->c_init)
871 this_cpu->c_init(c);
872
873 /* Disable the PN if appropriate */
874 squash_the_stupid_serial_number(c);
875
876 /* Set up SMEP/SMAP */
877 setup_smep(c);
878 setup_smap(c);
879
880 /*
881 * The vendor-specific functions might have changed features.
882 * Now we do "generic changes."
883 */
884
885 /* Filter out anything that depends on CPUID levels we don't have */
886 filter_cpuid_features(c, true);
887
888 /* If the model name is still unset, do table lookup. */
889 if (!c->x86_model_id[0]) {
890 const char *p;
891 p = table_lookup_model(c);
892 if (p)
893 strcpy(c->x86_model_id, p);
894 else
895 /* Last resort... */
896 sprintf(c->x86_model_id, "%02x/%02x",
897 c->x86, c->x86_model);
898 }
899
900 #ifdef CONFIG_X86_64
901 detect_ht(c);
902 #endif
903
904 init_hypervisor(c);
905 x86_init_rdrand(c);
906
907 /*
908 * Clear/Set all flags overriden by options, need do it
909 * before following smp all cpus cap AND.
910 */
911 for (i = 0; i < NCAPINTS; i++) {
912 c->x86_capability[i] &= ~cpu_caps_cleared[i];
913 c->x86_capability[i] |= cpu_caps_set[i];
914 }
915
916 /*
917 * On SMP, boot_cpu_data holds the common feature set between
918 * all CPUs; so make sure that we indicate which features are
919 * common between the CPUs. The first time this routine gets
920 * executed, c == &boot_cpu_data.
921 */
922 if (c != &boot_cpu_data) {
923 /* AND the already accumulated flags with these */
924 for (i = 0; i < NCAPINTS; i++)
925 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
926 }
927
928 /* Init Machine Check Exception if available. */
929 mcheck_cpu_init(c);
930
931 select_idle_routine(c);
932
933 #ifdef CONFIG_NUMA
934 numa_add_cpu(smp_processor_id());
935 #endif
936 }
937
938 #ifdef CONFIG_X86_64
939 static void vgetcpu_set_mode(void)
940 {
941 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
942 vgetcpu_mode = VGETCPU_RDTSCP;
943 else
944 vgetcpu_mode = VGETCPU_LSL;
945 }
946 #endif
947
948 void __init identify_boot_cpu(void)
949 {
950 identify_cpu(&boot_cpu_data);
951 init_amd_e400_c1e_mask();
952 #ifdef CONFIG_X86_32
953 sysenter_setup();
954 enable_sep_cpu();
955 #else
956 vgetcpu_set_mode();
957 #endif
958 cpu_detect_tlb(&boot_cpu_data);
959 }
960
961 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
962 {
963 BUG_ON(c == &boot_cpu_data);
964 identify_cpu(c);
965 #ifdef CONFIG_X86_32
966 enable_sep_cpu();
967 #endif
968 mtrr_ap_init();
969 }
970
971 struct msr_range {
972 unsigned min;
973 unsigned max;
974 };
975
976 static const struct msr_range msr_range_array[] __cpuinitconst = {
977 { 0x00000000, 0x00000418},
978 { 0xc0000000, 0xc000040b},
979 { 0xc0010000, 0xc0010142},
980 { 0xc0011000, 0xc001103b},
981 };
982
983 static void __cpuinit __print_cpu_msr(void)
984 {
985 unsigned index_min, index_max;
986 unsigned index;
987 u64 val;
988 int i;
989
990 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
991 index_min = msr_range_array[i].min;
992 index_max = msr_range_array[i].max;
993
994 for (index = index_min; index < index_max; index++) {
995 if (rdmsrl_safe(index, &val))
996 continue;
997 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
998 }
999 }
1000 }
1001
1002 static int show_msr __cpuinitdata;
1003
1004 static __init int setup_show_msr(char *arg)
1005 {
1006 int num;
1007
1008 get_option(&arg, &num);
1009
1010 if (num > 0)
1011 show_msr = num;
1012 return 1;
1013 }
1014 __setup("show_msr=", setup_show_msr);
1015
1016 static __init int setup_noclflush(char *arg)
1017 {
1018 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
1019 return 1;
1020 }
1021 __setup("noclflush", setup_noclflush);
1022
1023 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1024 {
1025 const char *vendor = NULL;
1026
1027 if (c->x86_vendor < X86_VENDOR_NUM) {
1028 vendor = this_cpu->c_vendor;
1029 } else {
1030 if (c->cpuid_level >= 0)
1031 vendor = c->x86_vendor_id;
1032 }
1033
1034 if (vendor && !strstr(c->x86_model_id, vendor))
1035 printk(KERN_CONT "%s ", vendor);
1036
1037 if (c->x86_model_id[0])
1038 printk(KERN_CONT "%s", strim(c->x86_model_id));
1039 else
1040 printk(KERN_CONT "%d86", c->x86);
1041
1042 printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1043
1044 if (c->x86_mask || c->cpuid_level >= 0)
1045 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1046 else
1047 printk(KERN_CONT ")\n");
1048
1049 print_cpu_msr(c);
1050 }
1051
1052 void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
1053 {
1054 if (c->cpu_index < show_msr)
1055 __print_cpu_msr();
1056 }
1057
1058 static __init int setup_disablecpuid(char *arg)
1059 {
1060 int bit;
1061
1062 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1063 setup_clear_cpu_cap(bit);
1064 else
1065 return 0;
1066
1067 return 1;
1068 }
1069 __setup("clearcpuid=", setup_disablecpuid);
1070
1071 #ifdef CONFIG_X86_64
1072 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1073 struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
1074 (unsigned long) nmi_idt_table };
1075
1076 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1077 irq_stack_union) __aligned(PAGE_SIZE);
1078
1079 /*
1080 * The following four percpu variables are hot. Align current_task to
1081 * cacheline size such that all four fall in the same cacheline.
1082 */
1083 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1084 &init_task;
1085 EXPORT_PER_CPU_SYMBOL(current_task);
1086
1087 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1088 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1089 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1090
1091 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1092 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1093
1094 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1095
1096 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1097
1098 /*
1099 * Special IST stacks which the CPU switches to when it calls
1100 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1101 * limit), all of them are 4K, except the debug stack which
1102 * is 8K.
1103 */
1104 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1105 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1106 [DEBUG_STACK - 1] = DEBUG_STKSZ
1107 };
1108
1109 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1110 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1111
1112 /* May not be marked __init: used by software suspend */
1113 void syscall_init(void)
1114 {
1115 /*
1116 * LSTAR and STAR live in a bit strange symbiosis.
1117 * They both write to the same internal register. STAR allows to
1118 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1119 */
1120 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1121 wrmsrl(MSR_LSTAR, system_call);
1122 wrmsrl(MSR_CSTAR, ignore_sysret);
1123
1124 #ifdef CONFIG_IA32_EMULATION
1125 syscall32_cpu_init();
1126 #endif
1127
1128 /* Flags to clear on syscall */
1129 wrmsrl(MSR_SYSCALL_MASK,
1130 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1131 X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1132 }
1133
1134 /*
1135 * Copies of the original ist values from the tss are only accessed during
1136 * debugging, no special alignment required.
1137 */
1138 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1139
1140 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1141 DEFINE_PER_CPU(int, debug_stack_usage);
1142
1143 int is_debug_stack(unsigned long addr)
1144 {
1145 return __get_cpu_var(debug_stack_usage) ||
1146 (addr <= __get_cpu_var(debug_stack_addr) &&
1147 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1148 }
1149
1150 static DEFINE_PER_CPU(u32, debug_stack_use_ctr);
1151
1152 void debug_stack_set_zero(void)
1153 {
1154 this_cpu_inc(debug_stack_use_ctr);
1155 load_idt((const struct desc_ptr *)&nmi_idt_descr);
1156 }
1157
1158 void debug_stack_reset(void)
1159 {
1160 if (WARN_ON(!this_cpu_read(debug_stack_use_ctr)))
1161 return;
1162 if (this_cpu_dec_return(debug_stack_use_ctr) == 0)
1163 load_idt((const struct desc_ptr *)&idt_descr);
1164 }
1165
1166 #else /* CONFIG_X86_64 */
1167
1168 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1169 EXPORT_PER_CPU_SYMBOL(current_task);
1170 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1171
1172 #ifdef CONFIG_CC_STACKPROTECTOR
1173 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1174 #endif
1175
1176 #endif /* CONFIG_X86_64 */
1177
1178 /*
1179 * Clear all 6 debug registers:
1180 */
1181 static void clear_all_debug_regs(void)
1182 {
1183 int i;
1184
1185 for (i = 0; i < 8; i++) {
1186 /* Ignore db4, db5 */
1187 if ((i == 4) || (i == 5))
1188 continue;
1189
1190 set_debugreg(0, i);
1191 }
1192 }
1193
1194 #ifdef CONFIG_KGDB
1195 /*
1196 * Restore debug regs if using kgdbwait and you have a kernel debugger
1197 * connection established.
1198 */
1199 static void dbg_restore_debug_regs(void)
1200 {
1201 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1202 arch_kgdb_ops.correct_hw_break();
1203 }
1204 #else /* ! CONFIG_KGDB */
1205 #define dbg_restore_debug_regs()
1206 #endif /* ! CONFIG_KGDB */
1207
1208 /*
1209 * cpu_init() initializes state that is per-CPU. Some data is already
1210 * initialized (naturally) in the bootstrap process, such as the GDT
1211 * and IDT. We reload them nevertheless, this function acts as a
1212 * 'CPU state barrier', nothing should get across.
1213 * A lot of state is already set up in PDA init for 64 bit
1214 */
1215 #ifdef CONFIG_X86_64
1216
1217 void __cpuinit cpu_init(void)
1218 {
1219 struct orig_ist *oist;
1220 struct task_struct *me;
1221 struct tss_struct *t;
1222 unsigned long v;
1223 int cpu;
1224 int i;
1225
1226 cpu = stack_smp_processor_id();
1227 t = &per_cpu(init_tss, cpu);
1228 oist = &per_cpu(orig_ist, cpu);
1229
1230 #ifdef CONFIG_NUMA
1231 if (this_cpu_read(numa_node) == 0 &&
1232 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1233 set_numa_node(early_cpu_to_node(cpu));
1234 #endif
1235
1236 me = current;
1237
1238 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1239 panic("CPU#%d already initialized!\n", cpu);
1240
1241 pr_debug("Initializing CPU#%d\n", cpu);
1242
1243 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1244
1245 /*
1246 * Initialize the per-CPU GDT with the boot GDT,
1247 * and set up the GDT descriptor:
1248 */
1249
1250 switch_to_new_gdt(cpu);
1251 loadsegment(fs, 0);
1252
1253 load_idt((const struct desc_ptr *)&idt_descr);
1254
1255 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1256 syscall_init();
1257
1258 wrmsrl(MSR_FS_BASE, 0);
1259 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1260 barrier();
1261
1262 x86_configure_nx();
1263 enable_x2apic();
1264
1265 /*
1266 * set up and load the per-CPU TSS
1267 */
1268 if (!oist->ist[0]) {
1269 char *estacks = per_cpu(exception_stacks, cpu);
1270
1271 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1272 estacks += exception_stack_sizes[v];
1273 oist->ist[v] = t->x86_tss.ist[v] =
1274 (unsigned long)estacks;
1275 if (v == DEBUG_STACK-1)
1276 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1277 }
1278 }
1279
1280 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1281
1282 /*
1283 * <= is required because the CPU will access up to
1284 * 8 bits beyond the end of the IO permission bitmap.
1285 */
1286 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1287 t->io_bitmap[i] = ~0UL;
1288
1289 atomic_inc(&init_mm.mm_count);
1290 me->active_mm = &init_mm;
1291 BUG_ON(me->mm);
1292 enter_lazy_tlb(&init_mm, me);
1293
1294 load_sp0(t, &current->thread);
1295 set_tss_desc(cpu, t);
1296 load_TR_desc();
1297 load_LDT(&init_mm.context);
1298
1299 clear_all_debug_regs();
1300 dbg_restore_debug_regs();
1301
1302 fpu_init();
1303
1304 if (is_uv_system())
1305 uv_cpu_init();
1306 }
1307
1308 #else
1309
1310 void __cpuinit cpu_init(void)
1311 {
1312 int cpu = smp_processor_id();
1313 struct task_struct *curr = current;
1314 struct tss_struct *t = &per_cpu(init_tss, cpu);
1315 struct thread_struct *thread = &curr->thread;
1316
1317 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1318 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1319 for (;;)
1320 local_irq_enable();
1321 }
1322
1323 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1324
1325 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1326 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1327
1328 load_idt(&idt_descr);
1329 switch_to_new_gdt(cpu);
1330
1331 /*
1332 * Set up and load the per-CPU TSS and LDT
1333 */
1334 atomic_inc(&init_mm.mm_count);
1335 curr->active_mm = &init_mm;
1336 BUG_ON(curr->mm);
1337 enter_lazy_tlb(&init_mm, curr);
1338
1339 load_sp0(t, thread);
1340 set_tss_desc(cpu, t);
1341 load_TR_desc();
1342 load_LDT(&init_mm.context);
1343
1344 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1345
1346 #ifdef CONFIG_DOUBLEFAULT
1347 /* Set up doublefault TSS pointer in the GDT */
1348 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1349 #endif
1350
1351 clear_all_debug_regs();
1352 dbg_restore_debug_regs();
1353
1354 fpu_init();
1355 }
1356 #endif