Merge branch 'linus' into x86/x2apic
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / apic_64.c
1 /*
2 * Local APIC handling, local APIC timers
3 *
4 * (c) 1999, 2000 Ingo Molnar <mingo@redhat.com>
5 *
6 * Fixes
7 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
8 * thanks to Eric Gilmore
9 * and Rolf G. Tews
10 * for testing these extensively.
11 * Maciej W. Rozycki : Various updates and fixes.
12 * Mikael Pettersson : Power Management for UP-APIC.
13 * Pavel Machek and
14 * Mikael Pettersson : PM converted to driver model.
15 */
16
17 #include <linux/init.h>
18
19 #include <linux/mm.h>
20 #include <linux/delay.h>
21 #include <linux/bootmem.h>
22 #include <linux/interrupt.h>
23 #include <linux/mc146818rtc.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/sysdev.h>
26 #include <linux/ioport.h>
27 #include <linux/clockchips.h>
28 #include <linux/acpi_pmtmr.h>
29 #include <linux/module.h>
30 #include <linux/dmar.h>
31
32 #include <asm/atomic.h>
33 #include <asm/smp.h>
34 #include <asm/mtrr.h>
35 #include <asm/mpspec.h>
36 #include <asm/hpet.h>
37 #include <asm/pgalloc.h>
38 #include <asm/nmi.h>
39 #include <asm/idle.h>
40 #include <asm/proto.h>
41 #include <asm/timex.h>
42 #include <asm/apic.h>
43 #include <asm/i8259.h>
44
45 #include <mach_ipi.h>
46 #include <mach_apic.h>
47
48 static int disable_apic_timer __cpuinitdata;
49 static int apic_calibrate_pmtmr __initdata;
50 int disable_apic;
51 int disable_x2apic;
52 int x2apic;
53
54 /* x2apic enabled before OS handover */
55 int x2apic_preenabled;
56
57 /* Local APIC timer works in C2 */
58 int local_apic_timer_c2_ok;
59 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
60
61 /*
62 * Debug level, exported for io_apic.c
63 */
64 int apic_verbosity;
65
66 /* Have we found an MP table */
67 int smp_found_config;
68
69 static struct resource lapic_resource = {
70 .name = "Local APIC",
71 .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
72 };
73
74 static unsigned int calibration_result;
75
76 static int lapic_next_event(unsigned long delta,
77 struct clock_event_device *evt);
78 static void lapic_timer_setup(enum clock_event_mode mode,
79 struct clock_event_device *evt);
80 static void lapic_timer_broadcast(cpumask_t mask);
81 static void apic_pm_activate(void);
82
83 static struct clock_event_device lapic_clockevent = {
84 .name = "lapic",
85 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT
86 | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_DUMMY,
87 .shift = 32,
88 .set_mode = lapic_timer_setup,
89 .set_next_event = lapic_next_event,
90 .broadcast = lapic_timer_broadcast,
91 .rating = 100,
92 .irq = -1,
93 };
94 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
95
96 static unsigned long apic_phys;
97
98 unsigned long mp_lapic_addr;
99
100 unsigned int __cpuinitdata maxcpus = NR_CPUS;
101 /*
102 * Get the LAPIC version
103 */
104 static inline int lapic_get_version(void)
105 {
106 return GET_APIC_VERSION(apic_read(APIC_LVR));
107 }
108
109 /*
110 * Check, if the APIC is integrated or a seperate chip
111 */
112 static inline int lapic_is_integrated(void)
113 {
114 return 1;
115 }
116
117 /*
118 * Check, whether this is a modern or a first generation APIC
119 */
120 static int modern_apic(void)
121 {
122 /* AMD systems use old APIC versions, so check the CPU */
123 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
124 boot_cpu_data.x86 >= 0xf)
125 return 1;
126 return lapic_get_version() >= 0x14;
127 }
128
129 void xapic_wait_icr_idle(void)
130 {
131 while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
132 cpu_relax();
133 }
134
135 u32 safe_xapic_wait_icr_idle(void)
136 {
137 u32 send_status;
138 int timeout;
139
140 timeout = 0;
141 do {
142 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
143 if (!send_status)
144 break;
145 udelay(100);
146 } while (timeout++ < 1000);
147
148 return send_status;
149 }
150
151 void xapic_icr_write(u32 low, u32 id)
152 {
153 apic_write(APIC_ICR2, id << 24);
154 apic_write(APIC_ICR, low);
155 }
156
157 u64 xapic_icr_read(void)
158 {
159 u32 icr1, icr2;
160
161 icr2 = apic_read(APIC_ICR2);
162 icr1 = apic_read(APIC_ICR);
163
164 return (icr1 | ((u64)icr2 << 32));
165 }
166
167 static struct apic_ops xapic_ops = {
168 .read = native_apic_mem_read,
169 .write = native_apic_mem_write,
170 .write_atomic = native_apic_mem_write_atomic,
171 .icr_read = xapic_icr_read,
172 .icr_write = xapic_icr_write,
173 .wait_icr_idle = xapic_wait_icr_idle,
174 .safe_wait_icr_idle = safe_xapic_wait_icr_idle,
175 };
176
177 struct apic_ops __read_mostly *apic_ops = &xapic_ops;
178
179 EXPORT_SYMBOL_GPL(apic_ops);
180
181 static void x2apic_wait_icr_idle(void)
182 {
183 /* no need to wait for icr idle in x2apic */
184 return;
185 }
186
187 static u32 safe_x2apic_wait_icr_idle(void)
188 {
189 /* no need to wait for icr idle in x2apic */
190 return 0;
191 }
192
193 void x2apic_icr_write(u32 low, u32 id)
194 {
195 wrmsrl(APIC_BASE_MSR + (APIC_ICR >> 4), ((__u64) id) << 32 | low);
196 }
197
198 u64 x2apic_icr_read(void)
199 {
200 unsigned long val;
201
202 rdmsrl(APIC_BASE_MSR + (APIC_ICR >> 4), val);
203 return val;
204 }
205
206 static struct apic_ops x2apic_ops = {
207 .read = native_apic_msr_read,
208 .write = native_apic_msr_write,
209 .write_atomic = native_apic_msr_write,
210 .icr_read = x2apic_icr_read,
211 .icr_write = x2apic_icr_write,
212 .wait_icr_idle = x2apic_wait_icr_idle,
213 .safe_wait_icr_idle = safe_x2apic_wait_icr_idle,
214 };
215
216 /**
217 * enable_NMI_through_LVT0 - enable NMI through local vector table 0
218 */
219 void __cpuinit enable_NMI_through_LVT0(void)
220 {
221 unsigned int v;
222
223 /* unmask and set to NMI */
224 v = APIC_DM_NMI;
225 apic_write(APIC_LVT0, v);
226 }
227
228 /**
229 * lapic_get_maxlvt - get the maximum number of local vector table entries
230 */
231 int lapic_get_maxlvt(void)
232 {
233 unsigned int v, maxlvt;
234
235 v = apic_read(APIC_LVR);
236 maxlvt = GET_APIC_MAXLVT(v);
237 return maxlvt;
238 }
239
240 /*
241 * This function sets up the local APIC timer, with a timeout of
242 * 'clocks' APIC bus clock. During calibration we actually call
243 * this function twice on the boot CPU, once with a bogus timeout
244 * value, second time for real. The other (noncalibrating) CPUs
245 * call this function only once, with the real, calibrated value.
246 *
247 * We do reads before writes even if unnecessary, to get around the
248 * P5 APIC double write bug.
249 */
250
251 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
252 {
253 unsigned int lvtt_value, tmp_value;
254
255 lvtt_value = LOCAL_TIMER_VECTOR;
256 if (!oneshot)
257 lvtt_value |= APIC_LVT_TIMER_PERIODIC;
258 if (!irqen)
259 lvtt_value |= APIC_LVT_MASKED;
260
261 apic_write(APIC_LVTT, lvtt_value);
262
263 /*
264 * Divide PICLK by 16
265 */
266 tmp_value = apic_read(APIC_TDCR);
267 apic_write(APIC_TDCR, (tmp_value
268 & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE))
269 | APIC_TDR_DIV_16);
270
271 if (!oneshot)
272 apic_write(APIC_TMICT, clocks);
273 }
274
275 /*
276 * Setup extended LVT, AMD specific (K8, family 10h)
277 *
278 * Vector mappings are hard coded. On K8 only offset 0 (APIC500) and
279 * MCE interrupts are supported. Thus MCE offset must be set to 0.
280 */
281
282 #define APIC_EILVT_LVTOFF_MCE 0
283 #define APIC_EILVT_LVTOFF_IBS 1
284
285 static void setup_APIC_eilvt(u8 lvt_off, u8 vector, u8 msg_type, u8 mask)
286 {
287 unsigned long reg = (lvt_off << 4) + APIC_EILVT0;
288 unsigned int v = (mask << 16) | (msg_type << 8) | vector;
289
290 apic_write(reg, v);
291 }
292
293 u8 setup_APIC_eilvt_mce(u8 vector, u8 msg_type, u8 mask)
294 {
295 setup_APIC_eilvt(APIC_EILVT_LVTOFF_MCE, vector, msg_type, mask);
296 return APIC_EILVT_LVTOFF_MCE;
297 }
298
299 u8 setup_APIC_eilvt_ibs(u8 vector, u8 msg_type, u8 mask)
300 {
301 setup_APIC_eilvt(APIC_EILVT_LVTOFF_IBS, vector, msg_type, mask);
302 return APIC_EILVT_LVTOFF_IBS;
303 }
304
305 /*
306 * Program the next event, relative to now
307 */
308 static int lapic_next_event(unsigned long delta,
309 struct clock_event_device *evt)
310 {
311 apic_write(APIC_TMICT, delta);
312 return 0;
313 }
314
315 /*
316 * Setup the lapic timer in periodic or oneshot mode
317 */
318 static void lapic_timer_setup(enum clock_event_mode mode,
319 struct clock_event_device *evt)
320 {
321 unsigned long flags;
322 unsigned int v;
323
324 /* Lapic used as dummy for broadcast ? */
325 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
326 return;
327
328 local_irq_save(flags);
329
330 switch (mode) {
331 case CLOCK_EVT_MODE_PERIODIC:
332 case CLOCK_EVT_MODE_ONESHOT:
333 __setup_APIC_LVTT(calibration_result,
334 mode != CLOCK_EVT_MODE_PERIODIC, 1);
335 break;
336 case CLOCK_EVT_MODE_UNUSED:
337 case CLOCK_EVT_MODE_SHUTDOWN:
338 v = apic_read(APIC_LVTT);
339 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
340 apic_write(APIC_LVTT, v);
341 break;
342 case CLOCK_EVT_MODE_RESUME:
343 /* Nothing to do here */
344 break;
345 }
346
347 local_irq_restore(flags);
348 }
349
350 /*
351 * Local APIC timer broadcast function
352 */
353 static void lapic_timer_broadcast(cpumask_t mask)
354 {
355 #ifdef CONFIG_SMP
356 send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
357 #endif
358 }
359
360 /*
361 * Setup the local APIC timer for this CPU. Copy the initilized values
362 * of the boot CPU and register the clock event in the framework.
363 */
364 static void setup_APIC_timer(void)
365 {
366 struct clock_event_device *levt = &__get_cpu_var(lapic_events);
367
368 memcpy(levt, &lapic_clockevent, sizeof(*levt));
369 levt->cpumask = cpumask_of_cpu(smp_processor_id());
370
371 clockevents_register_device(levt);
372 }
373
374 /*
375 * In this function we calibrate APIC bus clocks to the external
376 * timer. Unfortunately we cannot use jiffies and the timer irq
377 * to calibrate, since some later bootup code depends on getting
378 * the first irq? Ugh.
379 *
380 * We want to do the calibration only once since we
381 * want to have local timer irqs syncron. CPUs connected
382 * by the same APIC bus have the very same bus frequency.
383 * And we want to have irqs off anyways, no accidental
384 * APIC irq that way.
385 */
386
387 #define TICK_COUNT 100000000
388
389 static void __init calibrate_APIC_clock(void)
390 {
391 unsigned apic, apic_start;
392 unsigned long tsc, tsc_start;
393 int result;
394
395 local_irq_disable();
396
397 /*
398 * Put whatever arbitrary (but long enough) timeout
399 * value into the APIC clock, we just want to get the
400 * counter running for calibration.
401 *
402 * No interrupt enable !
403 */
404 __setup_APIC_LVTT(250000000, 0, 0);
405
406 apic_start = apic_read(APIC_TMCCT);
407 #ifdef CONFIG_X86_PM_TIMER
408 if (apic_calibrate_pmtmr && pmtmr_ioport) {
409 pmtimer_wait(5000); /* 5ms wait */
410 apic = apic_read(APIC_TMCCT);
411 result = (apic_start - apic) * 1000L / 5;
412 } else
413 #endif
414 {
415 rdtscll(tsc_start);
416
417 do {
418 apic = apic_read(APIC_TMCCT);
419 rdtscll(tsc);
420 } while ((tsc - tsc_start) < TICK_COUNT &&
421 (apic_start - apic) < TICK_COUNT);
422
423 result = (apic_start - apic) * 1000L * tsc_khz /
424 (tsc - tsc_start);
425 }
426
427 local_irq_enable();
428
429 printk(KERN_DEBUG "APIC timer calibration result %d\n", result);
430
431 printk(KERN_INFO "Detected %d.%03d MHz APIC timer.\n",
432 result / 1000 / 1000, result / 1000 % 1000);
433
434 /* Calculate the scaled math multiplication factor */
435 lapic_clockevent.mult = div_sc(result, NSEC_PER_SEC,
436 lapic_clockevent.shift);
437 lapic_clockevent.max_delta_ns =
438 clockevent_delta2ns(0x7FFFFF, &lapic_clockevent);
439 lapic_clockevent.min_delta_ns =
440 clockevent_delta2ns(0xF, &lapic_clockevent);
441
442 calibration_result = result / HZ;
443 }
444
445 /*
446 * Setup the boot APIC
447 *
448 * Calibrate and verify the result.
449 */
450 void __init setup_boot_APIC_clock(void)
451 {
452 /*
453 * The local apic timer can be disabled via the kernel commandline.
454 * Register the lapic timer as a dummy clock event source on SMP
455 * systems, so the broadcast mechanism is used. On UP systems simply
456 * ignore it.
457 */
458 if (disable_apic_timer) {
459 printk(KERN_INFO "Disabling APIC timer\n");
460 /* No broadcast on UP ! */
461 if (num_possible_cpus() > 1) {
462 lapic_clockevent.mult = 1;
463 setup_APIC_timer();
464 }
465 return;
466 }
467
468 printk(KERN_INFO "Using local APIC timer interrupts.\n");
469 calibrate_APIC_clock();
470
471 /*
472 * Do a sanity check on the APIC calibration result
473 */
474 if (calibration_result < (1000000 / HZ)) {
475 printk(KERN_WARNING
476 "APIC frequency too slow, disabling apic timer\n");
477 /* No broadcast on UP ! */
478 if (num_possible_cpus() > 1)
479 setup_APIC_timer();
480 return;
481 }
482
483 /*
484 * If nmi_watchdog is set to IO_APIC, we need the
485 * PIT/HPET going. Otherwise register lapic as a dummy
486 * device.
487 */
488 if (nmi_watchdog != NMI_IO_APIC)
489 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
490 else
491 printk(KERN_WARNING "APIC timer registered as dummy,"
492 " due to nmi_watchdog=%d!\n", nmi_watchdog);
493
494 setup_APIC_timer();
495 }
496
497 void __cpuinit setup_secondary_APIC_clock(void)
498 {
499 setup_APIC_timer();
500 }
501
502 /*
503 * The guts of the apic timer interrupt
504 */
505 static void local_apic_timer_interrupt(void)
506 {
507 int cpu = smp_processor_id();
508 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
509
510 /*
511 * Normally we should not be here till LAPIC has been initialized but
512 * in some cases like kdump, its possible that there is a pending LAPIC
513 * timer interrupt from previous kernel's context and is delivered in
514 * new kernel the moment interrupts are enabled.
515 *
516 * Interrupts are enabled early and LAPIC is setup much later, hence
517 * its possible that when we get here evt->event_handler is NULL.
518 * Check for event_handler being NULL and discard the interrupt as
519 * spurious.
520 */
521 if (!evt->event_handler) {
522 printk(KERN_WARNING
523 "Spurious LAPIC timer interrupt on cpu %d\n", cpu);
524 /* Switch it off */
525 lapic_timer_setup(CLOCK_EVT_MODE_SHUTDOWN, evt);
526 return;
527 }
528
529 /*
530 * the NMI deadlock-detector uses this.
531 */
532 add_pda(apic_timer_irqs, 1);
533
534 evt->event_handler(evt);
535 }
536
537 /*
538 * Local APIC timer interrupt. This is the most natural way for doing
539 * local interrupts, but local timer interrupts can be emulated by
540 * broadcast interrupts too. [in case the hw doesn't support APIC timers]
541 *
542 * [ if a single-CPU system runs an SMP kernel then we call the local
543 * interrupt as well. Thus we cannot inline the local irq ... ]
544 */
545 void smp_apic_timer_interrupt(struct pt_regs *regs)
546 {
547 struct pt_regs *old_regs = set_irq_regs(regs);
548
549 /*
550 * NOTE! We'd better ACK the irq immediately,
551 * because timer handling can be slow.
552 */
553 ack_APIC_irq();
554 /*
555 * update_process_times() expects us to have done irq_enter().
556 * Besides, if we don't timer interrupts ignore the global
557 * interrupt lock, which is the WrongThing (tm) to do.
558 */
559 exit_idle();
560 irq_enter();
561 local_apic_timer_interrupt();
562 irq_exit();
563 set_irq_regs(old_regs);
564 }
565
566 int setup_profiling_timer(unsigned int multiplier)
567 {
568 return -EINVAL;
569 }
570
571
572 /*
573 * Local APIC start and shutdown
574 */
575
576 /**
577 * clear_local_APIC - shutdown the local APIC
578 *
579 * This is called, when a CPU is disabled and before rebooting, so the state of
580 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
581 * leftovers during boot.
582 */
583 void clear_local_APIC(void)
584 {
585 int maxlvt;
586 u32 v;
587
588 /* APIC hasn't been mapped yet */
589 if (!apic_phys)
590 return;
591
592 maxlvt = lapic_get_maxlvt();
593 /*
594 * Masking an LVT entry can trigger a local APIC error
595 * if the vector is zero. Mask LVTERR first to prevent this.
596 */
597 if (maxlvt >= 3) {
598 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
599 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
600 }
601 /*
602 * Careful: we have to set masks only first to deassert
603 * any level-triggered sources.
604 */
605 v = apic_read(APIC_LVTT);
606 apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
607 v = apic_read(APIC_LVT0);
608 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
609 v = apic_read(APIC_LVT1);
610 apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
611 if (maxlvt >= 4) {
612 v = apic_read(APIC_LVTPC);
613 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
614 }
615
616 /*
617 * Clean APIC state for other OSs:
618 */
619 apic_write(APIC_LVTT, APIC_LVT_MASKED);
620 apic_write(APIC_LVT0, APIC_LVT_MASKED);
621 apic_write(APIC_LVT1, APIC_LVT_MASKED);
622 if (maxlvt >= 3)
623 apic_write(APIC_LVTERR, APIC_LVT_MASKED);
624 if (maxlvt >= 4)
625 apic_write(APIC_LVTPC, APIC_LVT_MASKED);
626 apic_write(APIC_ESR, 0);
627 apic_read(APIC_ESR);
628 }
629
630 /**
631 * disable_local_APIC - clear and disable the local APIC
632 */
633 void disable_local_APIC(void)
634 {
635 unsigned int value;
636
637 clear_local_APIC();
638
639 /*
640 * Disable APIC (implies clearing of registers
641 * for 82489DX!).
642 */
643 value = apic_read(APIC_SPIV);
644 value &= ~APIC_SPIV_APIC_ENABLED;
645 apic_write(APIC_SPIV, value);
646 }
647
648 void lapic_shutdown(void)
649 {
650 unsigned long flags;
651
652 if (!cpu_has_apic)
653 return;
654
655 local_irq_save(flags);
656
657 disable_local_APIC();
658
659 local_irq_restore(flags);
660 }
661
662 /*
663 * This is to verify that we're looking at a real local APIC.
664 * Check these against your board if the CPUs aren't getting
665 * started for no apparent reason.
666 */
667 int __init verify_local_APIC(void)
668 {
669 unsigned int reg0, reg1;
670
671 /*
672 * The version register is read-only in a real APIC.
673 */
674 reg0 = apic_read(APIC_LVR);
675 apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg0);
676 apic_write(APIC_LVR, reg0 ^ APIC_LVR_MASK);
677 reg1 = apic_read(APIC_LVR);
678 apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg1);
679
680 /*
681 * The two version reads above should print the same
682 * numbers. If the second one is different, then we
683 * poke at a non-APIC.
684 */
685 if (reg1 != reg0)
686 return 0;
687
688 /*
689 * Check if the version looks reasonably.
690 */
691 reg1 = GET_APIC_VERSION(reg0);
692 if (reg1 == 0x00 || reg1 == 0xff)
693 return 0;
694 reg1 = lapic_get_maxlvt();
695 if (reg1 < 0x02 || reg1 == 0xff)
696 return 0;
697
698 /*
699 * The ID register is read/write in a real APIC.
700 */
701 reg0 = apic_read(APIC_ID);
702 apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg0);
703 apic_write(APIC_ID, reg0 ^ APIC_ID_MASK);
704 reg1 = apic_read(APIC_ID);
705 apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg1);
706 apic_write(APIC_ID, reg0);
707 if (reg1 != (reg0 ^ APIC_ID_MASK))
708 return 0;
709
710 /*
711 * The next two are just to see if we have sane values.
712 * They're only really relevant if we're in Virtual Wire
713 * compatibility mode, but most boxes are anymore.
714 */
715 reg0 = apic_read(APIC_LVT0);
716 apic_printk(APIC_DEBUG, "Getting LVT0: %x\n", reg0);
717 reg1 = apic_read(APIC_LVT1);
718 apic_printk(APIC_DEBUG, "Getting LVT1: %x\n", reg1);
719
720 return 1;
721 }
722
723 /**
724 * sync_Arb_IDs - synchronize APIC bus arbitration IDs
725 */
726 void __init sync_Arb_IDs(void)
727 {
728 /* Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 */
729 if (modern_apic())
730 return;
731
732 /*
733 * Wait for idle.
734 */
735 apic_wait_icr_idle();
736
737 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
738 apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG
739 | APIC_DM_INIT);
740 }
741
742 /*
743 * An initial setup of the virtual wire mode.
744 */
745 void __init init_bsp_APIC(void)
746 {
747 unsigned int value;
748
749 /*
750 * Don't do the setup now if we have a SMP BIOS as the
751 * through-I/O-APIC virtual wire mode might be active.
752 */
753 if (smp_found_config || !cpu_has_apic)
754 return;
755
756 value = apic_read(APIC_LVR);
757
758 /*
759 * Do not trust the local APIC being empty at bootup.
760 */
761 clear_local_APIC();
762
763 /*
764 * Enable APIC.
765 */
766 value = apic_read(APIC_SPIV);
767 value &= ~APIC_VECTOR_MASK;
768 value |= APIC_SPIV_APIC_ENABLED;
769 value |= APIC_SPIV_FOCUS_DISABLED;
770 value |= SPURIOUS_APIC_VECTOR;
771 apic_write(APIC_SPIV, value);
772
773 /*
774 * Set up the virtual wire mode.
775 */
776 apic_write(APIC_LVT0, APIC_DM_EXTINT);
777 value = APIC_DM_NMI;
778 apic_write(APIC_LVT1, value);
779 }
780
781 /**
782 * setup_local_APIC - setup the local APIC
783 */
784 void __cpuinit setup_local_APIC(void)
785 {
786 unsigned int value;
787 int i, j;
788
789 preempt_disable();
790 value = apic_read(APIC_LVR);
791
792 BUILD_BUG_ON((SPURIOUS_APIC_VECTOR & 0x0f) != 0x0f);
793
794 /*
795 * Double-check whether this APIC is really registered.
796 * This is meaningless in clustered apic mode, so we skip it.
797 */
798 if (!apic_id_registered())
799 BUG();
800
801 /*
802 * Intel recommends to set DFR, LDR and TPR before enabling
803 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
804 * document number 292116). So here it goes...
805 */
806 init_apic_ldr();
807
808 /*
809 * Set Task Priority to 'accept all'. We never change this
810 * later on.
811 */
812 value = apic_read(APIC_TASKPRI);
813 value &= ~APIC_TPRI_MASK;
814 apic_write(APIC_TASKPRI, value);
815
816 /*
817 * After a crash, we no longer service the interrupts and a pending
818 * interrupt from previous kernel might still have ISR bit set.
819 *
820 * Most probably by now CPU has serviced that pending interrupt and
821 * it might not have done the ack_APIC_irq() because it thought,
822 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it
823 * does not clear the ISR bit and cpu thinks it has already serivced
824 * the interrupt. Hence a vector might get locked. It was noticed
825 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR.
826 */
827 for (i = APIC_ISR_NR - 1; i >= 0; i--) {
828 value = apic_read(APIC_ISR + i*0x10);
829 for (j = 31; j >= 0; j--) {
830 if (value & (1<<j))
831 ack_APIC_irq();
832 }
833 }
834
835 /*
836 * Now that we are all set up, enable the APIC
837 */
838 value = apic_read(APIC_SPIV);
839 value &= ~APIC_VECTOR_MASK;
840 /*
841 * Enable APIC
842 */
843 value |= APIC_SPIV_APIC_ENABLED;
844
845 /* We always use processor focus */
846
847 /*
848 * Set spurious IRQ vector
849 */
850 value |= SPURIOUS_APIC_VECTOR;
851 apic_write(APIC_SPIV, value);
852
853 /*
854 * Set up LVT0, LVT1:
855 *
856 * set up through-local-APIC on the BP's LINT0. This is not
857 * strictly necessary in pure symmetric-IO mode, but sometimes
858 * we delegate interrupts to the 8259A.
859 */
860 /*
861 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
862 */
863 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
864 if (!smp_processor_id() && !value) {
865 value = APIC_DM_EXTINT;
866 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n",
867 smp_processor_id());
868 } else {
869 value = APIC_DM_EXTINT | APIC_LVT_MASKED;
870 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n",
871 smp_processor_id());
872 }
873 apic_write(APIC_LVT0, value);
874
875 /*
876 * only the BP should see the LINT1 NMI signal, obviously.
877 */
878 if (!smp_processor_id())
879 value = APIC_DM_NMI;
880 else
881 value = APIC_DM_NMI | APIC_LVT_MASKED;
882 apic_write(APIC_LVT1, value);
883 preempt_enable();
884 }
885
886 static void __cpuinit lapic_setup_esr(void)
887 {
888 unsigned maxlvt = lapic_get_maxlvt();
889
890 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR);
891 /*
892 * spec says clear errors after enabling vector.
893 */
894 if (maxlvt > 3)
895 apic_write(APIC_ESR, 0);
896 }
897
898 void __cpuinit end_local_APIC_setup(void)
899 {
900 lapic_setup_esr();
901 setup_apic_nmi_watchdog(NULL);
902 apic_pm_activate();
903 }
904
905 void check_x2apic(void)
906 {
907 int msr, msr2;
908
909 rdmsr(MSR_IA32_APICBASE, msr, msr2);
910
911 if (msr & X2APIC_ENABLE) {
912 printk("x2apic enabled by BIOS, switching to x2apic ops\n");
913 x2apic_preenabled = x2apic = 1;
914 apic_ops = &x2apic_ops;
915 }
916 }
917
918 void enable_x2apic(void)
919 {
920 int msr, msr2;
921
922 rdmsr(MSR_IA32_APICBASE, msr, msr2);
923 if (!(msr & X2APIC_ENABLE)) {
924 printk("Enabling x2apic\n");
925 wrmsr(MSR_IA32_APICBASE, msr | X2APIC_ENABLE, 0);
926 }
927 }
928
929 void enable_IR_x2apic(void)
930 {
931 #ifdef CONFIG_INTR_REMAP
932 int ret;
933 unsigned long flags;
934
935 if (!cpu_has_x2apic)
936 return;
937
938 if (!x2apic_preenabled && disable_x2apic) {
939 printk(KERN_INFO
940 "Skipped enabling x2apic and Interrupt-remapping "
941 "because of nox2apic\n");
942 return;
943 }
944
945 if (x2apic_preenabled && disable_x2apic)
946 panic("Bios already enabled x2apic, can't enforce nox2apic");
947
948 if (!x2apic_preenabled && skip_ioapic_setup) {
949 printk(KERN_INFO
950 "Skipped enabling x2apic and Interrupt-remapping "
951 "because of skipping io-apic setup\n");
952 return;
953 }
954
955 ret = dmar_table_init();
956 if (ret) {
957 printk(KERN_INFO
958 "dmar_table_init() failed with %d:\n", ret);
959
960 if (x2apic_preenabled)
961 panic("x2apic enabled by bios. But IR enabling failed");
962 else
963 printk(KERN_INFO
964 "Not enabling x2apic,Intr-remapping\n");
965 return;
966 }
967
968 local_irq_save(flags);
969 mask_8259A();
970 save_mask_IO_APIC_setup();
971
972 ret = enable_intr_remapping(1);
973
974 if (ret && x2apic_preenabled) {
975 local_irq_restore(flags);
976 panic("x2apic enabled by bios. But IR enabling failed");
977 }
978
979 if (ret)
980 goto end;
981
982 if (!x2apic) {
983 x2apic = 1;
984 apic_ops = &x2apic_ops;
985 enable_x2apic();
986 }
987 end:
988 if (ret)
989 /*
990 * IR enabling failed
991 */
992 restore_IO_APIC_setup();
993 else
994 reinit_intr_remapped_IO_APIC(x2apic_preenabled);
995
996 unmask_8259A();
997 local_irq_restore(flags);
998
999 if (!ret) {
1000 if (!x2apic_preenabled)
1001 printk(KERN_INFO
1002 "Enabled x2apic and interrupt-remapping\n");
1003 else
1004 printk(KERN_INFO
1005 "Enabled Interrupt-remapping\n");
1006 } else
1007 printk(KERN_ERR
1008 "Failed to enable Interrupt-remapping and x2apic\n");
1009 #else
1010 if (!cpu_has_x2apic)
1011 return;
1012
1013 if (x2apic_preenabled)
1014 panic("x2apic enabled prior OS handover,"
1015 " enable CONFIG_INTR_REMAP");
1016
1017 printk(KERN_INFO "Enable CONFIG_INTR_REMAP for enabling intr-remapping "
1018 " and x2apic\n");
1019 #endif
1020
1021 return;
1022 }
1023
1024 /*
1025 * Detect and enable local APICs on non-SMP boards.
1026 * Original code written by Keir Fraser.
1027 * On AMD64 we trust the BIOS - if it says no APIC it is likely
1028 * not correctly set up (usually the APIC timer won't work etc.)
1029 */
1030 static int __init detect_init_APIC(void)
1031 {
1032 if (!cpu_has_apic) {
1033 printk(KERN_INFO "No local APIC present\n");
1034 return -1;
1035 }
1036
1037 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1038 boot_cpu_physical_apicid = 0;
1039 return 0;
1040 }
1041
1042 void __init early_init_lapic_mapping(void)
1043 {
1044 unsigned long phys_addr;
1045
1046 /*
1047 * If no local APIC can be found then go out
1048 * : it means there is no mpatable and MADT
1049 */
1050 if (!smp_found_config)
1051 return;
1052
1053 phys_addr = mp_lapic_addr;
1054
1055 set_fixmap_nocache(FIX_APIC_BASE, phys_addr);
1056 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
1057 APIC_BASE, phys_addr);
1058
1059 /*
1060 * Fetch the APIC ID of the BSP in case we have a
1061 * default configuration (or the MP table is broken).
1062 */
1063 boot_cpu_physical_apicid = read_apic_id();
1064 }
1065
1066 /**
1067 * init_apic_mappings - initialize APIC mappings
1068 */
1069 void __init init_apic_mappings(void)
1070 {
1071 if (x2apic) {
1072 boot_cpu_physical_apicid = read_apic_id();
1073 return;
1074 }
1075
1076 /*
1077 * If no local APIC can be found then set up a fake all
1078 * zeroes page to simulate the local APIC and another
1079 * one for the IO-APIC.
1080 */
1081 if (!smp_found_config && detect_init_APIC()) {
1082 apic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE);
1083 apic_phys = __pa(apic_phys);
1084 } else
1085 apic_phys = mp_lapic_addr;
1086
1087 set_fixmap_nocache(FIX_APIC_BASE, apic_phys);
1088 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
1089 APIC_BASE, apic_phys);
1090
1091 /*
1092 * Fetch the APIC ID of the BSP in case we have a
1093 * default configuration (or the MP table is broken).
1094 */
1095 boot_cpu_physical_apicid = read_apic_id();
1096 }
1097
1098 /*
1099 * This initializes the IO-APIC and APIC hardware if this is
1100 * a UP kernel.
1101 */
1102 int __init APIC_init_uniprocessor(void)
1103 {
1104 if (disable_apic) {
1105 printk(KERN_INFO "Apic disabled\n");
1106 return -1;
1107 }
1108 if (!cpu_has_apic) {
1109 disable_apic = 1;
1110 printk(KERN_INFO "Apic disabled by BIOS\n");
1111 return -1;
1112 }
1113
1114 enable_IR_x2apic();
1115 setup_apic_routing();
1116
1117 verify_local_APIC();
1118
1119 connect_bsp_APIC();
1120
1121 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1122 apic_write(APIC_ID, SET_APIC_ID(boot_cpu_physical_apicid));
1123
1124 setup_local_APIC();
1125
1126 /*
1127 * Now enable IO-APICs, actually call clear_IO_APIC
1128 * We need clear_IO_APIC before enabling vector on BP
1129 */
1130 if (!skip_ioapic_setup && nr_ioapics)
1131 enable_IO_APIC();
1132
1133 if (!smp_found_config || skip_ioapic_setup || !nr_ioapics)
1134 localise_nmi_watchdog();
1135 end_local_APIC_setup();
1136
1137 if (smp_found_config && !skip_ioapic_setup && nr_ioapics)
1138 setup_IO_APIC();
1139 else
1140 nr_ioapics = 0;
1141 setup_boot_APIC_clock();
1142 check_nmi_watchdog();
1143 return 0;
1144 }
1145
1146 /*
1147 * Local APIC interrupts
1148 */
1149
1150 /*
1151 * This interrupt should _never_ happen with our APIC/SMP architecture
1152 */
1153 asmlinkage void smp_spurious_interrupt(void)
1154 {
1155 unsigned int v;
1156 exit_idle();
1157 irq_enter();
1158 /*
1159 * Check if this really is a spurious interrupt and ACK it
1160 * if it is a vectored one. Just in case...
1161 * Spurious interrupts should not be ACKed.
1162 */
1163 v = apic_read(APIC_ISR + ((SPURIOUS_APIC_VECTOR & ~0x1f) >> 1));
1164 if (v & (1 << (SPURIOUS_APIC_VECTOR & 0x1f)))
1165 ack_APIC_irq();
1166
1167 add_pda(irq_spurious_count, 1);
1168 irq_exit();
1169 }
1170
1171 /*
1172 * This interrupt should never happen with our APIC/SMP architecture
1173 */
1174 asmlinkage void smp_error_interrupt(void)
1175 {
1176 unsigned int v, v1;
1177
1178 exit_idle();
1179 irq_enter();
1180 /* First tickle the hardware, only then report what went on. -- REW */
1181 v = apic_read(APIC_ESR);
1182 apic_write(APIC_ESR, 0);
1183 v1 = apic_read(APIC_ESR);
1184 ack_APIC_irq();
1185 atomic_inc(&irq_err_count);
1186
1187 /* Here is what the APIC error bits mean:
1188 0: Send CS error
1189 1: Receive CS error
1190 2: Send accept error
1191 3: Receive accept error
1192 4: Reserved
1193 5: Send illegal vector
1194 6: Received illegal vector
1195 7: Illegal register address
1196 */
1197 printk(KERN_DEBUG "APIC error on CPU%d: %02x(%02x)\n",
1198 smp_processor_id(), v , v1);
1199 irq_exit();
1200 }
1201
1202 /**
1203 * * connect_bsp_APIC - attach the APIC to the interrupt system
1204 * */
1205 void __init connect_bsp_APIC(void)
1206 {
1207 enable_apic_mode();
1208 }
1209
1210 void disconnect_bsp_APIC(int virt_wire_setup)
1211 {
1212 /* Go back to Virtual Wire compatibility mode */
1213 unsigned long value;
1214
1215 /* For the spurious interrupt use vector F, and enable it */
1216 value = apic_read(APIC_SPIV);
1217 value &= ~APIC_VECTOR_MASK;
1218 value |= APIC_SPIV_APIC_ENABLED;
1219 value |= 0xf;
1220 apic_write(APIC_SPIV, value);
1221
1222 if (!virt_wire_setup) {
1223 /*
1224 * For LVT0 make it edge triggered, active high,
1225 * external and enabled
1226 */
1227 value = apic_read(APIC_LVT0);
1228 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
1229 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
1230 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
1231 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
1232 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
1233 apic_write(APIC_LVT0, value);
1234 } else {
1235 /* Disable LVT0 */
1236 apic_write(APIC_LVT0, APIC_LVT_MASKED);
1237 }
1238
1239 /* For LVT1 make it edge triggered, active high, nmi and enabled */
1240 value = apic_read(APIC_LVT1);
1241 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
1242 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
1243 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
1244 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
1245 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
1246 apic_write(APIC_LVT1, value);
1247 }
1248
1249 void __cpuinit generic_processor_info(int apicid, int version)
1250 {
1251 int cpu;
1252 cpumask_t tmp_map;
1253
1254 if (num_processors >= NR_CPUS) {
1255 printk(KERN_WARNING "WARNING: NR_CPUS limit of %i reached."
1256 " Processor ignored.\n", NR_CPUS);
1257 return;
1258 }
1259
1260 if (num_processors >= maxcpus) {
1261 printk(KERN_WARNING "WARNING: maxcpus limit of %i reached."
1262 " Processor ignored.\n", maxcpus);
1263 return;
1264 }
1265
1266 num_processors++;
1267 cpus_complement(tmp_map, cpu_present_map);
1268 cpu = first_cpu(tmp_map);
1269
1270 physid_set(apicid, phys_cpu_present_map);
1271 if (apicid == boot_cpu_physical_apicid) {
1272 /*
1273 * x86_bios_cpu_apicid is required to have processors listed
1274 * in same order as logical cpu numbers. Hence the first
1275 * entry is BSP, and so on.
1276 */
1277 cpu = 0;
1278 }
1279 if (apicid > max_physical_apicid)
1280 max_physical_apicid = apicid;
1281
1282 /* are we being called early in kernel startup? */
1283 if (early_per_cpu_ptr(x86_cpu_to_apicid)) {
1284 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
1285 u16 *bios_cpu_apicid = early_per_cpu_ptr(x86_bios_cpu_apicid);
1286
1287 cpu_to_apicid[cpu] = apicid;
1288 bios_cpu_apicid[cpu] = apicid;
1289 } else {
1290 per_cpu(x86_cpu_to_apicid, cpu) = apicid;
1291 per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
1292 }
1293
1294 cpu_set(cpu, cpu_possible_map);
1295 cpu_set(cpu, cpu_present_map);
1296 }
1297
1298 int hard_smp_processor_id(void)
1299 {
1300 return read_apic_id();
1301 }
1302
1303 /*
1304 * Power management
1305 */
1306 #ifdef CONFIG_PM
1307
1308 static struct {
1309 /* 'active' is true if the local APIC was enabled by us and
1310 not the BIOS; this signifies that we are also responsible
1311 for disabling it before entering apm/acpi suspend */
1312 int active;
1313 /* r/w apic fields */
1314 unsigned int apic_id;
1315 unsigned int apic_taskpri;
1316 unsigned int apic_ldr;
1317 unsigned int apic_dfr;
1318 unsigned int apic_spiv;
1319 unsigned int apic_lvtt;
1320 unsigned int apic_lvtpc;
1321 unsigned int apic_lvt0;
1322 unsigned int apic_lvt1;
1323 unsigned int apic_lvterr;
1324 unsigned int apic_tmict;
1325 unsigned int apic_tdcr;
1326 unsigned int apic_thmr;
1327 } apic_pm_state;
1328
1329 static int lapic_suspend(struct sys_device *dev, pm_message_t state)
1330 {
1331 unsigned long flags;
1332 int maxlvt;
1333
1334 if (!apic_pm_state.active)
1335 return 0;
1336
1337 maxlvt = lapic_get_maxlvt();
1338
1339 apic_pm_state.apic_id = apic_read(APIC_ID);
1340 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
1341 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
1342 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
1343 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
1344 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
1345 if (maxlvt >= 4)
1346 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
1347 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
1348 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
1349 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
1350 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
1351 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
1352 #ifdef CONFIG_X86_MCE_INTEL
1353 if (maxlvt >= 5)
1354 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
1355 #endif
1356 local_irq_save(flags);
1357 disable_local_APIC();
1358 local_irq_restore(flags);
1359 return 0;
1360 }
1361
1362 static int lapic_resume(struct sys_device *dev)
1363 {
1364 unsigned int l, h;
1365 unsigned long flags;
1366 int maxlvt;
1367
1368 if (!apic_pm_state.active)
1369 return 0;
1370
1371 maxlvt = lapic_get_maxlvt();
1372
1373 local_irq_save(flags);
1374 if (!x2apic) {
1375 rdmsr(MSR_IA32_APICBASE, l, h);
1376 l &= ~MSR_IA32_APICBASE_BASE;
1377 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
1378 wrmsr(MSR_IA32_APICBASE, l, h);
1379 } else
1380 enable_x2apic();
1381
1382 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
1383 apic_write(APIC_ID, apic_pm_state.apic_id);
1384 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
1385 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
1386 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
1387 apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
1388 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
1389 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
1390 #ifdef CONFIG_X86_MCE_INTEL
1391 if (maxlvt >= 5)
1392 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
1393 #endif
1394 if (maxlvt >= 4)
1395 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
1396 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
1397 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
1398 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
1399 apic_write(APIC_ESR, 0);
1400 apic_read(APIC_ESR);
1401 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
1402 apic_write(APIC_ESR, 0);
1403 apic_read(APIC_ESR);
1404 local_irq_restore(flags);
1405 return 0;
1406 }
1407
1408 static struct sysdev_class lapic_sysclass = {
1409 .name = "lapic",
1410 .resume = lapic_resume,
1411 .suspend = lapic_suspend,
1412 };
1413
1414 static struct sys_device device_lapic = {
1415 .id = 0,
1416 .cls = &lapic_sysclass,
1417 };
1418
1419 static void __cpuinit apic_pm_activate(void)
1420 {
1421 apic_pm_state.active = 1;
1422 }
1423
1424 static int __init init_lapic_sysfs(void)
1425 {
1426 int error;
1427
1428 if (!cpu_has_apic)
1429 return 0;
1430 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
1431
1432 error = sysdev_class_register(&lapic_sysclass);
1433 if (!error)
1434 error = sysdev_register(&device_lapic);
1435 return error;
1436 }
1437 device_initcall(init_lapic_sysfs);
1438
1439 #else /* CONFIG_PM */
1440
1441 static void apic_pm_activate(void) { }
1442
1443 #endif /* CONFIG_PM */
1444
1445 /*
1446 * apic_is_clustered_box() -- Check if we can expect good TSC
1447 *
1448 * Thus far, the major user of this is IBM's Summit2 series:
1449 *
1450 * Clustered boxes may have unsynced TSC problems if they are
1451 * multi-chassis. Use available data to take a good guess.
1452 * If in doubt, go HPET.
1453 */
1454 __cpuinit int apic_is_clustered_box(void)
1455 {
1456 int i, clusters, zeros;
1457 unsigned id;
1458 u16 *bios_cpu_apicid;
1459 DECLARE_BITMAP(clustermap, NUM_APIC_CLUSTERS);
1460
1461 /*
1462 * there is not this kind of box with AMD CPU yet.
1463 * Some AMD box with quadcore cpu and 8 sockets apicid
1464 * will be [4, 0x23] or [8, 0x27] could be thought to
1465 * vsmp box still need checking...
1466 */
1467 if ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && !is_vsmp_box())
1468 return 0;
1469
1470 bios_cpu_apicid = early_per_cpu_ptr(x86_bios_cpu_apicid);
1471 bitmap_zero(clustermap, NUM_APIC_CLUSTERS);
1472
1473 for (i = 0; i < NR_CPUS; i++) {
1474 /* are we being called early in kernel startup? */
1475 if (bios_cpu_apicid) {
1476 id = bios_cpu_apicid[i];
1477 }
1478 else if (i < nr_cpu_ids) {
1479 if (cpu_present(i))
1480 id = per_cpu(x86_bios_cpu_apicid, i);
1481 else
1482 continue;
1483 }
1484 else
1485 break;
1486
1487 if (id != BAD_APICID)
1488 __set_bit(APIC_CLUSTERID(id), clustermap);
1489 }
1490
1491 /* Problem: Partially populated chassis may not have CPUs in some of
1492 * the APIC clusters they have been allocated. Only present CPUs have
1493 * x86_bios_cpu_apicid entries, thus causing zeroes in the bitmap.
1494 * Since clusters are allocated sequentially, count zeros only if
1495 * they are bounded by ones.
1496 */
1497 clusters = 0;
1498 zeros = 0;
1499 for (i = 0; i < NUM_APIC_CLUSTERS; i++) {
1500 if (test_bit(i, clustermap)) {
1501 clusters += 1 + zeros;
1502 zeros = 0;
1503 } else
1504 ++zeros;
1505 }
1506
1507 /* ScaleMP vSMPowered boxes have one cluster per board and TSCs are
1508 * not guaranteed to be synced between boards
1509 */
1510 if (is_vsmp_box() && clusters > 1)
1511 return 1;
1512
1513 /*
1514 * If clusters > 2, then should be multi-chassis.
1515 * May have to revisit this when multi-core + hyperthreaded CPUs come
1516 * out, but AFAIK this will work even for them.
1517 */
1518 return (clusters > 2);
1519 }
1520
1521 static __init int setup_nox2apic(char *str)
1522 {
1523 disable_x2apic = 1;
1524 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_X2APIC);
1525 return 0;
1526 }
1527 early_param("nox2apic", setup_nox2apic);
1528
1529
1530 /*
1531 * APIC command line parameters
1532 */
1533 static int __init apic_set_verbosity(char *str)
1534 {
1535 if (str == NULL) {
1536 skip_ioapic_setup = 0;
1537 ioapic_force = 1;
1538 return 0;
1539 }
1540 if (strcmp("debug", str) == 0)
1541 apic_verbosity = APIC_DEBUG;
1542 else if (strcmp("verbose", str) == 0)
1543 apic_verbosity = APIC_VERBOSE;
1544 else {
1545 printk(KERN_WARNING "APIC Verbosity level %s not recognised"
1546 " use apic=verbose or apic=debug\n", str);
1547 return -EINVAL;
1548 }
1549
1550 return 0;
1551 }
1552 early_param("apic", apic_set_verbosity);
1553
1554 static __init int setup_disableapic(char *str)
1555 {
1556 disable_apic = 1;
1557 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1558 return 0;
1559 }
1560 early_param("disableapic", setup_disableapic);
1561
1562 /* same as disableapic, for compatibility */
1563 static __init int setup_nolapic(char *str)
1564 {
1565 return setup_disableapic(str);
1566 }
1567 early_param("nolapic", setup_nolapic);
1568
1569 static int __init parse_lapic_timer_c2_ok(char *arg)
1570 {
1571 local_apic_timer_c2_ok = 1;
1572 return 0;
1573 }
1574 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
1575
1576 static __init int setup_noapictimer(char *str)
1577 {
1578 if (str[0] != ' ' && str[0] != 0)
1579 return 0;
1580 disable_apic_timer = 1;
1581 return 1;
1582 }
1583 __setup("noapictimer", setup_noapictimer);
1584
1585 static __init int setup_apicpmtimer(char *s)
1586 {
1587 apic_calibrate_pmtmr = 1;
1588 notsc_setup(NULL);
1589 return 0;
1590 }
1591 __setup("apicpmtimer", setup_apicpmtimer);
1592
1593 static int __init lapic_insert_resource(void)
1594 {
1595 if (!apic_phys)
1596 return -1;
1597
1598 /* Put local APIC into the resource map. */
1599 lapic_resource.start = apic_phys;
1600 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
1601 insert_resource(&iomem_resource, &lapic_resource);
1602
1603 return 0;
1604 }
1605
1606 /*
1607 * need call insert after e820_reserve_resources()
1608 * that is using request_resource
1609 */
1610 late_initcall(lapic_insert_resource);