PCI: fix coding style issue in pci_save_state()
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / x86 / kernel / amd_iommu_init.c
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/pci.h>
21 #include <linux/acpi.h>
22 #include <linux/gfp.h>
23 #include <linux/list.h>
24 #include <linux/sysdev.h>
25 #include <linux/interrupt.h>
26 #include <linux/msi.h>
27 #include <asm/pci-direct.h>
28 #include <asm/amd_iommu_types.h>
29 #include <asm/amd_iommu.h>
30 #include <asm/iommu.h>
31 #include <asm/gart.h>
32
33 /*
34 * definitions for the ACPI scanning code
35 */
36 #define IVRS_HEADER_LENGTH 48
37
38 #define ACPI_IVHD_TYPE 0x10
39 #define ACPI_IVMD_TYPE_ALL 0x20
40 #define ACPI_IVMD_TYPE 0x21
41 #define ACPI_IVMD_TYPE_RANGE 0x22
42
43 #define IVHD_DEV_ALL 0x01
44 #define IVHD_DEV_SELECT 0x02
45 #define IVHD_DEV_SELECT_RANGE_START 0x03
46 #define IVHD_DEV_RANGE_END 0x04
47 #define IVHD_DEV_ALIAS 0x42
48 #define IVHD_DEV_ALIAS_RANGE 0x43
49 #define IVHD_DEV_EXT_SELECT 0x46
50 #define IVHD_DEV_EXT_SELECT_RANGE 0x47
51
52 #define IVHD_FLAG_HT_TUN_EN_MASK 0x01
53 #define IVHD_FLAG_PASSPW_EN_MASK 0x02
54 #define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
55 #define IVHD_FLAG_ISOC_EN_MASK 0x08
56
57 #define IVMD_FLAG_EXCL_RANGE 0x08
58 #define IVMD_FLAG_UNITY_MAP 0x01
59
60 #define ACPI_DEVFLAG_INITPASS 0x01
61 #define ACPI_DEVFLAG_EXTINT 0x02
62 #define ACPI_DEVFLAG_NMI 0x04
63 #define ACPI_DEVFLAG_SYSMGT1 0x10
64 #define ACPI_DEVFLAG_SYSMGT2 0x20
65 #define ACPI_DEVFLAG_LINT0 0x40
66 #define ACPI_DEVFLAG_LINT1 0x80
67 #define ACPI_DEVFLAG_ATSDIS 0x10000000
68
69 /*
70 * ACPI table definitions
71 *
72 * These data structures are laid over the table to parse the important values
73 * out of it.
74 */
75
76 /*
77 * structure describing one IOMMU in the ACPI table. Typically followed by one
78 * or more ivhd_entrys.
79 */
80 struct ivhd_header {
81 u8 type;
82 u8 flags;
83 u16 length;
84 u16 devid;
85 u16 cap_ptr;
86 u64 mmio_phys;
87 u16 pci_seg;
88 u16 info;
89 u32 reserved;
90 } __attribute__((packed));
91
92 /*
93 * A device entry describing which devices a specific IOMMU translates and
94 * which requestor ids they use.
95 */
96 struct ivhd_entry {
97 u8 type;
98 u16 devid;
99 u8 flags;
100 u32 ext;
101 } __attribute__((packed));
102
103 /*
104 * An AMD IOMMU memory definition structure. It defines things like exclusion
105 * ranges for devices and regions that should be unity mapped.
106 */
107 struct ivmd_header {
108 u8 type;
109 u8 flags;
110 u16 length;
111 u16 devid;
112 u16 aux;
113 u64 resv;
114 u64 range_start;
115 u64 range_length;
116 } __attribute__((packed));
117
118 bool amd_iommu_dump;
119
120 static int __initdata amd_iommu_detected;
121
122 u16 amd_iommu_last_bdf; /* largest PCI device id we have
123 to handle */
124 LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
125 we find in ACPI */
126 #ifdef CONFIG_IOMMU_STRESS
127 bool amd_iommu_isolate = false;
128 #else
129 bool amd_iommu_isolate = true; /* if true, device isolation is
130 enabled */
131 #endif
132
133 bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
134
135 LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
136 system */
137
138 /*
139 * Pointer to the device table which is shared by all AMD IOMMUs
140 * it is indexed by the PCI device id or the HT unit id and contains
141 * information about the domain the device belongs to as well as the
142 * page table root pointer.
143 */
144 struct dev_table_entry *amd_iommu_dev_table;
145
146 /*
147 * The alias table is a driver specific data structure which contains the
148 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
149 * More than one device can share the same requestor id.
150 */
151 u16 *amd_iommu_alias_table;
152
153 /*
154 * The rlookup table is used to find the IOMMU which is responsible
155 * for a specific device. It is also indexed by the PCI device id.
156 */
157 struct amd_iommu **amd_iommu_rlookup_table;
158
159 /*
160 * The pd table (protection domain table) is used to find the protection domain
161 * data structure a device belongs to. Indexed with the PCI device id too.
162 */
163 struct protection_domain **amd_iommu_pd_table;
164
165 /*
166 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
167 * to know which ones are already in use.
168 */
169 unsigned long *amd_iommu_pd_alloc_bitmap;
170
171 static u32 dev_table_size; /* size of the device table */
172 static u32 alias_table_size; /* size of the alias table */
173 static u32 rlookup_table_size; /* size if the rlookup table */
174
175 static inline void update_last_devid(u16 devid)
176 {
177 if (devid > amd_iommu_last_bdf)
178 amd_iommu_last_bdf = devid;
179 }
180
181 static inline unsigned long tbl_size(int entry_size)
182 {
183 unsigned shift = PAGE_SHIFT +
184 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
185
186 return 1UL << shift;
187 }
188
189 /****************************************************************************
190 *
191 * AMD IOMMU MMIO register space handling functions
192 *
193 * These functions are used to program the IOMMU device registers in
194 * MMIO space required for that driver.
195 *
196 ****************************************************************************/
197
198 /*
199 * This function set the exclusion range in the IOMMU. DMA accesses to the
200 * exclusion range are passed through untranslated
201 */
202 static void iommu_set_exclusion_range(struct amd_iommu *iommu)
203 {
204 u64 start = iommu->exclusion_start & PAGE_MASK;
205 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
206 u64 entry;
207
208 if (!iommu->exclusion_start)
209 return;
210
211 entry = start | MMIO_EXCL_ENABLE_MASK;
212 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
213 &entry, sizeof(entry));
214
215 entry = limit;
216 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
217 &entry, sizeof(entry));
218 }
219
220 /* Programs the physical address of the device table into the IOMMU hardware */
221 static void __init iommu_set_device_table(struct amd_iommu *iommu)
222 {
223 u64 entry;
224
225 BUG_ON(iommu->mmio_base == NULL);
226
227 entry = virt_to_phys(amd_iommu_dev_table);
228 entry |= (dev_table_size >> 12) - 1;
229 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
230 &entry, sizeof(entry));
231 }
232
233 /* Generic functions to enable/disable certain features of the IOMMU. */
234 static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
235 {
236 u32 ctrl;
237
238 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
239 ctrl |= (1 << bit);
240 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
241 }
242
243 static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
244 {
245 u32 ctrl;
246
247 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
248 ctrl &= ~(1 << bit);
249 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
250 }
251
252 /* Function to enable the hardware */
253 static void iommu_enable(struct amd_iommu *iommu)
254 {
255 printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
256 dev_name(&iommu->dev->dev), iommu->cap_ptr);
257
258 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
259 }
260
261 static void iommu_disable(struct amd_iommu *iommu)
262 {
263 /* Disable command buffer */
264 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
265
266 /* Disable event logging and event interrupts */
267 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
268 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
269
270 /* Disable IOMMU hardware itself */
271 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
272 }
273
274 /*
275 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
276 * the system has one.
277 */
278 static u8 * __init iommu_map_mmio_space(u64 address)
279 {
280 u8 *ret;
281
282 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
283 return NULL;
284
285 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
286 if (ret != NULL)
287 return ret;
288
289 release_mem_region(address, MMIO_REGION_LENGTH);
290
291 return NULL;
292 }
293
294 static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
295 {
296 if (iommu->mmio_base)
297 iounmap(iommu->mmio_base);
298 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
299 }
300
301 /****************************************************************************
302 *
303 * The functions below belong to the first pass of AMD IOMMU ACPI table
304 * parsing. In this pass we try to find out the highest device id this
305 * code has to handle. Upon this information the size of the shared data
306 * structures is determined later.
307 *
308 ****************************************************************************/
309
310 /*
311 * This function calculates the length of a given IVHD entry
312 */
313 static inline int ivhd_entry_length(u8 *ivhd)
314 {
315 return 0x04 << (*ivhd >> 6);
316 }
317
318 /*
319 * This function reads the last device id the IOMMU has to handle from the PCI
320 * capability header for this IOMMU
321 */
322 static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
323 {
324 u32 cap;
325
326 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
327 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
328
329 return 0;
330 }
331
332 /*
333 * After reading the highest device id from the IOMMU PCI capability header
334 * this function looks if there is a higher device id defined in the ACPI table
335 */
336 static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
337 {
338 u8 *p = (void *)h, *end = (void *)h;
339 struct ivhd_entry *dev;
340
341 p += sizeof(*h);
342 end += h->length;
343
344 find_last_devid_on_pci(PCI_BUS(h->devid),
345 PCI_SLOT(h->devid),
346 PCI_FUNC(h->devid),
347 h->cap_ptr);
348
349 while (p < end) {
350 dev = (struct ivhd_entry *)p;
351 switch (dev->type) {
352 case IVHD_DEV_SELECT:
353 case IVHD_DEV_RANGE_END:
354 case IVHD_DEV_ALIAS:
355 case IVHD_DEV_EXT_SELECT:
356 /* all the above subfield types refer to device ids */
357 update_last_devid(dev->devid);
358 break;
359 default:
360 break;
361 }
362 p += ivhd_entry_length(p);
363 }
364
365 WARN_ON(p != end);
366
367 return 0;
368 }
369
370 /*
371 * Iterate over all IVHD entries in the ACPI table and find the highest device
372 * id which we need to handle. This is the first of three functions which parse
373 * the ACPI table. So we check the checksum here.
374 */
375 static int __init find_last_devid_acpi(struct acpi_table_header *table)
376 {
377 int i;
378 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
379 struct ivhd_header *h;
380
381 /*
382 * Validate checksum here so we don't need to do it when
383 * we actually parse the table
384 */
385 for (i = 0; i < table->length; ++i)
386 checksum += p[i];
387 if (checksum != 0)
388 /* ACPI table corrupt */
389 return -ENODEV;
390
391 p += IVRS_HEADER_LENGTH;
392
393 end += table->length;
394 while (p < end) {
395 h = (struct ivhd_header *)p;
396 switch (h->type) {
397 case ACPI_IVHD_TYPE:
398 find_last_devid_from_ivhd(h);
399 break;
400 default:
401 break;
402 }
403 p += h->length;
404 }
405 WARN_ON(p != end);
406
407 return 0;
408 }
409
410 /****************************************************************************
411 *
412 * The following functions belong the the code path which parses the ACPI table
413 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
414 * data structures, initialize the device/alias/rlookup table and also
415 * basically initialize the hardware.
416 *
417 ****************************************************************************/
418
419 /*
420 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
421 * write commands to that buffer later and the IOMMU will execute them
422 * asynchronously
423 */
424 static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
425 {
426 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
427 get_order(CMD_BUFFER_SIZE));
428
429 if (cmd_buf == NULL)
430 return NULL;
431
432 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
433
434 return cmd_buf;
435 }
436
437 /*
438 * This function resets the command buffer if the IOMMU stopped fetching
439 * commands from it.
440 */
441 void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
442 {
443 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
444
445 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
446 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
447
448 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
449 }
450
451 /*
452 * This function writes the command buffer address to the hardware and
453 * enables it.
454 */
455 static void iommu_enable_command_buffer(struct amd_iommu *iommu)
456 {
457 u64 entry;
458
459 BUG_ON(iommu->cmd_buf == NULL);
460
461 entry = (u64)virt_to_phys(iommu->cmd_buf);
462 entry |= MMIO_CMD_SIZE_512;
463
464 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
465 &entry, sizeof(entry));
466
467 amd_iommu_reset_cmd_buffer(iommu);
468 }
469
470 static void __init free_command_buffer(struct amd_iommu *iommu)
471 {
472 free_pages((unsigned long)iommu->cmd_buf,
473 get_order(iommu->cmd_buf_size));
474 }
475
476 /* allocates the memory where the IOMMU will log its events to */
477 static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
478 {
479 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
480 get_order(EVT_BUFFER_SIZE));
481
482 if (iommu->evt_buf == NULL)
483 return NULL;
484
485 iommu->evt_buf_size = EVT_BUFFER_SIZE;
486
487 return iommu->evt_buf;
488 }
489
490 static void iommu_enable_event_buffer(struct amd_iommu *iommu)
491 {
492 u64 entry;
493
494 BUG_ON(iommu->evt_buf == NULL);
495
496 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
497
498 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
499 &entry, sizeof(entry));
500
501 /* set head and tail to zero manually */
502 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
503 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
504
505 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
506 }
507
508 static void __init free_event_buffer(struct amd_iommu *iommu)
509 {
510 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
511 }
512
513 /* sets a specific bit in the device table entry. */
514 static void set_dev_entry_bit(u16 devid, u8 bit)
515 {
516 int i = (bit >> 5) & 0x07;
517 int _bit = bit & 0x1f;
518
519 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
520 }
521
522 /* Writes the specific IOMMU for a device into the rlookup table */
523 static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
524 {
525 amd_iommu_rlookup_table[devid] = iommu;
526 }
527
528 /*
529 * This function takes the device specific flags read from the ACPI
530 * table and sets up the device table entry with that information
531 */
532 static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
533 u16 devid, u32 flags, u32 ext_flags)
534 {
535 if (flags & ACPI_DEVFLAG_INITPASS)
536 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
537 if (flags & ACPI_DEVFLAG_EXTINT)
538 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
539 if (flags & ACPI_DEVFLAG_NMI)
540 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
541 if (flags & ACPI_DEVFLAG_SYSMGT1)
542 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
543 if (flags & ACPI_DEVFLAG_SYSMGT2)
544 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
545 if (flags & ACPI_DEVFLAG_LINT0)
546 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
547 if (flags & ACPI_DEVFLAG_LINT1)
548 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
549
550 set_iommu_for_device(iommu, devid);
551 }
552
553 /*
554 * Reads the device exclusion range from ACPI and initialize IOMMU with
555 * it
556 */
557 static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
558 {
559 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
560
561 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
562 return;
563
564 if (iommu) {
565 /*
566 * We only can configure exclusion ranges per IOMMU, not
567 * per device. But we can enable the exclusion range per
568 * device. This is done here
569 */
570 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
571 iommu->exclusion_start = m->range_start;
572 iommu->exclusion_length = m->range_length;
573 }
574 }
575
576 /*
577 * This function reads some important data from the IOMMU PCI space and
578 * initializes the driver data structure with it. It reads the hardware
579 * capabilities and the first/last device entries
580 */
581 static void __init init_iommu_from_pci(struct amd_iommu *iommu)
582 {
583 int cap_ptr = iommu->cap_ptr;
584 u32 range, misc;
585
586 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
587 &iommu->cap);
588 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
589 &range);
590 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
591 &misc);
592
593 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
594 MMIO_GET_FD(range));
595 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
596 MMIO_GET_LD(range));
597 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
598 }
599
600 /*
601 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
602 * initializes the hardware and our data structures with it.
603 */
604 static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
605 struct ivhd_header *h)
606 {
607 u8 *p = (u8 *)h;
608 u8 *end = p, flags = 0;
609 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
610 u32 ext_flags = 0;
611 bool alias = false;
612 struct ivhd_entry *e;
613
614 /*
615 * First set the recommended feature enable bits from ACPI
616 * into the IOMMU control registers
617 */
618 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
619 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
620 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
621
622 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
623 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
624 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
625
626 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
627 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
628 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
629
630 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
631 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
632 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
633
634 /*
635 * make IOMMU memory accesses cache coherent
636 */
637 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
638
639 /*
640 * Done. Now parse the device entries
641 */
642 p += sizeof(struct ivhd_header);
643 end += h->length;
644
645
646 while (p < end) {
647 e = (struct ivhd_entry *)p;
648 switch (e->type) {
649 case IVHD_DEV_ALL:
650
651 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
652 " last device %02x:%02x.%x flags: %02x\n",
653 PCI_BUS(iommu->first_device),
654 PCI_SLOT(iommu->first_device),
655 PCI_FUNC(iommu->first_device),
656 PCI_BUS(iommu->last_device),
657 PCI_SLOT(iommu->last_device),
658 PCI_FUNC(iommu->last_device),
659 e->flags);
660
661 for (dev_i = iommu->first_device;
662 dev_i <= iommu->last_device; ++dev_i)
663 set_dev_entry_from_acpi(iommu, dev_i,
664 e->flags, 0);
665 break;
666 case IVHD_DEV_SELECT:
667
668 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
669 "flags: %02x\n",
670 PCI_BUS(e->devid),
671 PCI_SLOT(e->devid),
672 PCI_FUNC(e->devid),
673 e->flags);
674
675 devid = e->devid;
676 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
677 break;
678 case IVHD_DEV_SELECT_RANGE_START:
679
680 DUMP_printk(" DEV_SELECT_RANGE_START\t "
681 "devid: %02x:%02x.%x flags: %02x\n",
682 PCI_BUS(e->devid),
683 PCI_SLOT(e->devid),
684 PCI_FUNC(e->devid),
685 e->flags);
686
687 devid_start = e->devid;
688 flags = e->flags;
689 ext_flags = 0;
690 alias = false;
691 break;
692 case IVHD_DEV_ALIAS:
693
694 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
695 "flags: %02x devid_to: %02x:%02x.%x\n",
696 PCI_BUS(e->devid),
697 PCI_SLOT(e->devid),
698 PCI_FUNC(e->devid),
699 e->flags,
700 PCI_BUS(e->ext >> 8),
701 PCI_SLOT(e->ext >> 8),
702 PCI_FUNC(e->ext >> 8));
703
704 devid = e->devid;
705 devid_to = e->ext >> 8;
706 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
707 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
708 amd_iommu_alias_table[devid] = devid_to;
709 break;
710 case IVHD_DEV_ALIAS_RANGE:
711
712 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
713 "devid: %02x:%02x.%x flags: %02x "
714 "devid_to: %02x:%02x.%x\n",
715 PCI_BUS(e->devid),
716 PCI_SLOT(e->devid),
717 PCI_FUNC(e->devid),
718 e->flags,
719 PCI_BUS(e->ext >> 8),
720 PCI_SLOT(e->ext >> 8),
721 PCI_FUNC(e->ext >> 8));
722
723 devid_start = e->devid;
724 flags = e->flags;
725 devid_to = e->ext >> 8;
726 ext_flags = 0;
727 alias = true;
728 break;
729 case IVHD_DEV_EXT_SELECT:
730
731 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
732 "flags: %02x ext: %08x\n",
733 PCI_BUS(e->devid),
734 PCI_SLOT(e->devid),
735 PCI_FUNC(e->devid),
736 e->flags, e->ext);
737
738 devid = e->devid;
739 set_dev_entry_from_acpi(iommu, devid, e->flags,
740 e->ext);
741 break;
742 case IVHD_DEV_EXT_SELECT_RANGE:
743
744 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
745 "%02x:%02x.%x flags: %02x ext: %08x\n",
746 PCI_BUS(e->devid),
747 PCI_SLOT(e->devid),
748 PCI_FUNC(e->devid),
749 e->flags, e->ext);
750
751 devid_start = e->devid;
752 flags = e->flags;
753 ext_flags = e->ext;
754 alias = false;
755 break;
756 case IVHD_DEV_RANGE_END:
757
758 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
759 PCI_BUS(e->devid),
760 PCI_SLOT(e->devid),
761 PCI_FUNC(e->devid));
762
763 devid = e->devid;
764 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
765 if (alias) {
766 amd_iommu_alias_table[dev_i] = devid_to;
767 set_dev_entry_from_acpi(iommu,
768 devid_to, flags, ext_flags);
769 }
770 set_dev_entry_from_acpi(iommu, dev_i,
771 flags, ext_flags);
772 }
773 break;
774 default:
775 break;
776 }
777
778 p += ivhd_entry_length(p);
779 }
780 }
781
782 /* Initializes the device->iommu mapping for the driver */
783 static int __init init_iommu_devices(struct amd_iommu *iommu)
784 {
785 u16 i;
786
787 for (i = iommu->first_device; i <= iommu->last_device; ++i)
788 set_iommu_for_device(iommu, i);
789
790 return 0;
791 }
792
793 static void __init free_iommu_one(struct amd_iommu *iommu)
794 {
795 free_command_buffer(iommu);
796 free_event_buffer(iommu);
797 iommu_unmap_mmio_space(iommu);
798 }
799
800 static void __init free_iommu_all(void)
801 {
802 struct amd_iommu *iommu, *next;
803
804 for_each_iommu_safe(iommu, next) {
805 list_del(&iommu->list);
806 free_iommu_one(iommu);
807 kfree(iommu);
808 }
809 }
810
811 /*
812 * This function clues the initialization function for one IOMMU
813 * together and also allocates the command buffer and programs the
814 * hardware. It does NOT enable the IOMMU. This is done afterwards.
815 */
816 static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
817 {
818 spin_lock_init(&iommu->lock);
819 list_add_tail(&iommu->list, &amd_iommu_list);
820
821 /*
822 * Copy data from ACPI table entry to the iommu struct
823 */
824 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
825 if (!iommu->dev)
826 return 1;
827
828 iommu->cap_ptr = h->cap_ptr;
829 iommu->pci_seg = h->pci_seg;
830 iommu->mmio_phys = h->mmio_phys;
831 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
832 if (!iommu->mmio_base)
833 return -ENOMEM;
834
835 iommu->cmd_buf = alloc_command_buffer(iommu);
836 if (!iommu->cmd_buf)
837 return -ENOMEM;
838
839 iommu->evt_buf = alloc_event_buffer(iommu);
840 if (!iommu->evt_buf)
841 return -ENOMEM;
842
843 iommu->int_enabled = false;
844
845 init_iommu_from_pci(iommu);
846 init_iommu_from_acpi(iommu, h);
847 init_iommu_devices(iommu);
848
849 return pci_enable_device(iommu->dev);
850 }
851
852 /*
853 * Iterates over all IOMMU entries in the ACPI table, allocates the
854 * IOMMU structure and initializes it with init_iommu_one()
855 */
856 static int __init init_iommu_all(struct acpi_table_header *table)
857 {
858 u8 *p = (u8 *)table, *end = (u8 *)table;
859 struct ivhd_header *h;
860 struct amd_iommu *iommu;
861 int ret;
862
863 end += table->length;
864 p += IVRS_HEADER_LENGTH;
865
866 while (p < end) {
867 h = (struct ivhd_header *)p;
868 switch (*p) {
869 case ACPI_IVHD_TYPE:
870
871 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
872 "seg: %d flags: %01x info %04x\n",
873 PCI_BUS(h->devid), PCI_SLOT(h->devid),
874 PCI_FUNC(h->devid), h->cap_ptr,
875 h->pci_seg, h->flags, h->info);
876 DUMP_printk(" mmio-addr: %016llx\n",
877 h->mmio_phys);
878
879 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
880 if (iommu == NULL)
881 return -ENOMEM;
882 ret = init_iommu_one(iommu, h);
883 if (ret)
884 return ret;
885 break;
886 default:
887 break;
888 }
889 p += h->length;
890
891 }
892 WARN_ON(p != end);
893
894 return 0;
895 }
896
897 /****************************************************************************
898 *
899 * The following functions initialize the MSI interrupts for all IOMMUs
900 * in the system. Its a bit challenging because there could be multiple
901 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
902 * pci_dev.
903 *
904 ****************************************************************************/
905
906 static int __init iommu_setup_msi(struct amd_iommu *iommu)
907 {
908 int r;
909
910 if (pci_enable_msi(iommu->dev))
911 return 1;
912
913 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
914 IRQF_SAMPLE_RANDOM,
915 "AMD-Vi",
916 NULL);
917
918 if (r) {
919 pci_disable_msi(iommu->dev);
920 return 1;
921 }
922
923 iommu->int_enabled = true;
924 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
925
926 return 0;
927 }
928
929 static int iommu_init_msi(struct amd_iommu *iommu)
930 {
931 if (iommu->int_enabled)
932 return 0;
933
934 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
935 return iommu_setup_msi(iommu);
936
937 return 1;
938 }
939
940 /****************************************************************************
941 *
942 * The next functions belong to the third pass of parsing the ACPI
943 * table. In this last pass the memory mapping requirements are
944 * gathered (like exclusion and unity mapping reanges).
945 *
946 ****************************************************************************/
947
948 static void __init free_unity_maps(void)
949 {
950 struct unity_map_entry *entry, *next;
951
952 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
953 list_del(&entry->list);
954 kfree(entry);
955 }
956 }
957
958 /* called when we find an exclusion range definition in ACPI */
959 static int __init init_exclusion_range(struct ivmd_header *m)
960 {
961 int i;
962
963 switch (m->type) {
964 case ACPI_IVMD_TYPE:
965 set_device_exclusion_range(m->devid, m);
966 break;
967 case ACPI_IVMD_TYPE_ALL:
968 for (i = 0; i <= amd_iommu_last_bdf; ++i)
969 set_device_exclusion_range(i, m);
970 break;
971 case ACPI_IVMD_TYPE_RANGE:
972 for (i = m->devid; i <= m->aux; ++i)
973 set_device_exclusion_range(i, m);
974 break;
975 default:
976 break;
977 }
978
979 return 0;
980 }
981
982 /* called for unity map ACPI definition */
983 static int __init init_unity_map_range(struct ivmd_header *m)
984 {
985 struct unity_map_entry *e = 0;
986 char *s;
987
988 e = kzalloc(sizeof(*e), GFP_KERNEL);
989 if (e == NULL)
990 return -ENOMEM;
991
992 switch (m->type) {
993 default:
994 kfree(e);
995 return 0;
996 case ACPI_IVMD_TYPE:
997 s = "IVMD_TYPEi\t\t\t";
998 e->devid_start = e->devid_end = m->devid;
999 break;
1000 case ACPI_IVMD_TYPE_ALL:
1001 s = "IVMD_TYPE_ALL\t\t";
1002 e->devid_start = 0;
1003 e->devid_end = amd_iommu_last_bdf;
1004 break;
1005 case ACPI_IVMD_TYPE_RANGE:
1006 s = "IVMD_TYPE_RANGE\t\t";
1007 e->devid_start = m->devid;
1008 e->devid_end = m->aux;
1009 break;
1010 }
1011 e->address_start = PAGE_ALIGN(m->range_start);
1012 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1013 e->prot = m->flags >> 1;
1014
1015 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1016 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1017 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1018 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1019 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1020 e->address_start, e->address_end, m->flags);
1021
1022 list_add_tail(&e->list, &amd_iommu_unity_map);
1023
1024 return 0;
1025 }
1026
1027 /* iterates over all memory definitions we find in the ACPI table */
1028 static int __init init_memory_definitions(struct acpi_table_header *table)
1029 {
1030 u8 *p = (u8 *)table, *end = (u8 *)table;
1031 struct ivmd_header *m;
1032
1033 end += table->length;
1034 p += IVRS_HEADER_LENGTH;
1035
1036 while (p < end) {
1037 m = (struct ivmd_header *)p;
1038 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1039 init_exclusion_range(m);
1040 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1041 init_unity_map_range(m);
1042
1043 p += m->length;
1044 }
1045
1046 return 0;
1047 }
1048
1049 /*
1050 * Init the device table to not allow DMA access for devices and
1051 * suppress all page faults
1052 */
1053 static void init_device_table(void)
1054 {
1055 u16 devid;
1056
1057 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1058 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1059 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
1060 }
1061 }
1062
1063 /*
1064 * This function finally enables all IOMMUs found in the system after
1065 * they have been initialized
1066 */
1067 static void enable_iommus(void)
1068 {
1069 struct amd_iommu *iommu;
1070
1071 for_each_iommu(iommu) {
1072 iommu_disable(iommu);
1073 iommu_set_device_table(iommu);
1074 iommu_enable_command_buffer(iommu);
1075 iommu_enable_event_buffer(iommu);
1076 iommu_set_exclusion_range(iommu);
1077 iommu_init_msi(iommu);
1078 iommu_enable(iommu);
1079 }
1080 }
1081
1082 static void disable_iommus(void)
1083 {
1084 struct amd_iommu *iommu;
1085
1086 for_each_iommu(iommu)
1087 iommu_disable(iommu);
1088 }
1089
1090 /*
1091 * Suspend/Resume support
1092 * disable suspend until real resume implemented
1093 */
1094
1095 static int amd_iommu_resume(struct sys_device *dev)
1096 {
1097 /* re-load the hardware */
1098 enable_iommus();
1099
1100 /*
1101 * we have to flush after the IOMMUs are enabled because a
1102 * disabled IOMMU will never execute the commands we send
1103 */
1104 amd_iommu_flush_all_devices();
1105 amd_iommu_flush_all_domains();
1106
1107 return 0;
1108 }
1109
1110 static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1111 {
1112 /* disable IOMMUs to go out of the way for BIOS */
1113 disable_iommus();
1114
1115 return 0;
1116 }
1117
1118 static struct sysdev_class amd_iommu_sysdev_class = {
1119 .name = "amd_iommu",
1120 .suspend = amd_iommu_suspend,
1121 .resume = amd_iommu_resume,
1122 };
1123
1124 static struct sys_device device_amd_iommu = {
1125 .id = 0,
1126 .cls = &amd_iommu_sysdev_class,
1127 };
1128
1129 /*
1130 * This is the core init function for AMD IOMMU hardware in the system.
1131 * This function is called from the generic x86 DMA layer initialization
1132 * code.
1133 *
1134 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1135 * three times:
1136 *
1137 * 1 pass) Find the highest PCI device id the driver has to handle.
1138 * Upon this information the size of the data structures is
1139 * determined that needs to be allocated.
1140 *
1141 * 2 pass) Initialize the data structures just allocated with the
1142 * information in the ACPI table about available AMD IOMMUs
1143 * in the system. It also maps the PCI devices in the
1144 * system to specific IOMMUs
1145 *
1146 * 3 pass) After the basic data structures are allocated and
1147 * initialized we update them with information about memory
1148 * remapping requirements parsed out of the ACPI table in
1149 * this last pass.
1150 *
1151 * After that the hardware is initialized and ready to go. In the last
1152 * step we do some Linux specific things like registering the driver in
1153 * the dma_ops interface and initializing the suspend/resume support
1154 * functions. Finally it prints some information about AMD IOMMUs and
1155 * the driver state and enables the hardware.
1156 */
1157 int __init amd_iommu_init(void)
1158 {
1159 int i, ret = 0;
1160
1161
1162 if (no_iommu) {
1163 printk(KERN_INFO "AMD-Vi disabled by kernel command line\n");
1164 return 0;
1165 }
1166
1167 if (!amd_iommu_detected)
1168 return -ENODEV;
1169
1170 /*
1171 * First parse ACPI tables to find the largest Bus/Dev/Func
1172 * we need to handle. Upon this information the shared data
1173 * structures for the IOMMUs in the system will be allocated
1174 */
1175 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1176 return -ENODEV;
1177
1178 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1179 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1180 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1181
1182 ret = -ENOMEM;
1183
1184 /* Device table - directly used by all IOMMUs */
1185 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1186 get_order(dev_table_size));
1187 if (amd_iommu_dev_table == NULL)
1188 goto out;
1189
1190 /*
1191 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1192 * IOMMU see for that device
1193 */
1194 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1195 get_order(alias_table_size));
1196 if (amd_iommu_alias_table == NULL)
1197 goto free;
1198
1199 /* IOMMU rlookup table - find the IOMMU for a specific device */
1200 amd_iommu_rlookup_table = (void *)__get_free_pages(
1201 GFP_KERNEL | __GFP_ZERO,
1202 get_order(rlookup_table_size));
1203 if (amd_iommu_rlookup_table == NULL)
1204 goto free;
1205
1206 /*
1207 * Protection Domain table - maps devices to protection domains
1208 * This table has the same size as the rlookup_table
1209 */
1210 amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1211 get_order(rlookup_table_size));
1212 if (amd_iommu_pd_table == NULL)
1213 goto free;
1214
1215 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1216 GFP_KERNEL | __GFP_ZERO,
1217 get_order(MAX_DOMAIN_ID/8));
1218 if (amd_iommu_pd_alloc_bitmap == NULL)
1219 goto free;
1220
1221 /* init the device table */
1222 init_device_table();
1223
1224 /*
1225 * let all alias entries point to itself
1226 */
1227 for (i = 0; i <= amd_iommu_last_bdf; ++i)
1228 amd_iommu_alias_table[i] = i;
1229
1230 /*
1231 * never allocate domain 0 because its used as the non-allocated and
1232 * error value placeholder
1233 */
1234 amd_iommu_pd_alloc_bitmap[0] = 1;
1235
1236 /*
1237 * now the data structures are allocated and basically initialized
1238 * start the real acpi table scan
1239 */
1240 ret = -ENODEV;
1241 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1242 goto free;
1243
1244 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1245 goto free;
1246
1247 ret = sysdev_class_register(&amd_iommu_sysdev_class);
1248 if (ret)
1249 goto free;
1250
1251 ret = sysdev_register(&device_amd_iommu);
1252 if (ret)
1253 goto free;
1254
1255 if (iommu_pass_through)
1256 ret = amd_iommu_init_passthrough();
1257 else
1258 ret = amd_iommu_init_dma_ops();
1259 if (ret)
1260 goto free;
1261
1262 enable_iommus();
1263
1264 if (iommu_pass_through)
1265 goto out;
1266
1267 printk(KERN_INFO "AMD-Vi: device isolation ");
1268 if (amd_iommu_isolate)
1269 printk("enabled\n");
1270 else
1271 printk("disabled\n");
1272
1273 if (amd_iommu_unmap_flush)
1274 printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1275 else
1276 printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1277
1278 out:
1279 return ret;
1280
1281 free:
1282 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1283 get_order(MAX_DOMAIN_ID/8));
1284
1285 free_pages((unsigned long)amd_iommu_pd_table,
1286 get_order(rlookup_table_size));
1287
1288 free_pages((unsigned long)amd_iommu_rlookup_table,
1289 get_order(rlookup_table_size));
1290
1291 free_pages((unsigned long)amd_iommu_alias_table,
1292 get_order(alias_table_size));
1293
1294 free_pages((unsigned long)amd_iommu_dev_table,
1295 get_order(dev_table_size));
1296
1297 free_iommu_all();
1298
1299 free_unity_maps();
1300
1301 goto out;
1302 }
1303
1304 void amd_iommu_shutdown(void)
1305 {
1306 disable_iommus();
1307 }
1308
1309 /****************************************************************************
1310 *
1311 * Early detect code. This code runs at IOMMU detection time in the DMA
1312 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1313 * IOMMUs
1314 *
1315 ****************************************************************************/
1316 static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1317 {
1318 return 0;
1319 }
1320
1321 void __init amd_iommu_detect(void)
1322 {
1323 if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
1324 return;
1325
1326 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1327 iommu_detected = 1;
1328 amd_iommu_detected = 1;
1329 #ifdef CONFIG_GART_IOMMU
1330 gart_iommu_aperture_disabled = 1;
1331 gart_iommu_aperture = 0;
1332 #endif
1333 /* Make sure ACS will be enabled */
1334 pci_request_acs();
1335 }
1336 }
1337
1338 /****************************************************************************
1339 *
1340 * Parsing functions for the AMD IOMMU specific kernel command line
1341 * options.
1342 *
1343 ****************************************************************************/
1344
1345 static int __init parse_amd_iommu_dump(char *str)
1346 {
1347 amd_iommu_dump = true;
1348
1349 return 1;
1350 }
1351
1352 static int __init parse_amd_iommu_options(char *str)
1353 {
1354 for (; *str; ++str) {
1355 if (strncmp(str, "isolate", 7) == 0)
1356 amd_iommu_isolate = true;
1357 if (strncmp(str, "share", 5) == 0)
1358 amd_iommu_isolate = false;
1359 if (strncmp(str, "fullflush", 9) == 0)
1360 amd_iommu_unmap_flush = true;
1361 }
1362
1363 return 1;
1364 }
1365
1366 __setup("amd_iommu_dump", parse_amd_iommu_dump);
1367 __setup("amd_iommu=", parse_amd_iommu_options);