139b4249a5ec4fcb09294bb58e4eaa7f0848be1a
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / include / asm / spinlock.h
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3
4 #include <asm/atomic.h>
5 #include <asm/rwlock.h>
6 #include <asm/page.h>
7 #include <asm/processor.h>
8 #include <linux/compiler.h>
9 #include <asm/paravirt.h>
10 /*
11 * Your basic SMP spinlocks, allowing only a single CPU anywhere
12 *
13 * Simple spin lock operations. There are two variants, one clears IRQ's
14 * on the local processor, one does not.
15 *
16 * These are fair FIFO ticket locks, which are currently limited to 256
17 * CPUs.
18 *
19 * (the type definitions are in asm/spinlock_types.h)
20 */
21
22 #ifdef CONFIG_X86_32
23 # define LOCK_PTR_REG "a"
24 # define REG_PTR_MODE "k"
25 #else
26 # define LOCK_PTR_REG "D"
27 # define REG_PTR_MODE "q"
28 #endif
29
30 #if defined(CONFIG_X86_32) && \
31 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
32 /*
33 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
34 * (PPro errata 66, 92)
35 */
36 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
37 #else
38 # define UNLOCK_LOCK_PREFIX
39 #endif
40
41 /*
42 * Ticket locks are conceptually two parts, one indicating the current head of
43 * the queue, and the other indicating the current tail. The lock is acquired
44 * by atomically noting the tail and incrementing it by one (thus adding
45 * ourself to the queue and noting our position), then waiting until the head
46 * becomes equal to the the initial value of the tail.
47 *
48 * We use an xadd covering *both* parts of the lock, to increment the tail and
49 * also load the position of the head, which takes care of memory ordering
50 * issues and should be optimal for the uncontended case. Note the tail must be
51 * in the high part, because a wide xadd increment of the low part would carry
52 * up and contaminate the high part.
53 *
54 * With fewer than 2^8 possible CPUs, we can use x86's partial registers to
55 * save some instructions and make the code more elegant. There really isn't
56 * much between them in performance though, especially as locks are out of line.
57 */
58 #if (NR_CPUS < 256)
59 #define TICKET_SHIFT 8
60
61 static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock)
62 {
63 short inc = 0x0100;
64
65 asm volatile (
66 LOCK_PREFIX "xaddw %w0, %1\n"
67 "1:\t"
68 "cmpb %h0, %b0\n\t"
69 "je 2f\n\t"
70 "rep ; nop\n\t"
71 "movb %1, %b0\n\t"
72 /* don't need lfence here, because loads are in-order */
73 "jmp 1b\n"
74 "2:"
75 : "+Q" (inc), "+m" (lock->slock)
76 :
77 : "memory", "cc");
78 }
79
80 static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock)
81 {
82 int tmp, new;
83
84 asm volatile("movzwl %2, %0\n\t"
85 "cmpb %h0,%b0\n\t"
86 "leal 0x100(%" REG_PTR_MODE "0), %1\n\t"
87 "jne 1f\n\t"
88 LOCK_PREFIX "cmpxchgw %w1,%2\n\t"
89 "1:"
90 "sete %b1\n\t"
91 "movzbl %b1,%0\n\t"
92 : "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
93 :
94 : "memory", "cc");
95
96 return tmp;
97 }
98
99 static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock)
100 {
101 asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
102 : "+m" (lock->slock)
103 :
104 : "memory", "cc");
105 }
106 #else
107 #define TICKET_SHIFT 16
108
109 static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock)
110 {
111 int inc = 0x00010000;
112 int tmp;
113
114 asm volatile(LOCK_PREFIX "xaddl %0, %1\n"
115 "movzwl %w0, %2\n\t"
116 "shrl $16, %0\n\t"
117 "1:\t"
118 "cmpl %0, %2\n\t"
119 "je 2f\n\t"
120 "rep ; nop\n\t"
121 "movzwl %1, %2\n\t"
122 /* don't need lfence here, because loads are in-order */
123 "jmp 1b\n"
124 "2:"
125 : "+r" (inc), "+m" (lock->slock), "=&r" (tmp)
126 :
127 : "memory", "cc");
128 }
129
130 static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock)
131 {
132 int tmp;
133 int new;
134
135 asm volatile("movl %2,%0\n\t"
136 "movl %0,%1\n\t"
137 "roll $16, %0\n\t"
138 "cmpl %0,%1\n\t"
139 "leal 0x00010000(%" REG_PTR_MODE "0), %1\n\t"
140 "jne 1f\n\t"
141 LOCK_PREFIX "cmpxchgl %1,%2\n\t"
142 "1:"
143 "sete %b1\n\t"
144 "movzbl %b1,%0\n\t"
145 : "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
146 :
147 : "memory", "cc");
148
149 return tmp;
150 }
151
152 static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock)
153 {
154 asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
155 : "+m" (lock->slock)
156 :
157 : "memory", "cc");
158 }
159 #endif
160
161 static inline int __ticket_spin_is_locked(raw_spinlock_t *lock)
162 {
163 int tmp = ACCESS_ONCE(lock->slock);
164
165 return !!(((tmp >> TICKET_SHIFT) ^ tmp) & ((1 << TICKET_SHIFT) - 1));
166 }
167
168 static inline int __ticket_spin_is_contended(raw_spinlock_t *lock)
169 {
170 int tmp = ACCESS_ONCE(lock->slock);
171
172 return (((tmp >> TICKET_SHIFT) - tmp) & ((1 << TICKET_SHIFT) - 1)) > 1;
173 }
174
175 #ifndef CONFIG_PARAVIRT
176
177 static inline int __raw_spin_is_locked(raw_spinlock_t *lock)
178 {
179 return __ticket_spin_is_locked(lock);
180 }
181
182 static inline int __raw_spin_is_contended(raw_spinlock_t *lock)
183 {
184 return __ticket_spin_is_contended(lock);
185 }
186
187 static __always_inline void __raw_spin_lock(raw_spinlock_t *lock)
188 {
189 __ticket_spin_lock(lock);
190 }
191
192 static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock)
193 {
194 return __ticket_spin_trylock(lock);
195 }
196
197 static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock)
198 {
199 __ticket_spin_unlock(lock);
200 }
201
202 static __always_inline void __raw_spin_lock_flags(raw_spinlock_t *lock,
203 unsigned long flags)
204 {
205 __raw_spin_lock(lock);
206 }
207
208 #endif
209
210 static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock)
211 {
212 while (__raw_spin_is_locked(lock))
213 cpu_relax();
214 }
215
216 /*
217 * Read-write spinlocks, allowing multiple readers
218 * but only one writer.
219 *
220 * NOTE! it is quite common to have readers in interrupts
221 * but no interrupt writers. For those circumstances we
222 * can "mix" irq-safe locks - any writer needs to get a
223 * irq-safe write-lock, but readers can get non-irqsafe
224 * read-locks.
225 *
226 * On x86, we implement read-write locks as a 32-bit counter
227 * with the high bit (sign) being the "contended" bit.
228 */
229
230 /**
231 * read_can_lock - would read_trylock() succeed?
232 * @lock: the rwlock in question.
233 */
234 static inline int __raw_read_can_lock(raw_rwlock_t *lock)
235 {
236 return (int)(lock)->lock > 0;
237 }
238
239 /**
240 * write_can_lock - would write_trylock() succeed?
241 * @lock: the rwlock in question.
242 */
243 static inline int __raw_write_can_lock(raw_rwlock_t *lock)
244 {
245 return (lock)->lock == RW_LOCK_BIAS;
246 }
247
248 static inline void __raw_read_lock(raw_rwlock_t *rw)
249 {
250 asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t"
251 "jns 1f\n"
252 "call __read_lock_failed\n\t"
253 "1:\n"
254 ::LOCK_PTR_REG (rw) : "memory");
255 }
256
257 static inline void __raw_write_lock(raw_rwlock_t *rw)
258 {
259 asm volatile(LOCK_PREFIX " subl %1,(%0)\n\t"
260 "jz 1f\n"
261 "call __write_lock_failed\n\t"
262 "1:\n"
263 ::LOCK_PTR_REG (rw), "i" (RW_LOCK_BIAS) : "memory");
264 }
265
266 static inline int __raw_read_trylock(raw_rwlock_t *lock)
267 {
268 atomic_t *count = (atomic_t *)lock;
269
270 if (atomic_dec_return(count) >= 0)
271 return 1;
272 atomic_inc(count);
273 return 0;
274 }
275
276 static inline int __raw_write_trylock(raw_rwlock_t *lock)
277 {
278 atomic_t *count = (atomic_t *)lock;
279
280 if (atomic_sub_and_test(RW_LOCK_BIAS, count))
281 return 1;
282 atomic_add(RW_LOCK_BIAS, count);
283 return 0;
284 }
285
286 static inline void __raw_read_unlock(raw_rwlock_t *rw)
287 {
288 asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory");
289 }
290
291 static inline void __raw_write_unlock(raw_rwlock_t *rw)
292 {
293 asm volatile(LOCK_PREFIX "addl %1, %0"
294 : "+m" (rw->lock) : "i" (RW_LOCK_BIAS) : "memory");
295 }
296
297 #define _raw_spin_relax(lock) cpu_relax()
298 #define _raw_read_relax(lock) cpu_relax()
299 #define _raw_write_relax(lock) cpu_relax()
300
301 #endif /* _ASM_X86_SPINLOCK_H */