Merge branch 'tracing-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / crypto / aes-i586-asm_32.S
1 // -------------------------------------------------------------------------
2 // Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK.
3 // All rights reserved.
4 //
5 // LICENSE TERMS
6 //
7 // The free distribution and use of this software in both source and binary
8 // form is allowed (with or without changes) provided that:
9 //
10 // 1. distributions of this source code include the above copyright
11 // notice, this list of conditions and the following disclaimer//
12 //
13 // 2. distributions in binary form include the above copyright
14 // notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other associated materials//
16 //
17 // 3. the copyright holder's name is not used to endorse products
18 // built using this software without specific written permission.
19 //
20 //
21 // ALTERNATIVELY, provided that this notice is retained in full, this product
22 // may be distributed under the terms of the GNU General Public License (GPL),
23 // in which case the provisions of the GPL apply INSTEAD OF those given above.
24 //
25 // Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org>
26 // Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
27
28 // DISCLAIMER
29 //
30 // This software is provided 'as is' with no explicit or implied warranties
31 // in respect of its properties including, but not limited to, correctness
32 // and fitness for purpose.
33 // -------------------------------------------------------------------------
34 // Issue Date: 29/07/2002
35
36 .file "aes-i586-asm.S"
37 .text
38
39 #include <asm/asm-offsets.h>
40
41 #define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words)
42
43 /* offsets to parameters with one register pushed onto stack */
44 #define tfm 8
45 #define out_blk 12
46 #define in_blk 16
47
48 /* offsets in crypto_tfm structure */
49 #define klen (crypto_tfm_ctx_offset + 0)
50 #define ekey (crypto_tfm_ctx_offset + 4)
51 #define dkey (crypto_tfm_ctx_offset + 244)
52
53 // register mapping for encrypt and decrypt subroutines
54
55 #define r0 eax
56 #define r1 ebx
57 #define r2 ecx
58 #define r3 edx
59 #define r4 esi
60 #define r5 edi
61
62 #define eaxl al
63 #define eaxh ah
64 #define ebxl bl
65 #define ebxh bh
66 #define ecxl cl
67 #define ecxh ch
68 #define edxl dl
69 #define edxh dh
70
71 #define _h(reg) reg##h
72 #define h(reg) _h(reg)
73
74 #define _l(reg) reg##l
75 #define l(reg) _l(reg)
76
77 // This macro takes a 32-bit word representing a column and uses
78 // each of its four bytes to index into four tables of 256 32-bit
79 // words to obtain values that are then xored into the appropriate
80 // output registers r0, r1, r4 or r5.
81
82 // Parameters:
83 // table table base address
84 // %1 out_state[0]
85 // %2 out_state[1]
86 // %3 out_state[2]
87 // %4 out_state[3]
88 // idx input register for the round (destroyed)
89 // tmp scratch register for the round
90 // sched key schedule
91
92 #define do_col(table, a1,a2,a3,a4, idx, tmp) \
93 movzx %l(idx),%tmp; \
94 xor table(,%tmp,4),%a1; \
95 movzx %h(idx),%tmp; \
96 shr $16,%idx; \
97 xor table+tlen(,%tmp,4),%a2; \
98 movzx %l(idx),%tmp; \
99 movzx %h(idx),%idx; \
100 xor table+2*tlen(,%tmp,4),%a3; \
101 xor table+3*tlen(,%idx,4),%a4;
102
103 // initialise output registers from the key schedule
104 // NB1: original value of a3 is in idx on exit
105 // NB2: original values of a1,a2,a4 aren't used
106 #define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \
107 mov 0 sched,%a1; \
108 movzx %l(idx),%tmp; \
109 mov 12 sched,%a2; \
110 xor table(,%tmp,4),%a1; \
111 mov 4 sched,%a4; \
112 movzx %h(idx),%tmp; \
113 shr $16,%idx; \
114 xor table+tlen(,%tmp,4),%a2; \
115 movzx %l(idx),%tmp; \
116 movzx %h(idx),%idx; \
117 xor table+3*tlen(,%idx,4),%a4; \
118 mov %a3,%idx; \
119 mov 8 sched,%a3; \
120 xor table+2*tlen(,%tmp,4),%a3;
121
122 // initialise output registers from the key schedule
123 // NB1: original value of a3 is in idx on exit
124 // NB2: original values of a1,a2,a4 aren't used
125 #define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \
126 mov 0 sched,%a1; \
127 movzx %l(idx),%tmp; \
128 mov 4 sched,%a2; \
129 xor table(,%tmp,4),%a1; \
130 mov 12 sched,%a4; \
131 movzx %h(idx),%tmp; \
132 shr $16,%idx; \
133 xor table+tlen(,%tmp,4),%a2; \
134 movzx %l(idx),%tmp; \
135 movzx %h(idx),%idx; \
136 xor table+3*tlen(,%idx,4),%a4; \
137 mov %a3,%idx; \
138 mov 8 sched,%a3; \
139 xor table+2*tlen(,%tmp,4),%a3;
140
141
142 // original Gladman had conditional saves to MMX regs.
143 #define save(a1, a2) \
144 mov %a2,4*a1(%esp)
145
146 #define restore(a1, a2) \
147 mov 4*a2(%esp),%a1
148
149 // These macros perform a forward encryption cycle. They are entered with
150 // the first previous round column values in r0,r1,r4,r5 and
151 // exit with the final values in the same registers, using stack
152 // for temporary storage.
153
154 // round column values
155 // on entry: r0,r1,r4,r5
156 // on exit: r2,r1,r4,r5
157 #define fwd_rnd1(arg, table) \
158 save (0,r1); \
159 save (1,r5); \
160 \
161 /* compute new column values */ \
162 do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \
163 do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \
164 restore(r0,0); \
165 do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \
166 restore(r0,1); \
167 do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */
168
169 // round column values
170 // on entry: r2,r1,r4,r5
171 // on exit: r0,r1,r4,r5
172 #define fwd_rnd2(arg, table) \
173 save (0,r1); \
174 save (1,r5); \
175 \
176 /* compute new column values */ \
177 do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \
178 do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \
179 restore(r2,0); \
180 do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \
181 restore(r2,1); \
182 do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */
183
184 // These macros performs an inverse encryption cycle. They are entered with
185 // the first previous round column values in r0,r1,r4,r5 and
186 // exit with the final values in the same registers, using stack
187 // for temporary storage
188
189 // round column values
190 // on entry: r0,r1,r4,r5
191 // on exit: r2,r1,r4,r5
192 #define inv_rnd1(arg, table) \
193 save (0,r1); \
194 save (1,r5); \
195 \
196 /* compute new column values */ \
197 do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \
198 do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \
199 restore(r0,0); \
200 do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \
201 restore(r0,1); \
202 do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */
203
204 // round column values
205 // on entry: r2,r1,r4,r5
206 // on exit: r0,r1,r4,r5
207 #define inv_rnd2(arg, table) \
208 save (0,r1); \
209 save (1,r5); \
210 \
211 /* compute new column values */ \
212 do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \
213 do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \
214 restore(r2,0); \
215 do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \
216 restore(r2,1); \
217 do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */
218
219 // AES (Rijndael) Encryption Subroutine
220 /* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */
221
222 .global aes_enc_blk
223
224 .extern crypto_ft_tab
225 .extern crypto_fl_tab
226
227 .align 4
228
229 aes_enc_blk:
230 push %ebp
231 mov tfm(%esp),%ebp
232
233 // CAUTION: the order and the values used in these assigns
234 // rely on the register mappings
235
236 1: push %ebx
237 mov in_blk+4(%esp),%r2
238 push %esi
239 mov klen(%ebp),%r3 // key size
240 push %edi
241 #if ekey != 0
242 lea ekey(%ebp),%ebp // key pointer
243 #endif
244
245 // input four columns and xor in first round key
246
247 mov (%r2),%r0
248 mov 4(%r2),%r1
249 mov 8(%r2),%r4
250 mov 12(%r2),%r5
251 xor (%ebp),%r0
252 xor 4(%ebp),%r1
253 xor 8(%ebp),%r4
254 xor 12(%ebp),%r5
255
256 sub $8,%esp // space for register saves on stack
257 add $16,%ebp // increment to next round key
258 cmp $24,%r3
259 jb 4f // 10 rounds for 128-bit key
260 lea 32(%ebp),%ebp
261 je 3f // 12 rounds for 192-bit key
262 lea 32(%ebp),%ebp
263
264 2: fwd_rnd1( -64(%ebp), crypto_ft_tab) // 14 rounds for 256-bit key
265 fwd_rnd2( -48(%ebp), crypto_ft_tab)
266 3: fwd_rnd1( -32(%ebp), crypto_ft_tab) // 12 rounds for 192-bit key
267 fwd_rnd2( -16(%ebp), crypto_ft_tab)
268 4: fwd_rnd1( (%ebp), crypto_ft_tab) // 10 rounds for 128-bit key
269 fwd_rnd2( +16(%ebp), crypto_ft_tab)
270 fwd_rnd1( +32(%ebp), crypto_ft_tab)
271 fwd_rnd2( +48(%ebp), crypto_ft_tab)
272 fwd_rnd1( +64(%ebp), crypto_ft_tab)
273 fwd_rnd2( +80(%ebp), crypto_ft_tab)
274 fwd_rnd1( +96(%ebp), crypto_ft_tab)
275 fwd_rnd2(+112(%ebp), crypto_ft_tab)
276 fwd_rnd1(+128(%ebp), crypto_ft_tab)
277 fwd_rnd2(+144(%ebp), crypto_fl_tab) // last round uses a different table
278
279 // move final values to the output array. CAUTION: the
280 // order of these assigns rely on the register mappings
281
282 add $8,%esp
283 mov out_blk+12(%esp),%ebp
284 mov %r5,12(%ebp)
285 pop %edi
286 mov %r4,8(%ebp)
287 pop %esi
288 mov %r1,4(%ebp)
289 pop %ebx
290 mov %r0,(%ebp)
291 pop %ebp
292 ret
293
294 // AES (Rijndael) Decryption Subroutine
295 /* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */
296
297 .global aes_dec_blk
298
299 .extern crypto_it_tab
300 .extern crypto_il_tab
301
302 .align 4
303
304 aes_dec_blk:
305 push %ebp
306 mov tfm(%esp),%ebp
307
308 // CAUTION: the order and the values used in these assigns
309 // rely on the register mappings
310
311 1: push %ebx
312 mov in_blk+4(%esp),%r2
313 push %esi
314 mov klen(%ebp),%r3 // key size
315 push %edi
316 #if dkey != 0
317 lea dkey(%ebp),%ebp // key pointer
318 #endif
319
320 // input four columns and xor in first round key
321
322 mov (%r2),%r0
323 mov 4(%r2),%r1
324 mov 8(%r2),%r4
325 mov 12(%r2),%r5
326 xor (%ebp),%r0
327 xor 4(%ebp),%r1
328 xor 8(%ebp),%r4
329 xor 12(%ebp),%r5
330
331 sub $8,%esp // space for register saves on stack
332 add $16,%ebp // increment to next round key
333 cmp $24,%r3
334 jb 4f // 10 rounds for 128-bit key
335 lea 32(%ebp),%ebp
336 je 3f // 12 rounds for 192-bit key
337 lea 32(%ebp),%ebp
338
339 2: inv_rnd1( -64(%ebp), crypto_it_tab) // 14 rounds for 256-bit key
340 inv_rnd2( -48(%ebp), crypto_it_tab)
341 3: inv_rnd1( -32(%ebp), crypto_it_tab) // 12 rounds for 192-bit key
342 inv_rnd2( -16(%ebp), crypto_it_tab)
343 4: inv_rnd1( (%ebp), crypto_it_tab) // 10 rounds for 128-bit key
344 inv_rnd2( +16(%ebp), crypto_it_tab)
345 inv_rnd1( +32(%ebp), crypto_it_tab)
346 inv_rnd2( +48(%ebp), crypto_it_tab)
347 inv_rnd1( +64(%ebp), crypto_it_tab)
348 inv_rnd2( +80(%ebp), crypto_it_tab)
349 inv_rnd1( +96(%ebp), crypto_it_tab)
350 inv_rnd2(+112(%ebp), crypto_it_tab)
351 inv_rnd1(+128(%ebp), crypto_it_tab)
352 inv_rnd2(+144(%ebp), crypto_il_tab) // last round uses a different table
353
354 // move final values to the output array. CAUTION: the
355 // order of these assigns rely on the register mappings
356
357 add $8,%esp
358 mov out_blk+12(%esp),%ebp
359 mov %r5,12(%ebp)
360 pop %edi
361 mov %r4,8(%ebp)
362 pop %esi
363 mov %r1,4(%ebp)
364 pop %ebx
365 mov %r0,(%ebp)
366 pop %ebp
367 ret