715c1f3664c43ca6917cd3e07825ce97c7c343a6
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / arch / x86 / Kconfig
1 # Select 32 or 64 bit
2 config 64BIT
3 bool "64-bit kernel" if ARCH = "x86"
4 default ARCH != "i386"
5 ---help---
6 Say yes to build a 64-bit kernel - formerly known as x86_64
7 Say no to build a 32-bit kernel - formerly known as i386
8
9 config X86_32
10 def_bool y
11 depends on !64BIT
12
13 config X86_64
14 def_bool y
15 depends on 64BIT
16
17 ### Arch settings
18 config X86
19 def_bool y
20 select ACPI_LEGACY_TABLES_LOOKUP if ACPI
21 select ACPI_SYSTEM_POWER_STATES_SUPPORT if ACPI
22 select ANON_INODES
23 select ARCH_CLOCKSOURCE_DATA
24 select ARCH_DISCARD_MEMBLOCK
25 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
26 select ARCH_HAS_DEVMEM_IS_ALLOWED
27 select ARCH_HAS_ELF_RANDOMIZE
28 select ARCH_HAS_FAST_MULTIPLIER
29 select ARCH_HAS_GCOV_PROFILE_ALL
30 select ARCH_HAS_GIGANTIC_PAGE if X86_64
31 select ARCH_HAS_KCOV if X86_64
32 select ARCH_HAS_PMEM_API if X86_64
33 select ARCH_HAS_MMIO_FLUSH
34 select ARCH_HAS_SG_CHAIN
35 select ARCH_HAS_UBSAN_SANITIZE_ALL
36 select ARCH_HAVE_NMI_SAFE_CMPXCHG
37 select ARCH_MIGHT_HAVE_ACPI_PDC if ACPI
38 select ARCH_MIGHT_HAVE_PC_PARPORT
39 select ARCH_MIGHT_HAVE_PC_SERIO
40 select ARCH_SUPPORTS_ATOMIC_RMW
41 select ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT
42 select ARCH_SUPPORTS_INT128 if X86_64
43 select ARCH_SUPPORTS_NUMA_BALANCING if X86_64
44 select ARCH_USE_BUILTIN_BSWAP
45 select ARCH_USE_CMPXCHG_LOCKREF if X86_64
46 select ARCH_USE_QUEUED_RWLOCKS
47 select ARCH_USE_QUEUED_SPINLOCKS
48 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH if SMP
49 select ARCH_WANTS_DYNAMIC_TASK_STRUCT
50 select ARCH_WANT_FRAME_POINTERS
51 select ARCH_WANT_IPC_PARSE_VERSION if X86_32
52 select BUILDTIME_EXTABLE_SORT
53 select CLKEVT_I8253
54 select CLKSRC_I8253 if X86_32
55 select CLOCKSOURCE_VALIDATE_LAST_CYCLE
56 select CLOCKSOURCE_WATCHDOG
57 select CLONE_BACKWARDS if X86_32
58 select COMPAT_OLD_SIGACTION if IA32_EMULATION
59 select DCACHE_WORD_ACCESS
60 select EDAC_ATOMIC_SCRUB
61 select EDAC_SUPPORT
62 select GENERIC_CLOCKEVENTS
63 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
64 select GENERIC_CLOCKEVENTS_MIN_ADJUST
65 select GENERIC_CMOS_UPDATE
66 select GENERIC_CPU_AUTOPROBE
67 select GENERIC_EARLY_IOREMAP
68 select GENERIC_FIND_FIRST_BIT
69 select GENERIC_IOMAP
70 select GENERIC_IRQ_PROBE
71 select GENERIC_IRQ_SHOW
72 select GENERIC_PENDING_IRQ if SMP
73 select GENERIC_SMP_IDLE_THREAD
74 select GENERIC_STRNCPY_FROM_USER
75 select GENERIC_STRNLEN_USER
76 select GENERIC_TIME_VSYSCALL
77 select HAVE_ACPI_APEI if ACPI
78 select HAVE_ACPI_APEI_NMI if ACPI
79 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
80 select HAVE_AOUT if X86_32
81 select HAVE_ARCH_AUDITSYSCALL
82 select HAVE_ARCH_HARDENED_USERCOPY
83 select HAVE_ARCH_HUGE_VMAP if X86_64 || X86_PAE
84 select HAVE_ARCH_JUMP_LABEL
85 select HAVE_ARCH_KASAN if X86_64 && SPARSEMEM_VMEMMAP
86 select HAVE_ARCH_KGDB
87 select HAVE_ARCH_KMEMCHECK
88 select HAVE_ARCH_MMAP_RND_BITS if MMU
89 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if MMU && COMPAT
90 select HAVE_ARCH_SECCOMP_FILTER
91 select HAVE_ARCH_SOFT_DIRTY if X86_64
92 select HAVE_ARCH_TRACEHOOK
93 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
94 select HAVE_ARCH_WITHIN_STACK_FRAMES
95 select HAVE_EBPF_JIT if X86_64
96 select HAVE_ARCH_VMAP_STACK if X86_64
97 select HAVE_CC_STACKPROTECTOR
98 select HAVE_CMPXCHG_DOUBLE
99 select HAVE_CMPXCHG_LOCAL
100 select HAVE_CONTEXT_TRACKING if X86_64
101 select HAVE_COPY_THREAD_TLS
102 select HAVE_C_RECORDMCOUNT
103 select HAVE_DEBUG_KMEMLEAK
104 select HAVE_DEBUG_STACKOVERFLOW
105 select HAVE_DMA_API_DEBUG
106 select HAVE_DMA_CONTIGUOUS
107 select HAVE_DYNAMIC_FTRACE
108 select HAVE_DYNAMIC_FTRACE_WITH_REGS
109 select HAVE_EFFICIENT_UNALIGNED_ACCESS
110 select HAVE_EXIT_THREAD
111 select HAVE_FENTRY if X86_64
112 select HAVE_FTRACE_MCOUNT_RECORD
113 select HAVE_FUNCTION_GRAPH_TRACER
114 select HAVE_FUNCTION_TRACER
115 select HAVE_GCC_PLUGINS
116 select HAVE_GENERIC_DMA_COHERENT if X86_32
117 select HAVE_HW_BREAKPOINT
118 select HAVE_IDE
119 select HAVE_IOREMAP_PROT
120 select HAVE_IRQ_EXIT_ON_IRQ_STACK if X86_64
121 select HAVE_IRQ_TIME_ACCOUNTING
122 select HAVE_KERNEL_BZIP2
123 select HAVE_KERNEL_GZIP
124 select HAVE_KERNEL_LZ4
125 select HAVE_KERNEL_LZMA
126 select HAVE_KERNEL_LZO
127 select HAVE_KERNEL_XZ
128 select HAVE_KPROBES
129 select HAVE_KPROBES_ON_FTRACE
130 select HAVE_KRETPROBES
131 select HAVE_KVM
132 select HAVE_LIVEPATCH if X86_64
133 select HAVE_MEMBLOCK
134 select HAVE_MEMBLOCK_NODE_MAP
135 select HAVE_MIXED_BREAKPOINTS_REGS
136 select HAVE_NMI
137 select HAVE_OPROFILE
138 select HAVE_OPTPROBES
139 select HAVE_PCSPKR_PLATFORM
140 select HAVE_PERF_EVENTS
141 select HAVE_PERF_EVENTS_NMI
142 select HAVE_PERF_REGS
143 select HAVE_PERF_USER_STACK_DUMP
144 select HAVE_REGS_AND_STACK_ACCESS_API
145 select HAVE_SYSCALL_TRACEPOINTS
146 select HAVE_UID16 if X86_32 || IA32_EMULATION
147 select HAVE_UNSTABLE_SCHED_CLOCK
148 select HAVE_USER_RETURN_NOTIFIER
149 select IRQ_FORCED_THREADING
150 select MODULES_USE_ELF_RELA if X86_64
151 select MODULES_USE_ELF_REL if X86_32
152 select OLD_SIGACTION if X86_32
153 select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION
154 select PERF_EVENTS
155 select RTC_LIB
156 select RTC_MC146818_LIB
157 select SPARSE_IRQ
158 select SRCU
159 select SYSCTL_EXCEPTION_TRACE
160 select THREAD_INFO_IN_TASK
161 select USER_STACKTRACE_SUPPORT
162 select VIRT_TO_BUS
163 select X86_DEV_DMA_OPS if X86_64
164 select X86_FEATURE_NAMES if PROC_FS
165 select HAVE_STACK_VALIDATION if X86_64
166 select ARCH_USES_HIGH_VMA_FLAGS if X86_INTEL_MEMORY_PROTECTION_KEYS
167 select ARCH_HAS_PKEYS if X86_INTEL_MEMORY_PROTECTION_KEYS
168
169 config INSTRUCTION_DECODER
170 def_bool y
171 depends on KPROBES || PERF_EVENTS || UPROBES
172
173 config OUTPUT_FORMAT
174 string
175 default "elf32-i386" if X86_32
176 default "elf64-x86-64" if X86_64
177
178 config ARCH_DEFCONFIG
179 string
180 default "arch/x86/configs/i386_defconfig" if X86_32
181 default "arch/x86/configs/x86_64_defconfig" if X86_64
182
183 config LOCKDEP_SUPPORT
184 def_bool y
185
186 config STACKTRACE_SUPPORT
187 def_bool y
188
189 config MMU
190 def_bool y
191
192 config ARCH_MMAP_RND_BITS_MIN
193 default 28 if 64BIT
194 default 8
195
196 config ARCH_MMAP_RND_BITS_MAX
197 default 32 if 64BIT
198 default 16
199
200 config ARCH_MMAP_RND_COMPAT_BITS_MIN
201 default 8
202
203 config ARCH_MMAP_RND_COMPAT_BITS_MAX
204 default 16
205
206 config SBUS
207 bool
208
209 config NEED_DMA_MAP_STATE
210 def_bool y
211 depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG || SWIOTLB
212
213 config NEED_SG_DMA_LENGTH
214 def_bool y
215
216 config GENERIC_ISA_DMA
217 def_bool y
218 depends on ISA_DMA_API
219
220 config GENERIC_BUG
221 def_bool y
222 depends on BUG
223 select GENERIC_BUG_RELATIVE_POINTERS if X86_64
224
225 config GENERIC_BUG_RELATIVE_POINTERS
226 bool
227
228 config GENERIC_HWEIGHT
229 def_bool y
230
231 config ARCH_MAY_HAVE_PC_FDC
232 def_bool y
233 depends on ISA_DMA_API
234
235 config RWSEM_XCHGADD_ALGORITHM
236 def_bool y
237
238 config GENERIC_CALIBRATE_DELAY
239 def_bool y
240
241 config ARCH_HAS_CPU_RELAX
242 def_bool y
243
244 config ARCH_HAS_CACHE_LINE_SIZE
245 def_bool y
246
247 config HAVE_SETUP_PER_CPU_AREA
248 def_bool y
249
250 config NEED_PER_CPU_EMBED_FIRST_CHUNK
251 def_bool y
252
253 config NEED_PER_CPU_PAGE_FIRST_CHUNK
254 def_bool y
255
256 config ARCH_HIBERNATION_POSSIBLE
257 def_bool y
258
259 config ARCH_SUSPEND_POSSIBLE
260 def_bool y
261
262 config ARCH_WANT_HUGE_PMD_SHARE
263 def_bool y
264
265 config ARCH_WANT_GENERAL_HUGETLB
266 def_bool y
267
268 config ZONE_DMA32
269 def_bool y if X86_64
270
271 config AUDIT_ARCH
272 def_bool y if X86_64
273
274 config ARCH_SUPPORTS_OPTIMIZED_INLINING
275 def_bool y
276
277 config ARCH_SUPPORTS_DEBUG_PAGEALLOC
278 def_bool y
279
280 config KASAN_SHADOW_OFFSET
281 hex
282 depends on KASAN
283 default 0xdffffc0000000000
284
285 config HAVE_INTEL_TXT
286 def_bool y
287 depends on INTEL_IOMMU && ACPI
288
289 config X86_32_SMP
290 def_bool y
291 depends on X86_32 && SMP
292
293 config X86_64_SMP
294 def_bool y
295 depends on X86_64 && SMP
296
297 config X86_32_LAZY_GS
298 def_bool y
299 depends on X86_32 && !CC_STACKPROTECTOR
300
301 config ARCH_SUPPORTS_UPROBES
302 def_bool y
303
304 config FIX_EARLYCON_MEM
305 def_bool y
306
307 config DEBUG_RODATA
308 def_bool y
309
310 config PGTABLE_LEVELS
311 int
312 default 4 if X86_64
313 default 3 if X86_PAE
314 default 2
315
316 source "init/Kconfig"
317 source "kernel/Kconfig.freezer"
318
319 menu "Processor type and features"
320
321 config ZONE_DMA
322 bool "DMA memory allocation support" if EXPERT
323 default y
324 help
325 DMA memory allocation support allows devices with less than 32-bit
326 addressing to allocate within the first 16MB of address space.
327 Disable if no such devices will be used.
328
329 If unsure, say Y.
330
331 config SMP
332 bool "Symmetric multi-processing support"
333 ---help---
334 This enables support for systems with more than one CPU. If you have
335 a system with only one CPU, say N. If you have a system with more
336 than one CPU, say Y.
337
338 If you say N here, the kernel will run on uni- and multiprocessor
339 machines, but will use only one CPU of a multiprocessor machine. If
340 you say Y here, the kernel will run on many, but not all,
341 uniprocessor machines. On a uniprocessor machine, the kernel
342 will run faster if you say N here.
343
344 Note that if you say Y here and choose architecture "586" or
345 "Pentium" under "Processor family", the kernel will not work on 486
346 architectures. Similarly, multiprocessor kernels for the "PPro"
347 architecture may not work on all Pentium based boards.
348
349 People using multiprocessor machines who say Y here should also say
350 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
351 Management" code will be disabled if you say Y here.
352
353 See also <file:Documentation/x86/i386/IO-APIC.txt>,
354 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
355 <http://www.tldp.org/docs.html#howto>.
356
357 If you don't know what to do here, say N.
358
359 config X86_FEATURE_NAMES
360 bool "Processor feature human-readable names" if EMBEDDED
361 default y
362 ---help---
363 This option compiles in a table of x86 feature bits and corresponding
364 names. This is required to support /proc/cpuinfo and a few kernel
365 messages. You can disable this to save space, at the expense of
366 making those few kernel messages show numeric feature bits instead.
367
368 If in doubt, say Y.
369
370 config X86_FAST_FEATURE_TESTS
371 bool "Fast CPU feature tests" if EMBEDDED
372 default y
373 ---help---
374 Some fast-paths in the kernel depend on the capabilities of the CPU.
375 Say Y here for the kernel to patch in the appropriate code at runtime
376 based on the capabilities of the CPU. The infrastructure for patching
377 code at runtime takes up some additional space; space-constrained
378 embedded systems may wish to say N here to produce smaller, slightly
379 slower code.
380
381 config X86_X2APIC
382 bool "Support x2apic"
383 depends on X86_LOCAL_APIC && X86_64 && (IRQ_REMAP || HYPERVISOR_GUEST)
384 ---help---
385 This enables x2apic support on CPUs that have this feature.
386
387 This allows 32-bit apic IDs (so it can support very large systems),
388 and accesses the local apic via MSRs not via mmio.
389
390 If you don't know what to do here, say N.
391
392 config X86_MPPARSE
393 bool "Enable MPS table" if ACPI || SFI
394 default y
395 depends on X86_LOCAL_APIC
396 ---help---
397 For old smp systems that do not have proper acpi support. Newer systems
398 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
399
400 config X86_BIGSMP
401 bool "Support for big SMP systems with more than 8 CPUs"
402 depends on X86_32 && SMP
403 ---help---
404 This option is needed for the systems that have more than 8 CPUs
405
406 config GOLDFISH
407 def_bool y
408 depends on X86_GOLDFISH
409
410 if X86_32
411 config X86_EXTENDED_PLATFORM
412 bool "Support for extended (non-PC) x86 platforms"
413 default y
414 ---help---
415 If you disable this option then the kernel will only support
416 standard PC platforms. (which covers the vast majority of
417 systems out there.)
418
419 If you enable this option then you'll be able to select support
420 for the following (non-PC) 32 bit x86 platforms:
421 Goldfish (Android emulator)
422 AMD Elan
423 RDC R-321x SoC
424 SGI 320/540 (Visual Workstation)
425 STA2X11-based (e.g. Northville)
426 Moorestown MID devices
427
428 If you have one of these systems, or if you want to build a
429 generic distribution kernel, say Y here - otherwise say N.
430 endif
431
432 if X86_64
433 config X86_EXTENDED_PLATFORM
434 bool "Support for extended (non-PC) x86 platforms"
435 default y
436 ---help---
437 If you disable this option then the kernel will only support
438 standard PC platforms. (which covers the vast majority of
439 systems out there.)
440
441 If you enable this option then you'll be able to select support
442 for the following (non-PC) 64 bit x86 platforms:
443 Numascale NumaChip
444 ScaleMP vSMP
445 SGI Ultraviolet
446
447 If you have one of these systems, or if you want to build a
448 generic distribution kernel, say Y here - otherwise say N.
449 endif
450 # This is an alphabetically sorted list of 64 bit extended platforms
451 # Please maintain the alphabetic order if and when there are additions
452 config X86_NUMACHIP
453 bool "Numascale NumaChip"
454 depends on X86_64
455 depends on X86_EXTENDED_PLATFORM
456 depends on NUMA
457 depends on SMP
458 depends on X86_X2APIC
459 depends on PCI_MMCONFIG
460 ---help---
461 Adds support for Numascale NumaChip large-SMP systems. Needed to
462 enable more than ~168 cores.
463 If you don't have one of these, you should say N here.
464
465 config X86_VSMP
466 bool "ScaleMP vSMP"
467 select HYPERVISOR_GUEST
468 select PARAVIRT
469 depends on X86_64 && PCI
470 depends on X86_EXTENDED_PLATFORM
471 depends on SMP
472 ---help---
473 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
474 supposed to run on these EM64T-based machines. Only choose this option
475 if you have one of these machines.
476
477 config X86_UV
478 bool "SGI Ultraviolet"
479 depends on X86_64
480 depends on X86_EXTENDED_PLATFORM
481 depends on NUMA
482 depends on EFI
483 depends on X86_X2APIC
484 depends on PCI
485 ---help---
486 This option is needed in order to support SGI Ultraviolet systems.
487 If you don't have one of these, you should say N here.
488
489 # Following is an alphabetically sorted list of 32 bit extended platforms
490 # Please maintain the alphabetic order if and when there are additions
491
492 config X86_GOLDFISH
493 bool "Goldfish (Virtual Platform)"
494 depends on X86_EXTENDED_PLATFORM
495 ---help---
496 Enable support for the Goldfish virtual platform used primarily
497 for Android development. Unless you are building for the Android
498 Goldfish emulator say N here.
499
500 config X86_INTEL_CE
501 bool "CE4100 TV platform"
502 depends on PCI
503 depends on PCI_GODIRECT
504 depends on X86_IO_APIC
505 depends on X86_32
506 depends on X86_EXTENDED_PLATFORM
507 select X86_REBOOTFIXUPS
508 select OF
509 select OF_EARLY_FLATTREE
510 ---help---
511 Select for the Intel CE media processor (CE4100) SOC.
512 This option compiles in support for the CE4100 SOC for settop
513 boxes and media devices.
514
515 config X86_INTEL_MID
516 bool "Intel MID platform support"
517 depends on X86_EXTENDED_PLATFORM
518 depends on X86_PLATFORM_DEVICES
519 depends on PCI
520 depends on X86_64 || (PCI_GOANY && X86_32)
521 depends on X86_IO_APIC
522 select SFI
523 select I2C
524 select DW_APB_TIMER
525 select APB_TIMER
526 select INTEL_SCU_IPC
527 select MFD_INTEL_MSIC
528 ---help---
529 Select to build a kernel capable of supporting Intel MID (Mobile
530 Internet Device) platform systems which do not have the PCI legacy
531 interfaces. If you are building for a PC class system say N here.
532
533 Intel MID platforms are based on an Intel processor and chipset which
534 consume less power than most of the x86 derivatives.
535
536 config X86_INTEL_QUARK
537 bool "Intel Quark platform support"
538 depends on X86_32
539 depends on X86_EXTENDED_PLATFORM
540 depends on X86_PLATFORM_DEVICES
541 depends on X86_TSC
542 depends on PCI
543 depends on PCI_GOANY
544 depends on X86_IO_APIC
545 select IOSF_MBI
546 select INTEL_IMR
547 select COMMON_CLK
548 ---help---
549 Select to include support for Quark X1000 SoC.
550 Say Y here if you have a Quark based system such as the Arduino
551 compatible Intel Galileo.
552
553 config MLX_PLATFORM
554 tristate "Mellanox Technologies platform support"
555 depends on X86_64
556 depends on X86_EXTENDED_PLATFORM
557 ---help---
558 This option enables system support for the Mellanox Technologies
559 platform.
560
561 Say Y here if you are building a kernel for Mellanox system.
562
563 Otherwise, say N.
564
565 config X86_INTEL_LPSS
566 bool "Intel Low Power Subsystem Support"
567 depends on X86 && ACPI
568 select COMMON_CLK
569 select PINCTRL
570 select IOSF_MBI
571 ---help---
572 Select to build support for Intel Low Power Subsystem such as
573 found on Intel Lynxpoint PCH. Selecting this option enables
574 things like clock tree (common clock framework) and pincontrol
575 which are needed by the LPSS peripheral drivers.
576
577 config X86_AMD_PLATFORM_DEVICE
578 bool "AMD ACPI2Platform devices support"
579 depends on ACPI
580 select COMMON_CLK
581 select PINCTRL
582 ---help---
583 Select to interpret AMD specific ACPI device to platform device
584 such as I2C, UART, GPIO found on AMD Carrizo and later chipsets.
585 I2C and UART depend on COMMON_CLK to set clock. GPIO driver is
586 implemented under PINCTRL subsystem.
587
588 config IOSF_MBI
589 tristate "Intel SoC IOSF Sideband support for SoC platforms"
590 depends on PCI
591 ---help---
592 This option enables sideband register access support for Intel SoC
593 platforms. On these platforms the IOSF sideband is used in lieu of
594 MSR's for some register accesses, mostly but not limited to thermal
595 and power. Drivers may query the availability of this device to
596 determine if they need the sideband in order to work on these
597 platforms. The sideband is available on the following SoC products.
598 This list is not meant to be exclusive.
599 - BayTrail
600 - Braswell
601 - Quark
602
603 You should say Y if you are running a kernel on one of these SoC's.
604
605 config IOSF_MBI_DEBUG
606 bool "Enable IOSF sideband access through debugfs"
607 depends on IOSF_MBI && DEBUG_FS
608 ---help---
609 Select this option to expose the IOSF sideband access registers (MCR,
610 MDR, MCRX) through debugfs to write and read register information from
611 different units on the SoC. This is most useful for obtaining device
612 state information for debug and analysis. As this is a general access
613 mechanism, users of this option would have specific knowledge of the
614 device they want to access.
615
616 If you don't require the option or are in doubt, say N.
617
618 config X86_RDC321X
619 bool "RDC R-321x SoC"
620 depends on X86_32
621 depends on X86_EXTENDED_PLATFORM
622 select M486
623 select X86_REBOOTFIXUPS
624 ---help---
625 This option is needed for RDC R-321x system-on-chip, also known
626 as R-8610-(G).
627 If you don't have one of these chips, you should say N here.
628
629 config X86_32_NON_STANDARD
630 bool "Support non-standard 32-bit SMP architectures"
631 depends on X86_32 && SMP
632 depends on X86_EXTENDED_PLATFORM
633 ---help---
634 This option compiles in the bigsmp and STA2X11 default
635 subarchitectures. It is intended for a generic binary
636 kernel. If you select them all, kernel will probe it one by
637 one and will fallback to default.
638
639 # Alphabetically sorted list of Non standard 32 bit platforms
640
641 config X86_SUPPORTS_MEMORY_FAILURE
642 def_bool y
643 # MCE code calls memory_failure():
644 depends on X86_MCE
645 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
646 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
647 depends on X86_64 || !SPARSEMEM
648 select ARCH_SUPPORTS_MEMORY_FAILURE
649
650 config STA2X11
651 bool "STA2X11 Companion Chip Support"
652 depends on X86_32_NON_STANDARD && PCI
653 select X86_DEV_DMA_OPS
654 select X86_DMA_REMAP
655 select SWIOTLB
656 select MFD_STA2X11
657 select GPIOLIB
658 default n
659 ---help---
660 This adds support for boards based on the STA2X11 IO-Hub,
661 a.k.a. "ConneXt". The chip is used in place of the standard
662 PC chipset, so all "standard" peripherals are missing. If this
663 option is selected the kernel will still be able to boot on
664 standard PC machines.
665
666 config X86_32_IRIS
667 tristate "Eurobraille/Iris poweroff module"
668 depends on X86_32
669 ---help---
670 The Iris machines from EuroBraille do not have APM or ACPI support
671 to shut themselves down properly. A special I/O sequence is
672 needed to do so, which is what this module does at
673 kernel shutdown.
674
675 This is only for Iris machines from EuroBraille.
676
677 If unused, say N.
678
679 config SCHED_OMIT_FRAME_POINTER
680 def_bool y
681 prompt "Single-depth WCHAN output"
682 depends on X86
683 ---help---
684 Calculate simpler /proc/<PID>/wchan values. If this option
685 is disabled then wchan values will recurse back to the
686 caller function. This provides more accurate wchan values,
687 at the expense of slightly more scheduling overhead.
688
689 If in doubt, say "Y".
690
691 menuconfig HYPERVISOR_GUEST
692 bool "Linux guest support"
693 ---help---
694 Say Y here to enable options for running Linux under various hyper-
695 visors. This option enables basic hypervisor detection and platform
696 setup.
697
698 If you say N, all options in this submenu will be skipped and
699 disabled, and Linux guest support won't be built in.
700
701 if HYPERVISOR_GUEST
702
703 config PARAVIRT
704 bool "Enable paravirtualization code"
705 ---help---
706 This changes the kernel so it can modify itself when it is run
707 under a hypervisor, potentially improving performance significantly
708 over full virtualization. However, when run without a hypervisor
709 the kernel is theoretically slower and slightly larger.
710
711 config PARAVIRT_DEBUG
712 bool "paravirt-ops debugging"
713 depends on PARAVIRT && DEBUG_KERNEL
714 ---help---
715 Enable to debug paravirt_ops internals. Specifically, BUG if
716 a paravirt_op is missing when it is called.
717
718 config PARAVIRT_SPINLOCKS
719 bool "Paravirtualization layer for spinlocks"
720 depends on PARAVIRT && SMP
721 ---help---
722 Paravirtualized spinlocks allow a pvops backend to replace the
723 spinlock implementation with something virtualization-friendly
724 (for example, block the virtual CPU rather than spinning).
725
726 It has a minimal impact on native kernels and gives a nice performance
727 benefit on paravirtualized KVM / Xen kernels.
728
729 If you are unsure how to answer this question, answer Y.
730
731 config QUEUED_LOCK_STAT
732 bool "Paravirt queued spinlock statistics"
733 depends on PARAVIRT_SPINLOCKS && DEBUG_FS
734 ---help---
735 Enable the collection of statistical data on the slowpath
736 behavior of paravirtualized queued spinlocks and report
737 them on debugfs.
738
739 source "arch/x86/xen/Kconfig"
740
741 config KVM_GUEST
742 bool "KVM Guest support (including kvmclock)"
743 depends on PARAVIRT
744 select PARAVIRT_CLOCK
745 default y
746 ---help---
747 This option enables various optimizations for running under the KVM
748 hypervisor. It includes a paravirtualized clock, so that instead
749 of relying on a PIT (or probably other) emulation by the
750 underlying device model, the host provides the guest with
751 timing infrastructure such as time of day, and system time
752
753 config KVM_DEBUG_FS
754 bool "Enable debug information for KVM Guests in debugfs"
755 depends on KVM_GUEST && DEBUG_FS
756 default n
757 ---help---
758 This option enables collection of various statistics for KVM guest.
759 Statistics are displayed in debugfs filesystem. Enabling this option
760 may incur significant overhead.
761
762 source "arch/x86/lguest/Kconfig"
763
764 config PARAVIRT_TIME_ACCOUNTING
765 bool "Paravirtual steal time accounting"
766 depends on PARAVIRT
767 default n
768 ---help---
769 Select this option to enable fine granularity task steal time
770 accounting. Time spent executing other tasks in parallel with
771 the current vCPU is discounted from the vCPU power. To account for
772 that, there can be a small performance impact.
773
774 If in doubt, say N here.
775
776 config PARAVIRT_CLOCK
777 bool
778
779 endif #HYPERVISOR_GUEST
780
781 config NO_BOOTMEM
782 def_bool y
783
784 source "arch/x86/Kconfig.cpu"
785
786 config HPET_TIMER
787 def_bool X86_64
788 prompt "HPET Timer Support" if X86_32
789 ---help---
790 Use the IA-PC HPET (High Precision Event Timer) to manage
791 time in preference to the PIT and RTC, if a HPET is
792 present.
793 HPET is the next generation timer replacing legacy 8254s.
794 The HPET provides a stable time base on SMP
795 systems, unlike the TSC, but it is more expensive to access,
796 as it is off-chip. The interface used is documented
797 in the HPET spec, revision 1.
798
799 You can safely choose Y here. However, HPET will only be
800 activated if the platform and the BIOS support this feature.
801 Otherwise the 8254 will be used for timing services.
802
803 Choose N to continue using the legacy 8254 timer.
804
805 config HPET_EMULATE_RTC
806 def_bool y
807 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
808
809 config APB_TIMER
810 def_bool y if X86_INTEL_MID
811 prompt "Intel MID APB Timer Support" if X86_INTEL_MID
812 select DW_APB_TIMER
813 depends on X86_INTEL_MID && SFI
814 help
815 APB timer is the replacement for 8254, HPET on X86 MID platforms.
816 The APBT provides a stable time base on SMP
817 systems, unlike the TSC, but it is more expensive to access,
818 as it is off-chip. APB timers are always running regardless of CPU
819 C states, they are used as per CPU clockevent device when possible.
820
821 # Mark as expert because too many people got it wrong.
822 # The code disables itself when not needed.
823 config DMI
824 default y
825 select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
826 bool "Enable DMI scanning" if EXPERT
827 ---help---
828 Enabled scanning of DMI to identify machine quirks. Say Y
829 here unless you have verified that your setup is not
830 affected by entries in the DMI blacklist. Required by PNP
831 BIOS code.
832
833 config GART_IOMMU
834 bool "Old AMD GART IOMMU support"
835 select SWIOTLB
836 depends on X86_64 && PCI && AMD_NB
837 ---help---
838 Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron
839 GART based hardware IOMMUs.
840
841 The GART supports full DMA access for devices with 32-bit access
842 limitations, on systems with more than 3 GB. This is usually needed
843 for USB, sound, many IDE/SATA chipsets and some other devices.
844
845 Newer systems typically have a modern AMD IOMMU, supported via
846 the CONFIG_AMD_IOMMU=y config option.
847
848 In normal configurations this driver is only active when needed:
849 there's more than 3 GB of memory and the system contains a
850 32-bit limited device.
851
852 If unsure, say Y.
853
854 config CALGARY_IOMMU
855 bool "IBM Calgary IOMMU support"
856 select SWIOTLB
857 depends on X86_64 && PCI
858 ---help---
859 Support for hardware IOMMUs in IBM's xSeries x366 and x460
860 systems. Needed to run systems with more than 3GB of memory
861 properly with 32-bit PCI devices that do not support DAC
862 (Double Address Cycle). Calgary also supports bus level
863 isolation, where all DMAs pass through the IOMMU. This
864 prevents them from going anywhere except their intended
865 destination. This catches hard-to-find kernel bugs and
866 mis-behaving drivers and devices that do not use the DMA-API
867 properly to set up their DMA buffers. The IOMMU can be
868 turned off at boot time with the iommu=off parameter.
869 Normally the kernel will make the right choice by itself.
870 If unsure, say Y.
871
872 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
873 def_bool y
874 prompt "Should Calgary be enabled by default?"
875 depends on CALGARY_IOMMU
876 ---help---
877 Should Calgary be enabled by default? if you choose 'y', Calgary
878 will be used (if it exists). If you choose 'n', Calgary will not be
879 used even if it exists. If you choose 'n' and would like to use
880 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
881 If unsure, say Y.
882
883 # need this always selected by IOMMU for the VIA workaround
884 config SWIOTLB
885 def_bool y if X86_64
886 ---help---
887 Support for software bounce buffers used on x86-64 systems
888 which don't have a hardware IOMMU. Using this PCI devices
889 which can only access 32-bits of memory can be used on systems
890 with more than 3 GB of memory.
891 If unsure, say Y.
892
893 config IOMMU_HELPER
894 def_bool y
895 depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
896
897 config MAXSMP
898 bool "Enable Maximum number of SMP Processors and NUMA Nodes"
899 depends on X86_64 && SMP && DEBUG_KERNEL
900 select CPUMASK_OFFSTACK
901 ---help---
902 Enable maximum number of CPUS and NUMA Nodes for this architecture.
903 If unsure, say N.
904
905 config NR_CPUS
906 int "Maximum number of CPUs" if SMP && !MAXSMP
907 range 2 8 if SMP && X86_32 && !X86_BIGSMP
908 range 2 512 if SMP && !MAXSMP && !CPUMASK_OFFSTACK
909 range 2 8192 if SMP && !MAXSMP && CPUMASK_OFFSTACK && X86_64
910 default "1" if !SMP
911 default "8192" if MAXSMP
912 default "32" if SMP && X86_BIGSMP
913 default "8" if SMP && X86_32
914 default "64" if SMP
915 ---help---
916 This allows you to specify the maximum number of CPUs which this
917 kernel will support. If CPUMASK_OFFSTACK is enabled, the maximum
918 supported value is 8192, otherwise the maximum value is 512. The
919 minimum value which makes sense is 2.
920
921 This is purely to save memory - each supported CPU adds
922 approximately eight kilobytes to the kernel image.
923
924 config SCHED_SMT
925 bool "SMT (Hyperthreading) scheduler support"
926 depends on SMP
927 ---help---
928 SMT scheduler support improves the CPU scheduler's decision making
929 when dealing with Intel Pentium 4 chips with HyperThreading at a
930 cost of slightly increased overhead in some places. If unsure say
931 N here.
932
933 config SCHED_MC
934 def_bool y
935 prompt "Multi-core scheduler support"
936 depends on SMP
937 ---help---
938 Multi-core scheduler support improves the CPU scheduler's decision
939 making when dealing with multi-core CPU chips at a cost of slightly
940 increased overhead in some places. If unsure say N here.
941
942 config SCHED_MC_PRIO
943 bool "CPU core priorities scheduler support"
944 depends on SCHED_MC && CPU_SUP_INTEL && X86_INTEL_PSTATE
945 default y
946 ---help---
947 Intel Turbo Boost Max Technology 3.0 enabled CPUs have a
948 core ordering determined at manufacturing time, which allows
949 certain cores to reach higher turbo frequencies (when running
950 single threaded workloads) than others.
951
952 Enabling this kernel feature teaches the scheduler about
953 the TBM3 (aka ITMT) priority order of the CPU cores and adjusts the
954 scheduler's CPU selection logic accordingly, so that higher
955 overall system performance can be achieved.
956
957 This feature will have no effect on CPUs without this feature.
958
959 If unsure say Y here.
960
961 source "kernel/Kconfig.preempt"
962
963 config UP_LATE_INIT
964 def_bool y
965 depends on !SMP && X86_LOCAL_APIC
966
967 config X86_UP_APIC
968 bool "Local APIC support on uniprocessors" if !PCI_MSI
969 default PCI_MSI
970 depends on X86_32 && !SMP && !X86_32_NON_STANDARD
971 ---help---
972 A local APIC (Advanced Programmable Interrupt Controller) is an
973 integrated interrupt controller in the CPU. If you have a single-CPU
974 system which has a processor with a local APIC, you can say Y here to
975 enable and use it. If you say Y here even though your machine doesn't
976 have a local APIC, then the kernel will still run with no slowdown at
977 all. The local APIC supports CPU-generated self-interrupts (timer,
978 performance counters), and the NMI watchdog which detects hard
979 lockups.
980
981 config X86_UP_IOAPIC
982 bool "IO-APIC support on uniprocessors"
983 depends on X86_UP_APIC
984 ---help---
985 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
986 SMP-capable replacement for PC-style interrupt controllers. Most
987 SMP systems and many recent uniprocessor systems have one.
988
989 If you have a single-CPU system with an IO-APIC, you can say Y here
990 to use it. If you say Y here even though your machine doesn't have
991 an IO-APIC, then the kernel will still run with no slowdown at all.
992
993 config X86_LOCAL_APIC
994 def_bool y
995 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
996 select IRQ_DOMAIN_HIERARCHY
997 select PCI_MSI_IRQ_DOMAIN if PCI_MSI
998
999 config X86_IO_APIC
1000 def_bool y
1001 depends on X86_LOCAL_APIC || X86_UP_IOAPIC
1002
1003 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
1004 bool "Reroute for broken boot IRQs"
1005 depends on X86_IO_APIC
1006 ---help---
1007 This option enables a workaround that fixes a source of
1008 spurious interrupts. This is recommended when threaded
1009 interrupt handling is used on systems where the generation of
1010 superfluous "boot interrupts" cannot be disabled.
1011
1012 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
1013 entry in the chipset's IO-APIC is masked (as, e.g. the RT
1014 kernel does during interrupt handling). On chipsets where this
1015 boot IRQ generation cannot be disabled, this workaround keeps
1016 the original IRQ line masked so that only the equivalent "boot
1017 IRQ" is delivered to the CPUs. The workaround also tells the
1018 kernel to set up the IRQ handler on the boot IRQ line. In this
1019 way only one interrupt is delivered to the kernel. Otherwise
1020 the spurious second interrupt may cause the kernel to bring
1021 down (vital) interrupt lines.
1022
1023 Only affects "broken" chipsets. Interrupt sharing may be
1024 increased on these systems.
1025
1026 config X86_MCE
1027 bool "Machine Check / overheating reporting"
1028 select GENERIC_ALLOCATOR
1029 default y
1030 ---help---
1031 Machine Check support allows the processor to notify the
1032 kernel if it detects a problem (e.g. overheating, data corruption).
1033 The action the kernel takes depends on the severity of the problem,
1034 ranging from warning messages to halting the machine.
1035
1036 config X86_MCE_INTEL
1037 def_bool y
1038 prompt "Intel MCE features"
1039 depends on X86_MCE && X86_LOCAL_APIC
1040 ---help---
1041 Additional support for intel specific MCE features such as
1042 the thermal monitor.
1043
1044 config X86_MCE_AMD
1045 def_bool y
1046 prompt "AMD MCE features"
1047 depends on X86_MCE && X86_LOCAL_APIC
1048 ---help---
1049 Additional support for AMD specific MCE features such as
1050 the DRAM Error Threshold.
1051
1052 config X86_ANCIENT_MCE
1053 bool "Support for old Pentium 5 / WinChip machine checks"
1054 depends on X86_32 && X86_MCE
1055 ---help---
1056 Include support for machine check handling on old Pentium 5 or WinChip
1057 systems. These typically need to be enabled explicitly on the command
1058 line.
1059
1060 config X86_MCE_THRESHOLD
1061 depends on X86_MCE_AMD || X86_MCE_INTEL
1062 def_bool y
1063
1064 config X86_MCE_INJECT
1065 depends on X86_MCE
1066 tristate "Machine check injector support"
1067 ---help---
1068 Provide support for injecting machine checks for testing purposes.
1069 If you don't know what a machine check is and you don't do kernel
1070 QA it is safe to say n.
1071
1072 config X86_THERMAL_VECTOR
1073 def_bool y
1074 depends on X86_MCE_INTEL
1075
1076 source "arch/x86/events/Kconfig"
1077
1078 config X86_LEGACY_VM86
1079 bool "Legacy VM86 support"
1080 default n
1081 depends on X86_32
1082 ---help---
1083 This option allows user programs to put the CPU into V8086
1084 mode, which is an 80286-era approximation of 16-bit real mode.
1085
1086 Some very old versions of X and/or vbetool require this option
1087 for user mode setting. Similarly, DOSEMU will use it if
1088 available to accelerate real mode DOS programs. However, any
1089 recent version of DOSEMU, X, or vbetool should be fully
1090 functional even without kernel VM86 support, as they will all
1091 fall back to software emulation. Nevertheless, if you are using
1092 a 16-bit DOS program where 16-bit performance matters, vm86
1093 mode might be faster than emulation and you might want to
1094 enable this option.
1095
1096 Note that any app that works on a 64-bit kernel is unlikely to
1097 need this option, as 64-bit kernels don't, and can't, support
1098 V8086 mode. This option is also unrelated to 16-bit protected
1099 mode and is not needed to run most 16-bit programs under Wine.
1100
1101 Enabling this option increases the complexity of the kernel
1102 and slows down exception handling a tiny bit.
1103
1104 If unsure, say N here.
1105
1106 config VM86
1107 bool
1108 default X86_LEGACY_VM86
1109
1110 config X86_16BIT
1111 bool "Enable support for 16-bit segments" if EXPERT
1112 default y
1113 depends on MODIFY_LDT_SYSCALL
1114 ---help---
1115 This option is required by programs like Wine to run 16-bit
1116 protected mode legacy code on x86 processors. Disabling
1117 this option saves about 300 bytes on i386, or around 6K text
1118 plus 16K runtime memory on x86-64,
1119
1120 config X86_ESPFIX32
1121 def_bool y
1122 depends on X86_16BIT && X86_32
1123
1124 config X86_ESPFIX64
1125 def_bool y
1126 depends on X86_16BIT && X86_64
1127
1128 config X86_VSYSCALL_EMULATION
1129 bool "Enable vsyscall emulation" if EXPERT
1130 default y
1131 depends on X86_64
1132 ---help---
1133 This enables emulation of the legacy vsyscall page. Disabling
1134 it is roughly equivalent to booting with vsyscall=none, except
1135 that it will also disable the helpful warning if a program
1136 tries to use a vsyscall. With this option set to N, offending
1137 programs will just segfault, citing addresses of the form
1138 0xffffffffff600?00.
1139
1140 This option is required by many programs built before 2013, and
1141 care should be used even with newer programs if set to N.
1142
1143 Disabling this option saves about 7K of kernel size and
1144 possibly 4K of additional runtime pagetable memory.
1145
1146 config TOSHIBA
1147 tristate "Toshiba Laptop support"
1148 depends on X86_32
1149 ---help---
1150 This adds a driver to safely access the System Management Mode of
1151 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
1152 not work on models with a Phoenix BIOS. The System Management Mode
1153 is used to set the BIOS and power saving options on Toshiba portables.
1154
1155 For information on utilities to make use of this driver see the
1156 Toshiba Linux utilities web site at:
1157 <http://www.buzzard.org.uk/toshiba/>.
1158
1159 Say Y if you intend to run this kernel on a Toshiba portable.
1160 Say N otherwise.
1161
1162 config I8K
1163 tristate "Dell i8k legacy laptop support"
1164 select HWMON
1165 select SENSORS_DELL_SMM
1166 ---help---
1167 This option enables legacy /proc/i8k userspace interface in hwmon
1168 dell-smm-hwmon driver. Character file /proc/i8k reports bios version,
1169 temperature and allows controlling fan speeds of Dell laptops via
1170 System Management Mode. For old Dell laptops (like Dell Inspiron 8000)
1171 it reports also power and hotkey status. For fan speed control is
1172 needed userspace package i8kutils.
1173
1174 Say Y if you intend to run this kernel on old Dell laptops or want to
1175 use userspace package i8kutils.
1176 Say N otherwise.
1177
1178 config X86_REBOOTFIXUPS
1179 bool "Enable X86 board specific fixups for reboot"
1180 depends on X86_32
1181 ---help---
1182 This enables chipset and/or board specific fixups to be done
1183 in order to get reboot to work correctly. This is only needed on
1184 some combinations of hardware and BIOS. The symptom, for which
1185 this config is intended, is when reboot ends with a stalled/hung
1186 system.
1187
1188 Currently, the only fixup is for the Geode machines using
1189 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1190
1191 Say Y if you want to enable the fixup. Currently, it's safe to
1192 enable this option even if you don't need it.
1193 Say N otherwise.
1194
1195 config MICROCODE
1196 bool "CPU microcode loading support"
1197 default y
1198 depends on CPU_SUP_AMD || CPU_SUP_INTEL
1199 select FW_LOADER
1200 ---help---
1201 If you say Y here, you will be able to update the microcode on
1202 Intel and AMD processors. The Intel support is for the IA32 family,
1203 e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4, Xeon etc. The
1204 AMD support is for families 0x10 and later. You will obviously need
1205 the actual microcode binary data itself which is not shipped with
1206 the Linux kernel.
1207
1208 The preferred method to load microcode from a detached initrd is described
1209 in Documentation/x86/early-microcode.txt. For that you need to enable
1210 CONFIG_BLK_DEV_INITRD in order for the loader to be able to scan the
1211 initrd for microcode blobs.
1212
1213 In addition, you can build-in the microcode into the kernel. For that you
1214 need to enable FIRMWARE_IN_KERNEL and add the vendor-supplied microcode
1215 to the CONFIG_EXTRA_FIRMWARE config option.
1216
1217 config MICROCODE_INTEL
1218 bool "Intel microcode loading support"
1219 depends on MICROCODE
1220 default MICROCODE
1221 select FW_LOADER
1222 ---help---
1223 This options enables microcode patch loading support for Intel
1224 processors.
1225
1226 For the current Intel microcode data package go to
1227 <https://downloadcenter.intel.com> and search for
1228 'Linux Processor Microcode Data File'.
1229
1230 config MICROCODE_AMD
1231 bool "AMD microcode loading support"
1232 depends on MICROCODE
1233 select FW_LOADER
1234 ---help---
1235 If you select this option, microcode patch loading support for AMD
1236 processors will be enabled.
1237
1238 config MICROCODE_OLD_INTERFACE
1239 def_bool y
1240 depends on MICROCODE
1241
1242 config X86_MSR
1243 tristate "/dev/cpu/*/msr - Model-specific register support"
1244 ---help---
1245 This device gives privileged processes access to the x86
1246 Model-Specific Registers (MSRs). It is a character device with
1247 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1248 MSR accesses are directed to a specific CPU on multi-processor
1249 systems.
1250
1251 config X86_CPUID
1252 tristate "/dev/cpu/*/cpuid - CPU information support"
1253 ---help---
1254 This device gives processes access to the x86 CPUID instruction to
1255 be executed on a specific processor. It is a character device
1256 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1257 /dev/cpu/31/cpuid.
1258
1259 choice
1260 prompt "High Memory Support"
1261 default HIGHMEM4G
1262 depends on X86_32
1263
1264 config NOHIGHMEM
1265 bool "off"
1266 ---help---
1267 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1268 However, the address space of 32-bit x86 processors is only 4
1269 Gigabytes large. That means that, if you have a large amount of
1270 physical memory, not all of it can be "permanently mapped" by the
1271 kernel. The physical memory that's not permanently mapped is called
1272 "high memory".
1273
1274 If you are compiling a kernel which will never run on a machine with
1275 more than 1 Gigabyte total physical RAM, answer "off" here (default
1276 choice and suitable for most users). This will result in a "3GB/1GB"
1277 split: 3GB are mapped so that each process sees a 3GB virtual memory
1278 space and the remaining part of the 4GB virtual memory space is used
1279 by the kernel to permanently map as much physical memory as
1280 possible.
1281
1282 If the machine has between 1 and 4 Gigabytes physical RAM, then
1283 answer "4GB" here.
1284
1285 If more than 4 Gigabytes is used then answer "64GB" here. This
1286 selection turns Intel PAE (Physical Address Extension) mode on.
1287 PAE implements 3-level paging on IA32 processors. PAE is fully
1288 supported by Linux, PAE mode is implemented on all recent Intel
1289 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1290 then the kernel will not boot on CPUs that don't support PAE!
1291
1292 The actual amount of total physical memory will either be
1293 auto detected or can be forced by using a kernel command line option
1294 such as "mem=256M". (Try "man bootparam" or see the documentation of
1295 your boot loader (lilo or loadlin) about how to pass options to the
1296 kernel at boot time.)
1297
1298 If unsure, say "off".
1299
1300 config HIGHMEM4G
1301 bool "4GB"
1302 ---help---
1303 Select this if you have a 32-bit processor and between 1 and 4
1304 gigabytes of physical RAM.
1305
1306 config HIGHMEM64G
1307 bool "64GB"
1308 depends on !M486
1309 select X86_PAE
1310 ---help---
1311 Select this if you have a 32-bit processor and more than 4
1312 gigabytes of physical RAM.
1313
1314 endchoice
1315
1316 choice
1317 prompt "Memory split" if EXPERT
1318 default VMSPLIT_3G
1319 depends on X86_32
1320 ---help---
1321 Select the desired split between kernel and user memory.
1322
1323 If the address range available to the kernel is less than the
1324 physical memory installed, the remaining memory will be available
1325 as "high memory". Accessing high memory is a little more costly
1326 than low memory, as it needs to be mapped into the kernel first.
1327 Note that increasing the kernel address space limits the range
1328 available to user programs, making the address space there
1329 tighter. Selecting anything other than the default 3G/1G split
1330 will also likely make your kernel incompatible with binary-only
1331 kernel modules.
1332
1333 If you are not absolutely sure what you are doing, leave this
1334 option alone!
1335
1336 config VMSPLIT_3G
1337 bool "3G/1G user/kernel split"
1338 config VMSPLIT_3G_OPT
1339 depends on !X86_PAE
1340 bool "3G/1G user/kernel split (for full 1G low memory)"
1341 config VMSPLIT_2G
1342 bool "2G/2G user/kernel split"
1343 config VMSPLIT_2G_OPT
1344 depends on !X86_PAE
1345 bool "2G/2G user/kernel split (for full 2G low memory)"
1346 config VMSPLIT_1G
1347 bool "1G/3G user/kernel split"
1348 endchoice
1349
1350 config PAGE_OFFSET
1351 hex
1352 default 0xB0000000 if VMSPLIT_3G_OPT
1353 default 0x80000000 if VMSPLIT_2G
1354 default 0x78000000 if VMSPLIT_2G_OPT
1355 default 0x40000000 if VMSPLIT_1G
1356 default 0xC0000000
1357 depends on X86_32
1358
1359 config HIGHMEM
1360 def_bool y
1361 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1362
1363 config X86_PAE
1364 bool "PAE (Physical Address Extension) Support"
1365 depends on X86_32 && !HIGHMEM4G
1366 select SWIOTLB
1367 ---help---
1368 PAE is required for NX support, and furthermore enables
1369 larger swapspace support for non-overcommit purposes. It
1370 has the cost of more pagetable lookup overhead, and also
1371 consumes more pagetable space per process.
1372
1373 config ARCH_PHYS_ADDR_T_64BIT
1374 def_bool y
1375 depends on X86_64 || X86_PAE
1376
1377 config ARCH_DMA_ADDR_T_64BIT
1378 def_bool y
1379 depends on X86_64 || HIGHMEM64G
1380
1381 config X86_DIRECT_GBPAGES
1382 def_bool y
1383 depends on X86_64 && !DEBUG_PAGEALLOC && !KMEMCHECK
1384 ---help---
1385 Certain kernel features effectively disable kernel
1386 linear 1 GB mappings (even if the CPU otherwise
1387 supports them), so don't confuse the user by printing
1388 that we have them enabled.
1389
1390 # Common NUMA Features
1391 config NUMA
1392 bool "Numa Memory Allocation and Scheduler Support"
1393 depends on SMP
1394 depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
1395 default y if X86_BIGSMP
1396 ---help---
1397 Enable NUMA (Non Uniform Memory Access) support.
1398
1399 The kernel will try to allocate memory used by a CPU on the
1400 local memory controller of the CPU and add some more
1401 NUMA awareness to the kernel.
1402
1403 For 64-bit this is recommended if the system is Intel Core i7
1404 (or later), AMD Opteron, or EM64T NUMA.
1405
1406 For 32-bit this is only needed if you boot a 32-bit
1407 kernel on a 64-bit NUMA platform.
1408
1409 Otherwise, you should say N.
1410
1411 config AMD_NUMA
1412 def_bool y
1413 prompt "Old style AMD Opteron NUMA detection"
1414 depends on X86_64 && NUMA && PCI
1415 ---help---
1416 Enable AMD NUMA node topology detection. You should say Y here if
1417 you have a multi processor AMD system. This uses an old method to
1418 read the NUMA configuration directly from the builtin Northbridge
1419 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1420 which also takes priority if both are compiled in.
1421
1422 config X86_64_ACPI_NUMA
1423 def_bool y
1424 prompt "ACPI NUMA detection"
1425 depends on X86_64 && NUMA && ACPI && PCI
1426 select ACPI_NUMA
1427 ---help---
1428 Enable ACPI SRAT based node topology detection.
1429
1430 # Some NUMA nodes have memory ranges that span
1431 # other nodes. Even though a pfn is valid and
1432 # between a node's start and end pfns, it may not
1433 # reside on that node. See memmap_init_zone()
1434 # for details.
1435 config NODES_SPAN_OTHER_NODES
1436 def_bool y
1437 depends on X86_64_ACPI_NUMA
1438
1439 config NUMA_EMU
1440 bool "NUMA emulation"
1441 depends on NUMA
1442 ---help---
1443 Enable NUMA emulation. A flat machine will be split
1444 into virtual nodes when booted with "numa=fake=N", where N is the
1445 number of nodes. This is only useful for debugging.
1446
1447 config NODES_SHIFT
1448 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1449 range 1 10
1450 default "10" if MAXSMP
1451 default "6" if X86_64
1452 default "3"
1453 depends on NEED_MULTIPLE_NODES
1454 ---help---
1455 Specify the maximum number of NUMA Nodes available on the target
1456 system. Increases memory reserved to accommodate various tables.
1457
1458 config ARCH_HAVE_MEMORY_PRESENT
1459 def_bool y
1460 depends on X86_32 && DISCONTIGMEM
1461
1462 config NEED_NODE_MEMMAP_SIZE
1463 def_bool y
1464 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1465
1466 config ARCH_FLATMEM_ENABLE
1467 def_bool y
1468 depends on X86_32 && !NUMA
1469
1470 config ARCH_DISCONTIGMEM_ENABLE
1471 def_bool y
1472 depends on NUMA && X86_32
1473
1474 config ARCH_DISCONTIGMEM_DEFAULT
1475 def_bool y
1476 depends on NUMA && X86_32
1477
1478 config ARCH_SPARSEMEM_ENABLE
1479 def_bool y
1480 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1481 select SPARSEMEM_STATIC if X86_32
1482 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1483
1484 config ARCH_SPARSEMEM_DEFAULT
1485 def_bool y
1486 depends on X86_64
1487
1488 config ARCH_SELECT_MEMORY_MODEL
1489 def_bool y
1490 depends on ARCH_SPARSEMEM_ENABLE
1491
1492 config ARCH_MEMORY_PROBE
1493 bool "Enable sysfs memory/probe interface"
1494 depends on X86_64 && MEMORY_HOTPLUG
1495 help
1496 This option enables a sysfs memory/probe interface for testing.
1497 See Documentation/memory-hotplug.txt for more information.
1498 If you are unsure how to answer this question, answer N.
1499
1500 config ARCH_PROC_KCORE_TEXT
1501 def_bool y
1502 depends on X86_64 && PROC_KCORE
1503
1504 config ILLEGAL_POINTER_VALUE
1505 hex
1506 default 0 if X86_32
1507 default 0xdead000000000000 if X86_64
1508
1509 source "mm/Kconfig"
1510
1511 config X86_PMEM_LEGACY_DEVICE
1512 bool
1513
1514 config X86_PMEM_LEGACY
1515 tristate "Support non-standard NVDIMMs and ADR protected memory"
1516 depends on PHYS_ADDR_T_64BIT
1517 depends on BLK_DEV
1518 select X86_PMEM_LEGACY_DEVICE
1519 select LIBNVDIMM
1520 help
1521 Treat memory marked using the non-standard e820 type of 12 as used
1522 by the Intel Sandy Bridge-EP reference BIOS as protected memory.
1523 The kernel will offer these regions to the 'pmem' driver so
1524 they can be used for persistent storage.
1525
1526 Say Y if unsure.
1527
1528 config HIGHPTE
1529 bool "Allocate 3rd-level pagetables from highmem"
1530 depends on HIGHMEM
1531 ---help---
1532 The VM uses one page table entry for each page of physical memory.
1533 For systems with a lot of RAM, this can be wasteful of precious
1534 low memory. Setting this option will put user-space page table
1535 entries in high memory.
1536
1537 config X86_CHECK_BIOS_CORRUPTION
1538 bool "Check for low memory corruption"
1539 ---help---
1540 Periodically check for memory corruption in low memory, which
1541 is suspected to be caused by BIOS. Even when enabled in the
1542 configuration, it is disabled at runtime. Enable it by
1543 setting "memory_corruption_check=1" on the kernel command
1544 line. By default it scans the low 64k of memory every 60
1545 seconds; see the memory_corruption_check_size and
1546 memory_corruption_check_period parameters in
1547 Documentation/kernel-parameters.txt to adjust this.
1548
1549 When enabled with the default parameters, this option has
1550 almost no overhead, as it reserves a relatively small amount
1551 of memory and scans it infrequently. It both detects corruption
1552 and prevents it from affecting the running system.
1553
1554 It is, however, intended as a diagnostic tool; if repeatable
1555 BIOS-originated corruption always affects the same memory,
1556 you can use memmap= to prevent the kernel from using that
1557 memory.
1558
1559 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1560 bool "Set the default setting of memory_corruption_check"
1561 depends on X86_CHECK_BIOS_CORRUPTION
1562 default y
1563 ---help---
1564 Set whether the default state of memory_corruption_check is
1565 on or off.
1566
1567 config X86_RESERVE_LOW
1568 int "Amount of low memory, in kilobytes, to reserve for the BIOS"
1569 default 64
1570 range 4 640
1571 ---help---
1572 Specify the amount of low memory to reserve for the BIOS.
1573
1574 The first page contains BIOS data structures that the kernel
1575 must not use, so that page must always be reserved.
1576
1577 By default we reserve the first 64K of physical RAM, as a
1578 number of BIOSes are known to corrupt that memory range
1579 during events such as suspend/resume or monitor cable
1580 insertion, so it must not be used by the kernel.
1581
1582 You can set this to 4 if you are absolutely sure that you
1583 trust the BIOS to get all its memory reservations and usages
1584 right. If you know your BIOS have problems beyond the
1585 default 64K area, you can set this to 640 to avoid using the
1586 entire low memory range.
1587
1588 If you have doubts about the BIOS (e.g. suspend/resume does
1589 not work or there's kernel crashes after certain hardware
1590 hotplug events) then you might want to enable
1591 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
1592 typical corruption patterns.
1593
1594 Leave this to the default value of 64 if you are unsure.
1595
1596 config MATH_EMULATION
1597 bool
1598 depends on MODIFY_LDT_SYSCALL
1599 prompt "Math emulation" if X86_32
1600 ---help---
1601 Linux can emulate a math coprocessor (used for floating point
1602 operations) if you don't have one. 486DX and Pentium processors have
1603 a math coprocessor built in, 486SX and 386 do not, unless you added
1604 a 487DX or 387, respectively. (The messages during boot time can
1605 give you some hints here ["man dmesg"].) Everyone needs either a
1606 coprocessor or this emulation.
1607
1608 If you don't have a math coprocessor, you need to say Y here; if you
1609 say Y here even though you have a coprocessor, the coprocessor will
1610 be used nevertheless. (This behavior can be changed with the kernel
1611 command line option "no387", which comes handy if your coprocessor
1612 is broken. Try "man bootparam" or see the documentation of your boot
1613 loader (lilo or loadlin) about how to pass options to the kernel at
1614 boot time.) This means that it is a good idea to say Y here if you
1615 intend to use this kernel on different machines.
1616
1617 More information about the internals of the Linux math coprocessor
1618 emulation can be found in <file:arch/x86/math-emu/README>.
1619
1620 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1621 kernel, it won't hurt.
1622
1623 config MTRR
1624 def_bool y
1625 prompt "MTRR (Memory Type Range Register) support" if EXPERT
1626 ---help---
1627 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1628 the Memory Type Range Registers (MTRRs) may be used to control
1629 processor access to memory ranges. This is most useful if you have
1630 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1631 allows bus write transfers to be combined into a larger transfer
1632 before bursting over the PCI/AGP bus. This can increase performance
1633 of image write operations 2.5 times or more. Saying Y here creates a
1634 /proc/mtrr file which may be used to manipulate your processor's
1635 MTRRs. Typically the X server should use this.
1636
1637 This code has a reasonably generic interface so that similar
1638 control registers on other processors can be easily supported
1639 as well:
1640
1641 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1642 Registers (ARRs) which provide a similar functionality to MTRRs. For
1643 these, the ARRs are used to emulate the MTRRs.
1644 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1645 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1646 write-combining. All of these processors are supported by this code
1647 and it makes sense to say Y here if you have one of them.
1648
1649 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1650 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1651 can lead to all sorts of problems, so it's good to say Y here.
1652
1653 You can safely say Y even if your machine doesn't have MTRRs, you'll
1654 just add about 9 KB to your kernel.
1655
1656 See <file:Documentation/x86/mtrr.txt> for more information.
1657
1658 config MTRR_SANITIZER
1659 def_bool y
1660 prompt "MTRR cleanup support"
1661 depends on MTRR
1662 ---help---
1663 Convert MTRR layout from continuous to discrete, so X drivers can
1664 add writeback entries.
1665
1666 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1667 The largest mtrr entry size for a continuous block can be set with
1668 mtrr_chunk_size.
1669
1670 If unsure, say Y.
1671
1672 config MTRR_SANITIZER_ENABLE_DEFAULT
1673 int "MTRR cleanup enable value (0-1)"
1674 range 0 1
1675 default "0"
1676 depends on MTRR_SANITIZER
1677 ---help---
1678 Enable mtrr cleanup default value
1679
1680 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1681 int "MTRR cleanup spare reg num (0-7)"
1682 range 0 7
1683 default "1"
1684 depends on MTRR_SANITIZER
1685 ---help---
1686 mtrr cleanup spare entries default, it can be changed via
1687 mtrr_spare_reg_nr=N on the kernel command line.
1688
1689 config X86_PAT
1690 def_bool y
1691 prompt "x86 PAT support" if EXPERT
1692 depends on MTRR
1693 ---help---
1694 Use PAT attributes to setup page level cache control.
1695
1696 PATs are the modern equivalents of MTRRs and are much more
1697 flexible than MTRRs.
1698
1699 Say N here if you see bootup problems (boot crash, boot hang,
1700 spontaneous reboots) or a non-working video driver.
1701
1702 If unsure, say Y.
1703
1704 config ARCH_USES_PG_UNCACHED
1705 def_bool y
1706 depends on X86_PAT
1707
1708 config ARCH_RANDOM
1709 def_bool y
1710 prompt "x86 architectural random number generator" if EXPERT
1711 ---help---
1712 Enable the x86 architectural RDRAND instruction
1713 (Intel Bull Mountain technology) to generate random numbers.
1714 If supported, this is a high bandwidth, cryptographically
1715 secure hardware random number generator.
1716
1717 config X86_SMAP
1718 def_bool y
1719 prompt "Supervisor Mode Access Prevention" if EXPERT
1720 ---help---
1721 Supervisor Mode Access Prevention (SMAP) is a security
1722 feature in newer Intel processors. There is a small
1723 performance cost if this enabled and turned on; there is
1724 also a small increase in the kernel size if this is enabled.
1725
1726 If unsure, say Y.
1727
1728 config X86_INTEL_MPX
1729 prompt "Intel MPX (Memory Protection Extensions)"
1730 def_bool n
1731 depends on CPU_SUP_INTEL
1732 ---help---
1733 MPX provides hardware features that can be used in
1734 conjunction with compiler-instrumented code to check
1735 memory references. It is designed to detect buffer
1736 overflow or underflow bugs.
1737
1738 This option enables running applications which are
1739 instrumented or otherwise use MPX. It does not use MPX
1740 itself inside the kernel or to protect the kernel
1741 against bad memory references.
1742
1743 Enabling this option will make the kernel larger:
1744 ~8k of kernel text and 36 bytes of data on a 64-bit
1745 defconfig. It adds a long to the 'mm_struct' which
1746 will increase the kernel memory overhead of each
1747 process and adds some branches to paths used during
1748 exec() and munmap().
1749
1750 For details, see Documentation/x86/intel_mpx.txt
1751
1752 If unsure, say N.
1753
1754 config X86_INTEL_MEMORY_PROTECTION_KEYS
1755 prompt "Intel Memory Protection Keys"
1756 def_bool y
1757 # Note: only available in 64-bit mode
1758 depends on CPU_SUP_INTEL && X86_64
1759 ---help---
1760 Memory Protection Keys provides a mechanism for enforcing
1761 page-based protections, but without requiring modification of the
1762 page tables when an application changes protection domains.
1763
1764 For details, see Documentation/x86/protection-keys.txt
1765
1766 If unsure, say y.
1767
1768 config EFI
1769 bool "EFI runtime service support"
1770 depends on ACPI
1771 select UCS2_STRING
1772 select EFI_RUNTIME_WRAPPERS
1773 ---help---
1774 This enables the kernel to use EFI runtime services that are
1775 available (such as the EFI variable services).
1776
1777 This option is only useful on systems that have EFI firmware.
1778 In addition, you should use the latest ELILO loader available
1779 at <http://elilo.sourceforge.net> in order to take advantage
1780 of EFI runtime services. However, even with this option, the
1781 resultant kernel should continue to boot on existing non-EFI
1782 platforms.
1783
1784 config EFI_STUB
1785 bool "EFI stub support"
1786 depends on EFI && !X86_USE_3DNOW
1787 select RELOCATABLE
1788 ---help---
1789 This kernel feature allows a bzImage to be loaded directly
1790 by EFI firmware without the use of a bootloader.
1791
1792 See Documentation/efi-stub.txt for more information.
1793
1794 config EFI_MIXED
1795 bool "EFI mixed-mode support"
1796 depends on EFI_STUB && X86_64
1797 ---help---
1798 Enabling this feature allows a 64-bit kernel to be booted
1799 on a 32-bit firmware, provided that your CPU supports 64-bit
1800 mode.
1801
1802 Note that it is not possible to boot a mixed-mode enabled
1803 kernel via the EFI boot stub - a bootloader that supports
1804 the EFI handover protocol must be used.
1805
1806 If unsure, say N.
1807
1808 config SECCOMP
1809 def_bool y
1810 prompt "Enable seccomp to safely compute untrusted bytecode"
1811 ---help---
1812 This kernel feature is useful for number crunching applications
1813 that may need to compute untrusted bytecode during their
1814 execution. By using pipes or other transports made available to
1815 the process as file descriptors supporting the read/write
1816 syscalls, it's possible to isolate those applications in
1817 their own address space using seccomp. Once seccomp is
1818 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1819 and the task is only allowed to execute a few safe syscalls
1820 defined by each seccomp mode.
1821
1822 If unsure, say Y. Only embedded should say N here.
1823
1824 source kernel/Kconfig.hz
1825
1826 config KEXEC
1827 bool "kexec system call"
1828 select KEXEC_CORE
1829 ---help---
1830 kexec is a system call that implements the ability to shutdown your
1831 current kernel, and to start another kernel. It is like a reboot
1832 but it is independent of the system firmware. And like a reboot
1833 you can start any kernel with it, not just Linux.
1834
1835 The name comes from the similarity to the exec system call.
1836
1837 It is an ongoing process to be certain the hardware in a machine
1838 is properly shutdown, so do not be surprised if this code does not
1839 initially work for you. As of this writing the exact hardware
1840 interface is strongly in flux, so no good recommendation can be
1841 made.
1842
1843 config KEXEC_FILE
1844 bool "kexec file based system call"
1845 select KEXEC_CORE
1846 select BUILD_BIN2C
1847 depends on X86_64
1848 depends on CRYPTO=y
1849 depends on CRYPTO_SHA256=y
1850 ---help---
1851 This is new version of kexec system call. This system call is
1852 file based and takes file descriptors as system call argument
1853 for kernel and initramfs as opposed to list of segments as
1854 accepted by previous system call.
1855
1856 config KEXEC_VERIFY_SIG
1857 bool "Verify kernel signature during kexec_file_load() syscall"
1858 depends on KEXEC_FILE
1859 ---help---
1860 This option makes kernel signature verification mandatory for
1861 the kexec_file_load() syscall.
1862
1863 In addition to that option, you need to enable signature
1864 verification for the corresponding kernel image type being
1865 loaded in order for this to work.
1866
1867 config KEXEC_BZIMAGE_VERIFY_SIG
1868 bool "Enable bzImage signature verification support"
1869 depends on KEXEC_VERIFY_SIG
1870 depends on SIGNED_PE_FILE_VERIFICATION
1871 select SYSTEM_TRUSTED_KEYRING
1872 ---help---
1873 Enable bzImage signature verification support.
1874
1875 config CRASH_DUMP
1876 bool "kernel crash dumps"
1877 depends on X86_64 || (X86_32 && HIGHMEM)
1878 ---help---
1879 Generate crash dump after being started by kexec.
1880 This should be normally only set in special crash dump kernels
1881 which are loaded in the main kernel with kexec-tools into
1882 a specially reserved region and then later executed after
1883 a crash by kdump/kexec. The crash dump kernel must be compiled
1884 to a memory address not used by the main kernel or BIOS using
1885 PHYSICAL_START, or it must be built as a relocatable image
1886 (CONFIG_RELOCATABLE=y).
1887 For more details see Documentation/kdump/kdump.txt
1888
1889 config KEXEC_JUMP
1890 bool "kexec jump"
1891 depends on KEXEC && HIBERNATION
1892 ---help---
1893 Jump between original kernel and kexeced kernel and invoke
1894 code in physical address mode via KEXEC
1895
1896 config PHYSICAL_START
1897 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
1898 default "0x1000000"
1899 ---help---
1900 This gives the physical address where the kernel is loaded.
1901
1902 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1903 bzImage will decompress itself to above physical address and
1904 run from there. Otherwise, bzImage will run from the address where
1905 it has been loaded by the boot loader and will ignore above physical
1906 address.
1907
1908 In normal kdump cases one does not have to set/change this option
1909 as now bzImage can be compiled as a completely relocatable image
1910 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1911 address. This option is mainly useful for the folks who don't want
1912 to use a bzImage for capturing the crash dump and want to use a
1913 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1914 to be specifically compiled to run from a specific memory area
1915 (normally a reserved region) and this option comes handy.
1916
1917 So if you are using bzImage for capturing the crash dump,
1918 leave the value here unchanged to 0x1000000 and set
1919 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
1920 for capturing the crash dump change this value to start of
1921 the reserved region. In other words, it can be set based on
1922 the "X" value as specified in the "crashkernel=YM@XM"
1923 command line boot parameter passed to the panic-ed
1924 kernel. Please take a look at Documentation/kdump/kdump.txt
1925 for more details about crash dumps.
1926
1927 Usage of bzImage for capturing the crash dump is recommended as
1928 one does not have to build two kernels. Same kernel can be used
1929 as production kernel and capture kernel. Above option should have
1930 gone away after relocatable bzImage support is introduced. But it
1931 is present because there are users out there who continue to use
1932 vmlinux for dump capture. This option should go away down the
1933 line.
1934
1935 Don't change this unless you know what you are doing.
1936
1937 config RELOCATABLE
1938 bool "Build a relocatable kernel"
1939 default y
1940 ---help---
1941 This builds a kernel image that retains relocation information
1942 so it can be loaded someplace besides the default 1MB.
1943 The relocations tend to make the kernel binary about 10% larger,
1944 but are discarded at runtime.
1945
1946 One use is for the kexec on panic case where the recovery kernel
1947 must live at a different physical address than the primary
1948 kernel.
1949
1950 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1951 it has been loaded at and the compile time physical address
1952 (CONFIG_PHYSICAL_START) is used as the minimum location.
1953
1954 config RANDOMIZE_BASE
1955 bool "Randomize the address of the kernel image (KASLR)"
1956 depends on RELOCATABLE
1957 default n
1958 ---help---
1959 In support of Kernel Address Space Layout Randomization (KASLR),
1960 this randomizes the physical address at which the kernel image
1961 is decompressed and the virtual address where the kernel
1962 image is mapped, as a security feature that deters exploit
1963 attempts relying on knowledge of the location of kernel
1964 code internals.
1965
1966 On 64-bit, the kernel physical and virtual addresses are
1967 randomized separately. The physical address will be anywhere
1968 between 16MB and the top of physical memory (up to 64TB). The
1969 virtual address will be randomized from 16MB up to 1GB (9 bits
1970 of entropy). Note that this also reduces the memory space
1971 available to kernel modules from 1.5GB to 1GB.
1972
1973 On 32-bit, the kernel physical and virtual addresses are
1974 randomized together. They will be randomized from 16MB up to
1975 512MB (8 bits of entropy).
1976
1977 Entropy is generated using the RDRAND instruction if it is
1978 supported. If RDTSC is supported, its value is mixed into
1979 the entropy pool as well. If neither RDRAND nor RDTSC are
1980 supported, then entropy is read from the i8254 timer. The
1981 usable entropy is limited by the kernel being built using
1982 2GB addressing, and that PHYSICAL_ALIGN must be at a
1983 minimum of 2MB. As a result, only 10 bits of entropy are
1984 theoretically possible, but the implementations are further
1985 limited due to memory layouts.
1986
1987 If CONFIG_HIBERNATE is also enabled, KASLR is disabled at boot
1988 time. To enable it, boot with "kaslr" on the kernel command
1989 line (which will also disable hibernation).
1990
1991 If unsure, say N.
1992
1993 # Relocation on x86 needs some additional build support
1994 config X86_NEED_RELOCS
1995 def_bool y
1996 depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE)
1997
1998 config PHYSICAL_ALIGN
1999 hex "Alignment value to which kernel should be aligned"
2000 default "0x200000"
2001 range 0x2000 0x1000000 if X86_32
2002 range 0x200000 0x1000000 if X86_64
2003 ---help---
2004 This value puts the alignment restrictions on physical address
2005 where kernel is loaded and run from. Kernel is compiled for an
2006 address which meets above alignment restriction.
2007
2008 If bootloader loads the kernel at a non-aligned address and
2009 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
2010 address aligned to above value and run from there.
2011
2012 If bootloader loads the kernel at a non-aligned address and
2013 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
2014 load address and decompress itself to the address it has been
2015 compiled for and run from there. The address for which kernel is
2016 compiled already meets above alignment restrictions. Hence the
2017 end result is that kernel runs from a physical address meeting
2018 above alignment restrictions.
2019
2020 On 32-bit this value must be a multiple of 0x2000. On 64-bit
2021 this value must be a multiple of 0x200000.
2022
2023 Don't change this unless you know what you are doing.
2024
2025 config RANDOMIZE_MEMORY
2026 bool "Randomize the kernel memory sections"
2027 depends on X86_64
2028 depends on RANDOMIZE_BASE
2029 default RANDOMIZE_BASE
2030 ---help---
2031 Randomizes the base virtual address of kernel memory sections
2032 (physical memory mapping, vmalloc & vmemmap). This security feature
2033 makes exploits relying on predictable memory locations less reliable.
2034
2035 The order of allocations remains unchanged. Entropy is generated in
2036 the same way as RANDOMIZE_BASE. Current implementation in the optimal
2037 configuration have in average 30,000 different possible virtual
2038 addresses for each memory section.
2039
2040 If unsure, say N.
2041
2042 config RANDOMIZE_MEMORY_PHYSICAL_PADDING
2043 hex "Physical memory mapping padding" if EXPERT
2044 depends on RANDOMIZE_MEMORY
2045 default "0xa" if MEMORY_HOTPLUG
2046 default "0x0"
2047 range 0x1 0x40 if MEMORY_HOTPLUG
2048 range 0x0 0x40
2049 ---help---
2050 Define the padding in terabytes added to the existing physical
2051 memory size during kernel memory randomization. It is useful
2052 for memory hotplug support but reduces the entropy available for
2053 address randomization.
2054
2055 If unsure, leave at the default value.
2056
2057 config HOTPLUG_CPU
2058 bool "Support for hot-pluggable CPUs"
2059 depends on SMP
2060 ---help---
2061 Say Y here to allow turning CPUs off and on. CPUs can be
2062 controlled through /sys/devices/system/cpu.
2063 ( Note: power management support will enable this option
2064 automatically on SMP systems. )
2065 Say N if you want to disable CPU hotplug.
2066
2067 config BOOTPARAM_HOTPLUG_CPU0
2068 bool "Set default setting of cpu0_hotpluggable"
2069 default n
2070 depends on HOTPLUG_CPU
2071 ---help---
2072 Set whether default state of cpu0_hotpluggable is on or off.
2073
2074 Say Y here to enable CPU0 hotplug by default. If this switch
2075 is turned on, there is no need to give cpu0_hotplug kernel
2076 parameter and the CPU0 hotplug feature is enabled by default.
2077
2078 Please note: there are two known CPU0 dependencies if you want
2079 to enable the CPU0 hotplug feature either by this switch or by
2080 cpu0_hotplug kernel parameter.
2081
2082 First, resume from hibernate or suspend always starts from CPU0.
2083 So hibernate and suspend are prevented if CPU0 is offline.
2084
2085 Second dependency is PIC interrupts always go to CPU0. CPU0 can not
2086 offline if any interrupt can not migrate out of CPU0. There may
2087 be other CPU0 dependencies.
2088
2089 Please make sure the dependencies are under your control before
2090 you enable this feature.
2091
2092 Say N if you don't want to enable CPU0 hotplug feature by default.
2093 You still can enable the CPU0 hotplug feature at boot by kernel
2094 parameter cpu0_hotplug.
2095
2096 config DEBUG_HOTPLUG_CPU0
2097 def_bool n
2098 prompt "Debug CPU0 hotplug"
2099 depends on HOTPLUG_CPU
2100 ---help---
2101 Enabling this option offlines CPU0 (if CPU0 can be offlined) as
2102 soon as possible and boots up userspace with CPU0 offlined. User
2103 can online CPU0 back after boot time.
2104
2105 To debug CPU0 hotplug, you need to enable CPU0 offline/online
2106 feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
2107 compilation or giving cpu0_hotplug kernel parameter at boot.
2108
2109 If unsure, say N.
2110
2111 config COMPAT_VDSO
2112 def_bool n
2113 prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)"
2114 depends on X86_32 || IA32_EMULATION
2115 ---help---
2116 Certain buggy versions of glibc will crash if they are
2117 presented with a 32-bit vDSO that is not mapped at the address
2118 indicated in its segment table.
2119
2120 The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a
2121 and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and
2122 49ad572a70b8aeb91e57483a11dd1b77e31c4468. Glibc 2.3.3 is
2123 the only released version with the bug, but OpenSUSE 9
2124 contains a buggy "glibc 2.3.2".
2125
2126 The symptom of the bug is that everything crashes on startup, saying:
2127 dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!
2128
2129 Saying Y here changes the default value of the vdso32 boot
2130 option from 1 to 0, which turns off the 32-bit vDSO entirely.
2131 This works around the glibc bug but hurts performance.
2132
2133 If unsure, say N: if you are compiling your own kernel, you
2134 are unlikely to be using a buggy version of glibc.
2135
2136 choice
2137 prompt "vsyscall table for legacy applications"
2138 depends on X86_64
2139 default LEGACY_VSYSCALL_EMULATE
2140 help
2141 Legacy user code that does not know how to find the vDSO expects
2142 to be able to issue three syscalls by calling fixed addresses in
2143 kernel space. Since this location is not randomized with ASLR,
2144 it can be used to assist security vulnerability exploitation.
2145
2146 This setting can be changed at boot time via the kernel command
2147 line parameter vsyscall=[native|emulate|none].
2148
2149 On a system with recent enough glibc (2.14 or newer) and no
2150 static binaries, you can say None without a performance penalty
2151 to improve security.
2152
2153 If unsure, select "Emulate".
2154
2155 config LEGACY_VSYSCALL_NATIVE
2156 bool "Native"
2157 help
2158 Actual executable code is located in the fixed vsyscall
2159 address mapping, implementing time() efficiently. Since
2160 this makes the mapping executable, it can be used during
2161 security vulnerability exploitation (traditionally as
2162 ROP gadgets). This configuration is not recommended.
2163
2164 config LEGACY_VSYSCALL_EMULATE
2165 bool "Emulate"
2166 help
2167 The kernel traps and emulates calls into the fixed
2168 vsyscall address mapping. This makes the mapping
2169 non-executable, but it still contains known contents,
2170 which could be used in certain rare security vulnerability
2171 exploits. This configuration is recommended when userspace
2172 still uses the vsyscall area.
2173
2174 config LEGACY_VSYSCALL_NONE
2175 bool "None"
2176 help
2177 There will be no vsyscall mapping at all. This will
2178 eliminate any risk of ASLR bypass due to the vsyscall
2179 fixed address mapping. Attempts to use the vsyscalls
2180 will be reported to dmesg, so that either old or
2181 malicious userspace programs can be identified.
2182
2183 endchoice
2184
2185 config CMDLINE_BOOL
2186 bool "Built-in kernel command line"
2187 ---help---
2188 Allow for specifying boot arguments to the kernel at
2189 build time. On some systems (e.g. embedded ones), it is
2190 necessary or convenient to provide some or all of the
2191 kernel boot arguments with the kernel itself (that is,
2192 to not rely on the boot loader to provide them.)
2193
2194 To compile command line arguments into the kernel,
2195 set this option to 'Y', then fill in the
2196 boot arguments in CONFIG_CMDLINE.
2197
2198 Systems with fully functional boot loaders (i.e. non-embedded)
2199 should leave this option set to 'N'.
2200
2201 config CMDLINE
2202 string "Built-in kernel command string"
2203 depends on CMDLINE_BOOL
2204 default ""
2205 ---help---
2206 Enter arguments here that should be compiled into the kernel
2207 image and used at boot time. If the boot loader provides a
2208 command line at boot time, it is appended to this string to
2209 form the full kernel command line, when the system boots.
2210
2211 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
2212 change this behavior.
2213
2214 In most cases, the command line (whether built-in or provided
2215 by the boot loader) should specify the device for the root
2216 file system.
2217
2218 config CMDLINE_OVERRIDE
2219 bool "Built-in command line overrides boot loader arguments"
2220 depends on CMDLINE_BOOL
2221 ---help---
2222 Set this option to 'Y' to have the kernel ignore the boot loader
2223 command line, and use ONLY the built-in command line.
2224
2225 This is used to work around broken boot loaders. This should
2226 be set to 'N' under normal conditions.
2227
2228 config MODIFY_LDT_SYSCALL
2229 bool "Enable the LDT (local descriptor table)" if EXPERT
2230 default y
2231 ---help---
2232 Linux can allow user programs to install a per-process x86
2233 Local Descriptor Table (LDT) using the modify_ldt(2) system
2234 call. This is required to run 16-bit or segmented code such as
2235 DOSEMU or some Wine programs. It is also used by some very old
2236 threading libraries.
2237
2238 Enabling this feature adds a small amount of overhead to
2239 context switches and increases the low-level kernel attack
2240 surface. Disabling it removes the modify_ldt(2) system call.
2241
2242 Saying 'N' here may make sense for embedded or server kernels.
2243
2244 source "kernel/livepatch/Kconfig"
2245
2246 endmenu
2247
2248 config ARCH_ENABLE_MEMORY_HOTPLUG
2249 def_bool y
2250 depends on X86_64 || (X86_32 && HIGHMEM)
2251
2252 config ARCH_ENABLE_MEMORY_HOTREMOVE
2253 def_bool y
2254 depends on MEMORY_HOTPLUG
2255
2256 config USE_PERCPU_NUMA_NODE_ID
2257 def_bool y
2258 depends on NUMA
2259
2260 config ARCH_ENABLE_SPLIT_PMD_PTLOCK
2261 def_bool y
2262 depends on X86_64 || X86_PAE
2263
2264 config ARCH_ENABLE_HUGEPAGE_MIGRATION
2265 def_bool y
2266 depends on X86_64 && HUGETLB_PAGE && MIGRATION
2267
2268 menu "Power management and ACPI options"
2269
2270 config ARCH_HIBERNATION_HEADER
2271 def_bool y
2272 depends on X86_64 && HIBERNATION
2273
2274 source "kernel/power/Kconfig"
2275
2276 source "drivers/acpi/Kconfig"
2277
2278 source "drivers/sfi/Kconfig"
2279
2280 config X86_APM_BOOT
2281 def_bool y
2282 depends on APM
2283
2284 menuconfig APM
2285 tristate "APM (Advanced Power Management) BIOS support"
2286 depends on X86_32 && PM_SLEEP
2287 ---help---
2288 APM is a BIOS specification for saving power using several different
2289 techniques. This is mostly useful for battery powered laptops with
2290 APM compliant BIOSes. If you say Y here, the system time will be
2291 reset after a RESUME operation, the /proc/apm device will provide
2292 battery status information, and user-space programs will receive
2293 notification of APM "events" (e.g. battery status change).
2294
2295 If you select "Y" here, you can disable actual use of the APM
2296 BIOS by passing the "apm=off" option to the kernel at boot time.
2297
2298 Note that the APM support is almost completely disabled for
2299 machines with more than one CPU.
2300
2301 In order to use APM, you will need supporting software. For location
2302 and more information, read <file:Documentation/power/apm-acpi.txt>
2303 and the Battery Powered Linux mini-HOWTO, available from
2304 <http://www.tldp.org/docs.html#howto>.
2305
2306 This driver does not spin down disk drives (see the hdparm(8)
2307 manpage ("man 8 hdparm") for that), and it doesn't turn off
2308 VESA-compliant "green" monitors.
2309
2310 This driver does not support the TI 4000M TravelMate and the ACER
2311 486/DX4/75 because they don't have compliant BIOSes. Many "green"
2312 desktop machines also don't have compliant BIOSes, and this driver
2313 may cause those machines to panic during the boot phase.
2314
2315 Generally, if you don't have a battery in your machine, there isn't
2316 much point in using this driver and you should say N. If you get
2317 random kernel OOPSes or reboots that don't seem to be related to
2318 anything, try disabling/enabling this option (or disabling/enabling
2319 APM in your BIOS).
2320
2321 Some other things you should try when experiencing seemingly random,
2322 "weird" problems:
2323
2324 1) make sure that you have enough swap space and that it is
2325 enabled.
2326 2) pass the "no-hlt" option to the kernel
2327 3) switch on floating point emulation in the kernel and pass
2328 the "no387" option to the kernel
2329 4) pass the "floppy=nodma" option to the kernel
2330 5) pass the "mem=4M" option to the kernel (thereby disabling
2331 all but the first 4 MB of RAM)
2332 6) make sure that the CPU is not over clocked.
2333 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
2334 8) disable the cache from your BIOS settings
2335 9) install a fan for the video card or exchange video RAM
2336 10) install a better fan for the CPU
2337 11) exchange RAM chips
2338 12) exchange the motherboard.
2339
2340 To compile this driver as a module, choose M here: the
2341 module will be called apm.
2342
2343 if APM
2344
2345 config APM_IGNORE_USER_SUSPEND
2346 bool "Ignore USER SUSPEND"
2347 ---help---
2348 This option will ignore USER SUSPEND requests. On machines with a
2349 compliant APM BIOS, you want to say N. However, on the NEC Versa M
2350 series notebooks, it is necessary to say Y because of a BIOS bug.
2351
2352 config APM_DO_ENABLE
2353 bool "Enable PM at boot time"
2354 ---help---
2355 Enable APM features at boot time. From page 36 of the APM BIOS
2356 specification: "When disabled, the APM BIOS does not automatically
2357 power manage devices, enter the Standby State, enter the Suspend
2358 State, or take power saving steps in response to CPU Idle calls."
2359 This driver will make CPU Idle calls when Linux is idle (unless this
2360 feature is turned off -- see "Do CPU IDLE calls", below). This
2361 should always save battery power, but more complicated APM features
2362 will be dependent on your BIOS implementation. You may need to turn
2363 this option off if your computer hangs at boot time when using APM
2364 support, or if it beeps continuously instead of suspending. Turn
2365 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
2366 T400CDT. This is off by default since most machines do fine without
2367 this feature.
2368
2369 config APM_CPU_IDLE
2370 depends on CPU_IDLE
2371 bool "Make CPU Idle calls when idle"
2372 ---help---
2373 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
2374 On some machines, this can activate improved power savings, such as
2375 a slowed CPU clock rate, when the machine is idle. These idle calls
2376 are made after the idle loop has run for some length of time (e.g.,
2377 333 mS). On some machines, this will cause a hang at boot time or
2378 whenever the CPU becomes idle. (On machines with more than one CPU,
2379 this option does nothing.)
2380
2381 config APM_DISPLAY_BLANK
2382 bool "Enable console blanking using APM"
2383 ---help---
2384 Enable console blanking using the APM. Some laptops can use this to
2385 turn off the LCD backlight when the screen blanker of the Linux
2386 virtual console blanks the screen. Note that this is only used by
2387 the virtual console screen blanker, and won't turn off the backlight
2388 when using the X Window system. This also doesn't have anything to
2389 do with your VESA-compliant power-saving monitor. Further, this
2390 option doesn't work for all laptops -- it might not turn off your
2391 backlight at all, or it might print a lot of errors to the console,
2392 especially if you are using gpm.
2393
2394 config APM_ALLOW_INTS
2395 bool "Allow interrupts during APM BIOS calls"
2396 ---help---
2397 Normally we disable external interrupts while we are making calls to
2398 the APM BIOS as a measure to lessen the effects of a badly behaving
2399 BIOS implementation. The BIOS should reenable interrupts if it
2400 needs to. Unfortunately, some BIOSes do not -- especially those in
2401 many of the newer IBM Thinkpads. If you experience hangs when you
2402 suspend, try setting this to Y. Otherwise, say N.
2403
2404 endif # APM
2405
2406 source "drivers/cpufreq/Kconfig"
2407
2408 source "drivers/cpuidle/Kconfig"
2409
2410 source "drivers/idle/Kconfig"
2411
2412 endmenu
2413
2414
2415 menu "Bus options (PCI etc.)"
2416
2417 config PCI
2418 bool "PCI support"
2419 default y
2420 ---help---
2421 Find out whether you have a PCI motherboard. PCI is the name of a
2422 bus system, i.e. the way the CPU talks to the other stuff inside
2423 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
2424 VESA. If you have PCI, say Y, otherwise N.
2425
2426 choice
2427 prompt "PCI access mode"
2428 depends on X86_32 && PCI
2429 default PCI_GOANY
2430 ---help---
2431 On PCI systems, the BIOS can be used to detect the PCI devices and
2432 determine their configuration. However, some old PCI motherboards
2433 have BIOS bugs and may crash if this is done. Also, some embedded
2434 PCI-based systems don't have any BIOS at all. Linux can also try to
2435 detect the PCI hardware directly without using the BIOS.
2436
2437 With this option, you can specify how Linux should detect the
2438 PCI devices. If you choose "BIOS", the BIOS will be used,
2439 if you choose "Direct", the BIOS won't be used, and if you
2440 choose "MMConfig", then PCI Express MMCONFIG will be used.
2441 If you choose "Any", the kernel will try MMCONFIG, then the
2442 direct access method and falls back to the BIOS if that doesn't
2443 work. If unsure, go with the default, which is "Any".
2444
2445 config PCI_GOBIOS
2446 bool "BIOS"
2447
2448 config PCI_GOMMCONFIG
2449 bool "MMConfig"
2450
2451 config PCI_GODIRECT
2452 bool "Direct"
2453
2454 config PCI_GOOLPC
2455 bool "OLPC XO-1"
2456 depends on OLPC
2457
2458 config PCI_GOANY
2459 bool "Any"
2460
2461 endchoice
2462
2463 config PCI_BIOS
2464 def_bool y
2465 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2466
2467 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2468 config PCI_DIRECT
2469 def_bool y
2470 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2471
2472 config PCI_MMCONFIG
2473 def_bool y
2474 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
2475
2476 config PCI_OLPC
2477 def_bool y
2478 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2479
2480 config PCI_XEN
2481 def_bool y
2482 depends on PCI && XEN
2483 select SWIOTLB_XEN
2484
2485 config PCI_DOMAINS
2486 def_bool y
2487 depends on PCI
2488
2489 config PCI_MMCONFIG
2490 bool "Support mmconfig PCI config space access"
2491 depends on X86_64 && PCI && ACPI
2492
2493 config PCI_CNB20LE_QUIRK
2494 bool "Read CNB20LE Host Bridge Windows" if EXPERT
2495 depends on PCI
2496 help
2497 Read the PCI windows out of the CNB20LE host bridge. This allows
2498 PCI hotplug to work on systems with the CNB20LE chipset which do
2499 not have ACPI.
2500
2501 There's no public spec for this chipset, and this functionality
2502 is known to be incomplete.
2503
2504 You should say N unless you know you need this.
2505
2506 source "drivers/pci/Kconfig"
2507
2508 config ISA_BUS
2509 bool "ISA-style bus support on modern systems" if EXPERT
2510 select ISA_BUS_API
2511 help
2512 Enables ISA-style drivers on modern systems. This is necessary to
2513 support PC/104 devices on X86_64 platforms.
2514
2515 If unsure, say N.
2516
2517 # x86_64 have no ISA slots, but can have ISA-style DMA.
2518 config ISA_DMA_API
2519 bool "ISA-style DMA support" if (X86_64 && EXPERT)
2520 default y
2521 help
2522 Enables ISA-style DMA support for devices requiring such controllers.
2523 If unsure, say Y.
2524
2525 if X86_32
2526
2527 config ISA
2528 bool "ISA support"
2529 ---help---
2530 Find out whether you have ISA slots on your motherboard. ISA is the
2531 name of a bus system, i.e. the way the CPU talks to the other stuff
2532 inside your box. Other bus systems are PCI, EISA, MicroChannel
2533 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
2534 newer boards don't support it. If you have ISA, say Y, otherwise N.
2535
2536 config EISA
2537 bool "EISA support"
2538 depends on ISA
2539 ---help---
2540 The Extended Industry Standard Architecture (EISA) bus was
2541 developed as an open alternative to the IBM MicroChannel bus.
2542
2543 The EISA bus provided some of the features of the IBM MicroChannel
2544 bus while maintaining backward compatibility with cards made for
2545 the older ISA bus. The EISA bus saw limited use between 1988 and
2546 1995 when it was made obsolete by the PCI bus.
2547
2548 Say Y here if you are building a kernel for an EISA-based machine.
2549
2550 Otherwise, say N.
2551
2552 source "drivers/eisa/Kconfig"
2553
2554 config SCx200
2555 tristate "NatSemi SCx200 support"
2556 ---help---
2557 This provides basic support for National Semiconductor's
2558 (now AMD's) Geode processors. The driver probes for the
2559 PCI-IDs of several on-chip devices, so its a good dependency
2560 for other scx200_* drivers.
2561
2562 If compiled as a module, the driver is named scx200.
2563
2564 config SCx200HR_TIMER
2565 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
2566 depends on SCx200
2567 default y
2568 ---help---
2569 This driver provides a clocksource built upon the on-chip
2570 27MHz high-resolution timer. Its also a workaround for
2571 NSC Geode SC-1100's buggy TSC, which loses time when the
2572 processor goes idle (as is done by the scheduler). The
2573 other workaround is idle=poll boot option.
2574
2575 config OLPC
2576 bool "One Laptop Per Child support"
2577 depends on !X86_PAE
2578 select GPIOLIB
2579 select OF
2580 select OF_PROMTREE
2581 select IRQ_DOMAIN
2582 ---help---
2583 Add support for detecting the unique features of the OLPC
2584 XO hardware.
2585
2586 config OLPC_XO1_PM
2587 bool "OLPC XO-1 Power Management"
2588 depends on OLPC && MFD_CS5535 && PM_SLEEP
2589 select MFD_CORE
2590 ---help---
2591 Add support for poweroff and suspend of the OLPC XO-1 laptop.
2592
2593 config OLPC_XO1_RTC
2594 bool "OLPC XO-1 Real Time Clock"
2595 depends on OLPC_XO1_PM && RTC_DRV_CMOS
2596 ---help---
2597 Add support for the XO-1 real time clock, which can be used as a
2598 programmable wakeup source.
2599
2600 config OLPC_XO1_SCI
2601 bool "OLPC XO-1 SCI extras"
2602 depends on OLPC && OLPC_XO1_PM
2603 depends on INPUT=y
2604 select POWER_SUPPLY
2605 select GPIO_CS5535
2606 select MFD_CORE
2607 ---help---
2608 Add support for SCI-based features of the OLPC XO-1 laptop:
2609 - EC-driven system wakeups
2610 - Power button
2611 - Ebook switch
2612 - Lid switch
2613 - AC adapter status updates
2614 - Battery status updates
2615
2616 config OLPC_XO15_SCI
2617 bool "OLPC XO-1.5 SCI extras"
2618 depends on OLPC && ACPI
2619 select POWER_SUPPLY
2620 ---help---
2621 Add support for SCI-based features of the OLPC XO-1.5 laptop:
2622 - EC-driven system wakeups
2623 - AC adapter status updates
2624 - Battery status updates
2625
2626 config ALIX
2627 bool "PCEngines ALIX System Support (LED setup)"
2628 select GPIOLIB
2629 ---help---
2630 This option enables system support for the PCEngines ALIX.
2631 At present this just sets up LEDs for GPIO control on
2632 ALIX2/3/6 boards. However, other system specific setup should
2633 get added here.
2634
2635 Note: You must still enable the drivers for GPIO and LED support
2636 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
2637
2638 Note: You have to set alix.force=1 for boards with Award BIOS.
2639
2640 config NET5501
2641 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
2642 select GPIOLIB
2643 ---help---
2644 This option enables system support for the Soekris Engineering net5501.
2645
2646 config GEOS
2647 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
2648 select GPIOLIB
2649 depends on DMI
2650 ---help---
2651 This option enables system support for the Traverse Technologies GEOS.
2652
2653 config TS5500
2654 bool "Technologic Systems TS-5500 platform support"
2655 depends on MELAN
2656 select CHECK_SIGNATURE
2657 select NEW_LEDS
2658 select LEDS_CLASS
2659 ---help---
2660 This option enables system support for the Technologic Systems TS-5500.
2661
2662 endif # X86_32
2663
2664 config AMD_NB
2665 def_bool y
2666 depends on CPU_SUP_AMD && PCI
2667
2668 source "drivers/pcmcia/Kconfig"
2669
2670 config RAPIDIO
2671 tristate "RapidIO support"
2672 depends on PCI
2673 default n
2674 help
2675 If enabled this option will include drivers and the core
2676 infrastructure code to support RapidIO interconnect devices.
2677
2678 source "drivers/rapidio/Kconfig"
2679
2680 config X86_SYSFB
2681 bool "Mark VGA/VBE/EFI FB as generic system framebuffer"
2682 help
2683 Firmwares often provide initial graphics framebuffers so the BIOS,
2684 bootloader or kernel can show basic video-output during boot for
2685 user-guidance and debugging. Historically, x86 used the VESA BIOS
2686 Extensions and EFI-framebuffers for this, which are mostly limited
2687 to x86.
2688 This option, if enabled, marks VGA/VBE/EFI framebuffers as generic
2689 framebuffers so the new generic system-framebuffer drivers can be
2690 used on x86. If the framebuffer is not compatible with the generic
2691 modes, it is adverticed as fallback platform framebuffer so legacy
2692 drivers like efifb, vesafb and uvesafb can pick it up.
2693 If this option is not selected, all system framebuffers are always
2694 marked as fallback platform framebuffers as usual.
2695
2696 Note: Legacy fbdev drivers, including vesafb, efifb, uvesafb, will
2697 not be able to pick up generic system framebuffers if this option
2698 is selected. You are highly encouraged to enable simplefb as
2699 replacement if you select this option. simplefb can correctly deal
2700 with generic system framebuffers. But you should still keep vesafb
2701 and others enabled as fallback if a system framebuffer is
2702 incompatible with simplefb.
2703
2704 If unsure, say Y.
2705
2706 endmenu
2707
2708
2709 menu "Executable file formats / Emulations"
2710
2711 source "fs/Kconfig.binfmt"
2712
2713 config IA32_EMULATION
2714 bool "IA32 Emulation"
2715 depends on X86_64
2716 select BINFMT_ELF
2717 select COMPAT_BINFMT_ELF
2718 select ARCH_WANT_OLD_COMPAT_IPC
2719 ---help---
2720 Include code to run legacy 32-bit programs under a
2721 64-bit kernel. You should likely turn this on, unless you're
2722 100% sure that you don't have any 32-bit programs left.
2723
2724 config IA32_AOUT
2725 tristate "IA32 a.out support"
2726 depends on IA32_EMULATION
2727 ---help---
2728 Support old a.out binaries in the 32bit emulation.
2729
2730 config X86_X32
2731 bool "x32 ABI for 64-bit mode"
2732 depends on X86_64
2733 ---help---
2734 Include code to run binaries for the x32 native 32-bit ABI
2735 for 64-bit processors. An x32 process gets access to the
2736 full 64-bit register file and wide data path while leaving
2737 pointers at 32 bits for smaller memory footprint.
2738
2739 You will need a recent binutils (2.22 or later) with
2740 elf32_x86_64 support enabled to compile a kernel with this
2741 option set.
2742
2743 config COMPAT
2744 def_bool y
2745 depends on IA32_EMULATION || X86_X32
2746
2747 if COMPAT
2748 config COMPAT_FOR_U64_ALIGNMENT
2749 def_bool y
2750
2751 config SYSVIPC_COMPAT
2752 def_bool y
2753 depends on SYSVIPC
2754
2755 config KEYS_COMPAT
2756 def_bool y
2757 depends on KEYS
2758 endif
2759
2760 endmenu
2761
2762
2763 config HAVE_ATOMIC_IOMAP
2764 def_bool y
2765 depends on X86_32
2766
2767 config X86_DEV_DMA_OPS
2768 bool
2769 depends on X86_64 || STA2X11
2770
2771 config X86_DMA_REMAP
2772 bool
2773 depends on STA2X11
2774
2775 config PMC_ATOM
2776 def_bool y
2777 depends on PCI
2778
2779 source "net/Kconfig"
2780
2781 source "drivers/Kconfig"
2782
2783 source "drivers/firmware/Kconfig"
2784
2785 source "fs/Kconfig"
2786
2787 source "arch/x86/Kconfig.debug"
2788
2789 source "security/Kconfig"
2790
2791 source "crypto/Kconfig"
2792
2793 source "arch/x86/kvm/Kconfig"
2794
2795 source "lib/Kconfig"