atomic: use <linux/atomic.h>
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / tile / kernel / intvec_32.S
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * Linux interrupt vectors.
15 */
16
17 #include <linux/linkage.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/unistd.h>
21 #include <asm/ptrace.h>
22 #include <asm/thread_info.h>
23 #include <asm/irqflags.h>
24 #include <linux/atomic.h>
25 #include <asm/asm-offsets.h>
26 #include <hv/hypervisor.h>
27 #include <arch/abi.h>
28 #include <arch/interrupts.h>
29 #include <arch/spr_def.h>
30
31 #ifdef CONFIG_PREEMPT
32 # error "No support for kernel preemption currently"
33 #endif
34
35 #define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg)
36
37 #define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR)
38
39 #if !CHIP_HAS_WH64()
40 /* By making this an empty macro, we can use wh64 in the code. */
41 .macro wh64 reg
42 .endm
43 #endif
44
45 .macro push_reg reg, ptr=sp, delta=-4
46 {
47 sw \ptr, \reg
48 addli \ptr, \ptr, \delta
49 }
50 .endm
51
52 .macro pop_reg reg, ptr=sp, delta=4
53 {
54 lw \reg, \ptr
55 addli \ptr, \ptr, \delta
56 }
57 .endm
58
59 .macro pop_reg_zero reg, zreg, ptr=sp, delta=4
60 {
61 move \zreg, zero
62 lw \reg, \ptr
63 addi \ptr, \ptr, \delta
64 }
65 .endm
66
67 .macro push_extra_callee_saves reg
68 PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51))
69 push_reg r51, \reg
70 push_reg r50, \reg
71 push_reg r49, \reg
72 push_reg r48, \reg
73 push_reg r47, \reg
74 push_reg r46, \reg
75 push_reg r45, \reg
76 push_reg r44, \reg
77 push_reg r43, \reg
78 push_reg r42, \reg
79 push_reg r41, \reg
80 push_reg r40, \reg
81 push_reg r39, \reg
82 push_reg r38, \reg
83 push_reg r37, \reg
84 push_reg r36, \reg
85 push_reg r35, \reg
86 push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34)
87 .endm
88
89 .macro panic str
90 .pushsection .rodata, "a"
91 1:
92 .asciz "\str"
93 .popsection
94 {
95 moveli r0, lo16(1b)
96 }
97 {
98 auli r0, r0, ha16(1b)
99 jal panic
100 }
101 .endm
102
103 #ifdef __COLLECT_LINKER_FEEDBACK__
104 .pushsection .text.intvec_feedback,"ax"
105 intvec_feedback:
106 .popsection
107 #endif
108
109 /*
110 * Default interrupt handler.
111 *
112 * vecnum is where we'll put this code.
113 * c_routine is the C routine we'll call.
114 *
115 * The C routine is passed two arguments:
116 * - A pointer to the pt_regs state.
117 * - The interrupt vector number.
118 *
119 * The "processing" argument specifies the code for processing
120 * the interrupt. Defaults to "handle_interrupt".
121 */
122 .macro int_hand vecnum, vecname, c_routine, processing=handle_interrupt
123 .org (\vecnum << 8)
124 intvec_\vecname:
125 .ifc \vecnum, INT_SWINT_1
126 blz TREG_SYSCALL_NR_NAME, sys_cmpxchg
127 .endif
128
129 /* Temporarily save a register so we have somewhere to work. */
130
131 mtspr SPR_SYSTEM_SAVE_K_1, r0
132 mfspr r0, SPR_EX_CONTEXT_K_1
133
134 /* The cmpxchg code clears sp to force us to reset it here on fault. */
135 {
136 bz sp, 2f
137 andi r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
138 }
139
140 .ifc \vecnum, INT_DOUBLE_FAULT
141 /*
142 * For double-faults from user-space, fall through to the normal
143 * register save and stack setup path. Otherwise, it's the
144 * hypervisor giving us one last chance to dump diagnostics, and we
145 * branch to the kernel_double_fault routine to do so.
146 */
147 bz r0, 1f
148 j _kernel_double_fault
149 1:
150 .else
151 /*
152 * If we're coming from user-space, then set sp to the top of
153 * the kernel stack. Otherwise, assume sp is already valid.
154 */
155 {
156 bnz r0, 0f
157 move r0, sp
158 }
159 .endif
160
161 .ifc \c_routine, do_page_fault
162 /*
163 * The page_fault handler may be downcalled directly by the
164 * hypervisor even when Linux is running and has ICS set.
165 *
166 * In this case the contents of EX_CONTEXT_K_1 reflect the
167 * previous fault and can't be relied on to choose whether or
168 * not to reinitialize the stack pointer. So we add a test
169 * to see whether SYSTEM_SAVE_K_2 has the high bit set,
170 * and if so we don't reinitialize sp, since we must be coming
171 * from Linux. (In fact the precise case is !(val & ~1),
172 * but any Linux PC has to have the high bit set.)
173 *
174 * Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for
175 * any path that turns into a downcall to one of our TLB handlers.
176 */
177 mfspr r0, SPR_SYSTEM_SAVE_K_2
178 {
179 blz r0, 0f /* high bit in S_S_1_2 is for a PC to use */
180 move r0, sp
181 }
182 .endif
183
184 2:
185 /*
186 * SYSTEM_SAVE_K_0 holds the cpu number in the low bits, and
187 * the current stack top in the higher bits. So we recover
188 * our stack top by just masking off the low bits, then
189 * point sp at the top aligned address on the actual stack page.
190 */
191 mfspr r0, SPR_SYSTEM_SAVE_K_0
192 mm r0, r0, zero, LOG2_THREAD_SIZE, 31
193
194 0:
195 /*
196 * Align the stack mod 64 so we can properly predict what
197 * cache lines we need to write-hint to reduce memory fetch
198 * latency as we enter the kernel. The layout of memory is
199 * as follows, with cache line 0 at the lowest VA, and cache
200 * line 4 just below the r0 value this "andi" computes.
201 * Note that we never write to cache line 4, and we skip
202 * cache line 1 for syscalls.
203 *
204 * cache line 4: ptregs padding (two words)
205 * cache line 3: r46...lr, pc, ex1, faultnum, orig_r0, flags, pad
206 * cache line 2: r30...r45
207 * cache line 1: r14...r29
208 * cache line 0: 2 x frame, r0..r13
209 */
210 andi r0, r0, -64
211
212 /*
213 * Push the first four registers on the stack, so that we can set
214 * them to vector-unique values before we jump to the common code.
215 *
216 * Registers are pushed on the stack as a struct pt_regs,
217 * with the sp initially just above the struct, and when we're
218 * done, sp points to the base of the struct, minus
219 * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code.
220 *
221 * This routine saves just the first four registers, plus the
222 * stack context so we can do proper backtracing right away,
223 * and defers to handle_interrupt to save the rest.
224 * The backtracer needs pc, ex1, lr, sp, r52, and faultnum.
225 */
226 addli r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP)
227 wh64 r0 /* cache line 3 */
228 {
229 sw r0, lr
230 addli r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
231 }
232 {
233 sw r0, sp
234 addli sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP
235 }
236 {
237 sw sp, r52
238 addli sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52)
239 }
240 wh64 sp /* cache line 0 */
241 {
242 sw sp, r1
243 addli sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1)
244 }
245 {
246 sw sp, r2
247 addli sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2)
248 }
249 {
250 sw sp, r3
251 addli sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3)
252 }
253 mfspr r0, SPR_EX_CONTEXT_K_0
254 .ifc \processing,handle_syscall
255 /*
256 * Bump the saved PC by one bundle so that when we return, we won't
257 * execute the same swint instruction again. We need to do this while
258 * we're in the critical section.
259 */
260 addi r0, r0, 8
261 .endif
262 {
263 sw sp, r0
264 addli sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
265 }
266 mfspr r0, SPR_EX_CONTEXT_K_1
267 {
268 sw sp, r0
269 addi sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1
270 /*
271 * Use r0 for syscalls so it's a temporary; use r1 for interrupts
272 * so that it gets passed through unchanged to the handler routine.
273 * Note that the .if conditional confusingly spans bundles.
274 */
275 .ifc \processing,handle_syscall
276 movei r0, \vecnum
277 }
278 {
279 sw sp, r0
280 .else
281 movei r1, \vecnum
282 }
283 {
284 sw sp, r1
285 .endif
286 addli sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM
287 }
288 mfspr r0, SPR_SYSTEM_SAVE_K_1 /* Original r0 */
289 {
290 sw sp, r0
291 addi sp, sp, -PTREGS_OFFSET_REG(0) - 4
292 }
293 {
294 sw sp, zero /* write zero into "Next SP" frame pointer */
295 addi sp, sp, -4 /* leave SP pointing at bottom of frame */
296 }
297 .ifc \processing,handle_syscall
298 j handle_syscall
299 .else
300 /*
301 * Capture per-interrupt SPR context to registers.
302 * We overload the meaning of r3 on this path such that if its bit 31
303 * is set, we have to mask all interrupts including NMIs before
304 * clearing the interrupt critical section bit.
305 * See discussion below at "finish_interrupt_save".
306 */
307 .ifc \c_routine, do_page_fault
308 mfspr r2, SPR_SYSTEM_SAVE_K_3 /* address of page fault */
309 mfspr r3, SPR_SYSTEM_SAVE_K_2 /* info about page fault */
310 .else
311 .ifc \vecnum, INT_DOUBLE_FAULT
312 {
313 mfspr r2, SPR_SYSTEM_SAVE_K_2 /* double fault info from HV */
314 movei r3, 0
315 }
316 .else
317 .ifc \c_routine, do_trap
318 {
319 mfspr r2, GPV_REASON
320 movei r3, 0
321 }
322 .else
323 .ifc \c_routine, op_handle_perf_interrupt
324 {
325 mfspr r2, PERF_COUNT_STS
326 movei r3, -1 /* not used, but set for consistency */
327 }
328 .else
329 #if CHIP_HAS_AUX_PERF_COUNTERS()
330 .ifc \c_routine, op_handle_aux_perf_interrupt
331 {
332 mfspr r2, AUX_PERF_COUNT_STS
333 movei r3, -1 /* not used, but set for consistency */
334 }
335 .else
336 #endif
337 movei r3, 0
338 #if CHIP_HAS_AUX_PERF_COUNTERS()
339 .endif
340 #endif
341 .endif
342 .endif
343 .endif
344 .endif
345 /* Put function pointer in r0 */
346 moveli r0, lo16(\c_routine)
347 {
348 auli r0, r0, ha16(\c_routine)
349 j \processing
350 }
351 .endif
352 ENDPROC(intvec_\vecname)
353
354 #ifdef __COLLECT_LINKER_FEEDBACK__
355 .pushsection .text.intvec_feedback,"ax"
356 .org (\vecnum << 5)
357 FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt1, 1 << 8)
358 jrp lr
359 .popsection
360 #endif
361
362 .endm
363
364
365 /*
366 * Save the rest of the registers that we didn't save in the actual
367 * vector itself. We can't use r0-r10 inclusive here.
368 */
369 .macro finish_interrupt_save, function
370
371 /* If it's a syscall, save a proper orig_r0, otherwise just zero. */
372 PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0)
373 {
374 .ifc \function,handle_syscall
375 sw r52, r0
376 .else
377 sw r52, zero
378 .endif
379 PTREGS_PTR(r52, PTREGS_OFFSET_TP)
380 }
381
382 /*
383 * For ordinary syscalls, we save neither caller- nor callee-
384 * save registers, since the syscall invoker doesn't expect the
385 * caller-saves to be saved, and the called kernel functions will
386 * take care of saving the callee-saves for us.
387 *
388 * For interrupts we save just the caller-save registers. Saving
389 * them is required (since the "caller" can't save them). Again,
390 * the called kernel functions will restore the callee-save
391 * registers for us appropriately.
392 *
393 * On return, we normally restore nothing special for syscalls,
394 * and just the caller-save registers for interrupts.
395 *
396 * However, there are some important caveats to all this:
397 *
398 * - We always save a few callee-save registers to give us
399 * some scratchpad registers to carry across function calls.
400 *
401 * - fork/vfork/etc require us to save all the callee-save
402 * registers, which we do in PTREGS_SYSCALL_ALL_REGS, below.
403 *
404 * - We always save r0..r5 and r10 for syscalls, since we need
405 * to reload them a bit later for the actual kernel call, and
406 * since we might need them for -ERESTARTNOINTR, etc.
407 *
408 * - Before invoking a signal handler, we save the unsaved
409 * callee-save registers so they are visible to the
410 * signal handler or any ptracer.
411 *
412 * - If the unsaved callee-save registers are modified, we set
413 * a bit in pt_regs so we know to reload them from pt_regs
414 * and not just rely on the kernel function unwinding.
415 * (Done for ptrace register writes and SA_SIGINFO handler.)
416 */
417 {
418 sw r52, tp
419 PTREGS_PTR(r52, PTREGS_OFFSET_REG(33))
420 }
421 wh64 r52 /* cache line 2 */
422 push_reg r33, r52
423 push_reg r32, r52
424 push_reg r31, r52
425 .ifc \function,handle_syscall
426 push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30)
427 push_reg TREG_SYSCALL_NR_NAME, r52, \
428 PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL
429 .else
430
431 push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30)
432 wh64 r52 /* cache line 1 */
433 push_reg r29, r52
434 push_reg r28, r52
435 push_reg r27, r52
436 push_reg r26, r52
437 push_reg r25, r52
438 push_reg r24, r52
439 push_reg r23, r52
440 push_reg r22, r52
441 push_reg r21, r52
442 push_reg r20, r52
443 push_reg r19, r52
444 push_reg r18, r52
445 push_reg r17, r52
446 push_reg r16, r52
447 push_reg r15, r52
448 push_reg r14, r52
449 push_reg r13, r52
450 push_reg r12, r52
451 push_reg r11, r52
452 push_reg r10, r52
453 push_reg r9, r52
454 push_reg r8, r52
455 push_reg r7, r52
456 push_reg r6, r52
457
458 .endif
459
460 push_reg r5, r52
461 sw r52, r4
462
463 /* Load tp with our per-cpu offset. */
464 #ifdef CONFIG_SMP
465 {
466 mfspr r20, SPR_SYSTEM_SAVE_K_0
467 moveli r21, lo16(__per_cpu_offset)
468 }
469 {
470 auli r21, r21, ha16(__per_cpu_offset)
471 mm r20, r20, zero, 0, LOG2_THREAD_SIZE-1
472 }
473 s2a r20, r20, r21
474 lw tp, r20
475 #else
476 move tp, zero
477 #endif
478
479 /*
480 * If we will be returning to the kernel, we will need to
481 * reset the interrupt masks to the state they had before.
482 * Set DISABLE_IRQ in flags iff we came from PL1 with irqs disabled.
483 * We load flags in r32 here so we can jump to .Lrestore_regs
484 * directly after do_page_fault_ics() if necessary.
485 */
486 mfspr r32, SPR_EX_CONTEXT_K_1
487 {
488 andi r32, r32, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
489 PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS)
490 }
491 bzt r32, 1f /* zero if from user space */
492 IRQS_DISABLED(r32) /* zero if irqs enabled */
493 #if PT_FLAGS_DISABLE_IRQ != 1
494 # error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix
495 #endif
496 1:
497 .ifnc \function,handle_syscall
498 /* Record the fact that we saved the caller-save registers above. */
499 ori r32, r32, PT_FLAGS_CALLER_SAVES
500 .endif
501 sw r21, r32
502
503 #ifdef __COLLECT_LINKER_FEEDBACK__
504 /*
505 * Notify the feedback routines that we were in the
506 * appropriate fixed interrupt vector area. Note that we
507 * still have ICS set at this point, so we can't invoke any
508 * atomic operations or we will panic. The feedback
509 * routines internally preserve r0..r10 and r30 up.
510 */
511 .ifnc \function,handle_syscall
512 shli r20, r1, 5
513 .else
514 moveli r20, INT_SWINT_1 << 5
515 .endif
516 addli r20, r20, lo16(intvec_feedback)
517 auli r20, r20, ha16(intvec_feedback)
518 jalr r20
519
520 /* And now notify the feedback routines that we are here. */
521 FEEDBACK_ENTER(\function)
522 #endif
523
524 /*
525 * we've captured enough state to the stack (including in
526 * particular our EX_CONTEXT state) that we can now release
527 * the interrupt critical section and replace it with our
528 * standard "interrupts disabled" mask value. This allows
529 * synchronous interrupts (and profile interrupts) to punch
530 * through from this point onwards.
531 *
532 * If bit 31 of r3 is set during a non-NMI interrupt, we know we
533 * are on the path where the hypervisor has punched through our
534 * ICS with a page fault, so we call out to do_page_fault_ics()
535 * to figure out what to do with it. If the fault was in
536 * an atomic op, we unlock the atomic lock, adjust the
537 * saved register state a little, and return "zero" in r4,
538 * falling through into the normal page-fault interrupt code.
539 * If the fault was in a kernel-space atomic operation, then
540 * do_page_fault_ics() resolves it itself, returns "one" in r4,
541 * and as a result goes directly to restoring registers and iret,
542 * without trying to adjust the interrupt masks at all.
543 * The do_page_fault_ics() API involves passing and returning
544 * a five-word struct (in registers) to avoid writing the
545 * save and restore code here.
546 */
547 .ifc \function,handle_nmi
548 IRQ_DISABLE_ALL(r20)
549 .else
550 .ifnc \function,handle_syscall
551 bgezt r3, 1f
552 {
553 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
554 jal do_page_fault_ics
555 }
556 FEEDBACK_REENTER(\function)
557 bzt r4, 1f
558 j .Lrestore_regs
559 1:
560 .endif
561 IRQ_DISABLE(r20, r21)
562 .endif
563 mtspr INTERRUPT_CRITICAL_SECTION, zero
564
565 #if CHIP_HAS_WH64()
566 /*
567 * Prepare the first 256 stack bytes to be rapidly accessible
568 * without having to fetch the background data. We don't really
569 * know how far to write-hint, but kernel stacks generally
570 * aren't that big, and write-hinting here does take some time.
571 */
572 addi r52, sp, -64
573 {
574 wh64 r52
575 addi r52, r52, -64
576 }
577 {
578 wh64 r52
579 addi r52, r52, -64
580 }
581 {
582 wh64 r52
583 addi r52, r52, -64
584 }
585 wh64 r52
586 #endif
587
588 #ifdef CONFIG_TRACE_IRQFLAGS
589 .ifnc \function,handle_nmi
590 /*
591 * We finally have enough state set up to notify the irq
592 * tracing code that irqs were disabled on entry to the handler.
593 * The TRACE_IRQS_OFF call clobbers registers r0-r29.
594 * For syscalls, we already have the register state saved away
595 * on the stack, so we don't bother to do any register saves here,
596 * and later we pop the registers back off the kernel stack.
597 * For interrupt handlers, save r0-r3 in callee-saved registers.
598 */
599 .ifnc \function,handle_syscall
600 { move r30, r0; move r31, r1 }
601 { move r32, r2; move r33, r3 }
602 .endif
603 TRACE_IRQS_OFF
604 .ifnc \function,handle_syscall
605 { move r0, r30; move r1, r31 }
606 { move r2, r32; move r3, r33 }
607 .endif
608 .endif
609 #endif
610
611 .endm
612
613 .macro check_single_stepping, kind, not_single_stepping
614 /*
615 * Check for single stepping in user-level priv
616 * kind can be "normal", "ill", or "syscall"
617 * At end, if fall-thru
618 * r29: thread_info->step_state
619 * r28: &pt_regs->pc
620 * r27: pt_regs->pc
621 * r26: thread_info->step_state->buffer
622 */
623
624 /* Check for single stepping */
625 GET_THREAD_INFO(r29)
626 {
627 /* Get pointer to field holding step state */
628 addi r29, r29, THREAD_INFO_STEP_STATE_OFFSET
629
630 /* Get pointer to EX1 in register state */
631 PTREGS_PTR(r27, PTREGS_OFFSET_EX1)
632 }
633 {
634 /* Get pointer to field holding PC */
635 PTREGS_PTR(r28, PTREGS_OFFSET_PC)
636
637 /* Load the pointer to the step state */
638 lw r29, r29
639 }
640 /* Load EX1 */
641 lw r27, r27
642 {
643 /* Points to flags */
644 addi r23, r29, SINGLESTEP_STATE_FLAGS_OFFSET
645
646 /* No single stepping if there is no step state structure */
647 bzt r29, \not_single_stepping
648 }
649 {
650 /* mask off ICS and any other high bits */
651 andi r27, r27, SPR_EX_CONTEXT_1_1__PL_MASK
652
653 /* Load pointer to single step instruction buffer */
654 lw r26, r29
655 }
656 /* Check priv state */
657 bnz r27, \not_single_stepping
658
659 /* Get flags */
660 lw r22, r23
661 {
662 /* Branch if single-step mode not enabled */
663 bbnst r22, \not_single_stepping
664
665 /* Clear enabled flag */
666 andi r22, r22, ~SINGLESTEP_STATE_MASK_IS_ENABLED
667 }
668 .ifc \kind,normal
669 {
670 /* Load PC */
671 lw r27, r28
672
673 /* Point to the entry containing the original PC */
674 addi r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
675 }
676 {
677 /* Disable single stepping flag */
678 sw r23, r22
679 }
680 {
681 /* Get the original pc */
682 lw r24, r24
683
684 /* See if the PC is at the start of the single step buffer */
685 seq r25, r26, r27
686 }
687 /*
688 * NOTE: it is really expected that the PC be in the single step buffer
689 * at this point
690 */
691 bzt r25, \not_single_stepping
692
693 /* Restore the original PC */
694 sw r28, r24
695 .else
696 .ifc \kind,syscall
697 {
698 /* Load PC */
699 lw r27, r28
700
701 /* Point to the entry containing the next PC */
702 addi r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
703 }
704 {
705 /* Increment the stopped PC by the bundle size */
706 addi r26, r26, 8
707
708 /* Disable single stepping flag */
709 sw r23, r22
710 }
711 {
712 /* Get the next pc */
713 lw r24, r24
714
715 /*
716 * See if the PC is one bundle past the start of the
717 * single step buffer
718 */
719 seq r25, r26, r27
720 }
721 {
722 /*
723 * NOTE: it is really expected that the PC be in the
724 * single step buffer at this point
725 */
726 bzt r25, \not_single_stepping
727 }
728 /* Set to the next PC */
729 sw r28, r24
730 .else
731 {
732 /* Point to 3rd bundle in buffer */
733 addi r25, r26, 16
734
735 /* Load PC */
736 lw r27, r28
737 }
738 {
739 /* Disable single stepping flag */
740 sw r23, r22
741
742 /* See if the PC is in the single step buffer */
743 slte_u r24, r26, r27
744 }
745 {
746 slte_u r25, r27, r25
747
748 /*
749 * NOTE: it is really expected that the PC be in the
750 * single step buffer at this point
751 */
752 bzt r24, \not_single_stepping
753 }
754 bzt r25, \not_single_stepping
755 .endif
756 .endif
757 .endm
758
759 /*
760 * Redispatch a downcall.
761 */
762 .macro dc_dispatch vecnum, vecname
763 .org (\vecnum << 8)
764 intvec_\vecname:
765 j hv_downcall_dispatch
766 ENDPROC(intvec_\vecname)
767 .endm
768
769 /*
770 * Common code for most interrupts. The C function we're eventually
771 * going to is in r0, and the faultnum is in r1; the original
772 * values for those registers are on the stack.
773 */
774 .pushsection .text.handle_interrupt,"ax"
775 handle_interrupt:
776 finish_interrupt_save handle_interrupt
777
778 /*
779 * Check for if we are single stepping in user level. If so, then
780 * we need to restore the PC.
781 */
782
783 check_single_stepping normal, .Ldispatch_interrupt
784 .Ldispatch_interrupt:
785
786 /* Jump to the C routine; it should enable irqs as soon as possible. */
787 {
788 jalr r0
789 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
790 }
791 FEEDBACK_REENTER(handle_interrupt)
792 {
793 movei r30, 0 /* not an NMI */
794 j interrupt_return
795 }
796 STD_ENDPROC(handle_interrupt)
797
798 /*
799 * This routine takes a boolean in r30 indicating if this is an NMI.
800 * If so, we also expect a boolean in r31 indicating whether to
801 * re-enable the oprofile interrupts.
802 */
803 STD_ENTRY(interrupt_return)
804 /* If we're resuming to kernel space, don't check thread flags. */
805 {
806 bnz r30, .Lrestore_all /* NMIs don't special-case user-space */
807 PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
808 }
809 lw r29, r29
810 andi r29, r29, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
811 {
812 bzt r29, .Lresume_userspace
813 PTREGS_PTR(r29, PTREGS_OFFSET_PC)
814 }
815
816 /* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */
817 {
818 lw r28, r29
819 moveli r27, lo16(_cpu_idle_nap)
820 }
821 {
822 auli r27, r27, ha16(_cpu_idle_nap)
823 }
824 {
825 seq r27, r27, r28
826 }
827 {
828 bbns r27, .Lrestore_all
829 addi r28, r28, 8
830 }
831 sw r29, r28
832 j .Lrestore_all
833
834 .Lresume_userspace:
835 FEEDBACK_REENTER(interrupt_return)
836
837 /*
838 * Disable interrupts so as to make sure we don't
839 * miss an interrupt that sets any of the thread flags (like
840 * need_resched or sigpending) between sampling and the iret.
841 * Routines like schedule() or do_signal() may re-enable
842 * interrupts before returning.
843 */
844 IRQ_DISABLE(r20, r21)
845 TRACE_IRQS_OFF /* Note: clobbers registers r0-r29 */
846
847 /* Get base of stack in r32; note r30/31 are used as arguments here. */
848 GET_THREAD_INFO(r32)
849
850
851 /* Check to see if there is any work to do before returning to user. */
852 {
853 addi r29, r32, THREAD_INFO_FLAGS_OFFSET
854 moveli r1, lo16(_TIF_ALLWORK_MASK)
855 }
856 {
857 lw r29, r29
858 auli r1, r1, ha16(_TIF_ALLWORK_MASK)
859 }
860 and r1, r29, r1
861 bzt r1, .Lrestore_all
862
863 /*
864 * Make sure we have all the registers saved for signal
865 * handling or single-step. Call out to C code to figure out
866 * exactly what we need to do for each flag bit, then if
867 * necessary, reload the flags and recheck.
868 */
869 push_extra_callee_saves r0
870 {
871 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
872 jal do_work_pending
873 }
874 bnz r0, .Lresume_userspace
875
876 /*
877 * In the NMI case we
878 * omit the call to single_process_check_nohz, which normally checks
879 * to see if we should start or stop the scheduler tick, because
880 * we can't call arbitrary Linux code from an NMI context.
881 * We always call the homecache TLB deferral code to re-trigger
882 * the deferral mechanism.
883 *
884 * The other chunk of responsibility this code has is to reset the
885 * interrupt masks appropriately to reset irqs and NMIs. We have
886 * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the
887 * lockdep-type stuff, but we can't set ICS until afterwards, since
888 * ICS can only be used in very tight chunks of code to avoid
889 * tripping over various assertions that it is off.
890 *
891 * (There is what looks like a window of vulnerability here since
892 * we might take a profile interrupt between the two SPR writes
893 * that set the mask, but since we write the low SPR word first,
894 * and our interrupt entry code checks the low SPR word, any
895 * profile interrupt will actually disable interrupts in both SPRs
896 * before returning, which is OK.)
897 */
898 .Lrestore_all:
899 PTREGS_PTR(r0, PTREGS_OFFSET_EX1)
900 {
901 lw r0, r0
902 PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS)
903 }
904 {
905 andi r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK
906 lw r32, r32
907 }
908 bnz r0, 1f
909 j 2f
910 #if PT_FLAGS_DISABLE_IRQ != 1
911 # error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use bbnst below
912 #endif
913 1: bbnst r32, 2f
914 IRQ_DISABLE(r20,r21)
915 TRACE_IRQS_OFF
916 movei r0, 1
917 mtspr INTERRUPT_CRITICAL_SECTION, r0
918 bzt r30, .Lrestore_regs
919 j 3f
920 2: TRACE_IRQS_ON
921 movei r0, 1
922 mtspr INTERRUPT_CRITICAL_SECTION, r0
923 IRQ_ENABLE(r20, r21)
924 bzt r30, .Lrestore_regs
925 3:
926
927
928 /*
929 * We now commit to returning from this interrupt, since we will be
930 * doing things like setting EX_CONTEXT SPRs and unwinding the stack
931 * frame. No calls should be made to any other code after this point.
932 * This code should only be entered with ICS set.
933 * r32 must still be set to ptregs.flags.
934 * We launch loads to each cache line separately first, so we can
935 * get some parallelism out of the memory subsystem.
936 * We start zeroing caller-saved registers throughout, since
937 * that will save some cycles if this turns out to be a syscall.
938 */
939 .Lrestore_regs:
940 FEEDBACK_REENTER(interrupt_return) /* called from elsewhere */
941
942 /*
943 * Rotate so we have one high bit and one low bit to test.
944 * - low bit says whether to restore all the callee-saved registers,
945 * or just r30-r33, and r52 up.
946 * - high bit (i.e. sign bit) says whether to restore all the
947 * caller-saved registers, or just r0.
948 */
949 #if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4
950 # error Rotate trick does not work :-)
951 #endif
952 {
953 rli r20, r32, 30
954 PTREGS_PTR(sp, PTREGS_OFFSET_REG(0))
955 }
956
957 /*
958 * Load cache lines 0, 2, and 3 in that order, then use
959 * the last loaded value, which makes it likely that the other
960 * cache lines have also loaded, at which point we should be
961 * able to safely read all the remaining words on those cache
962 * lines without waiting for the memory subsystem.
963 */
964 pop_reg_zero r0, r28, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0)
965 pop_reg_zero r30, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(30)
966 pop_reg_zero r21, r3, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
967 pop_reg_zero lr, r4, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_EX1
968 {
969 mtspr SPR_EX_CONTEXT_K_0, r21
970 move r5, zero
971 }
972 {
973 mtspr SPR_EX_CONTEXT_K_1, lr
974 andi lr, lr, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
975 }
976
977 /* Restore callee-saveds that we actually use. */
978 pop_reg_zero r52, r6, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_REG(52)
979 pop_reg_zero r31, r7
980 pop_reg_zero r32, r8
981 pop_reg_zero r33, r9, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33)
982
983 /*
984 * If we modified other callee-saveds, restore them now.
985 * This is rare, but could be via ptrace or signal handler.
986 */
987 {
988 move r10, zero
989 bbs r20, .Lrestore_callees
990 }
991 .Lcontinue_restore_regs:
992
993 /* Check if we're returning from a syscall. */
994 {
995 move r11, zero
996 blzt r20, 1f /* no, so go restore callee-save registers */
997 }
998
999 /*
1000 * Check if we're returning to userspace.
1001 * Note that if we're not, we don't worry about zeroing everything.
1002 */
1003 {
1004 addli sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29)
1005 bnz lr, .Lkernel_return
1006 }
1007
1008 /*
1009 * On return from syscall, we've restored r0 from pt_regs, but we
1010 * clear the remainder of the caller-saved registers. We could
1011 * restore the syscall arguments, but there's not much point,
1012 * and it ensures user programs aren't trying to use the
1013 * caller-saves if we clear them, as well as avoiding leaking
1014 * kernel pointers into userspace.
1015 */
1016 pop_reg_zero lr, r12, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1017 pop_reg_zero tp, r13, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1018 {
1019 lw sp, sp
1020 move r14, zero
1021 move r15, zero
1022 }
1023 { move r16, zero; move r17, zero }
1024 { move r18, zero; move r19, zero }
1025 { move r20, zero; move r21, zero }
1026 { move r22, zero; move r23, zero }
1027 { move r24, zero; move r25, zero }
1028 { move r26, zero; move r27, zero }
1029
1030 /* Set r1 to errno if we are returning an error, otherwise zero. */
1031 {
1032 moveli r29, 4096
1033 sub r1, zero, r0
1034 }
1035 slt_u r29, r1, r29
1036 {
1037 mnz r1, r29, r1
1038 move r29, zero
1039 }
1040 iret
1041
1042 /*
1043 * Not a syscall, so restore caller-saved registers.
1044 * First kick off a load for cache line 1, which we're touching
1045 * for the first time here.
1046 */
1047 .align 64
1048 1: pop_reg r29, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(29)
1049 pop_reg r1
1050 pop_reg r2
1051 pop_reg r3
1052 pop_reg r4
1053 pop_reg r5
1054 pop_reg r6
1055 pop_reg r7
1056 pop_reg r8
1057 pop_reg r9
1058 pop_reg r10
1059 pop_reg r11
1060 pop_reg r12
1061 pop_reg r13
1062 pop_reg r14
1063 pop_reg r15
1064 pop_reg r16
1065 pop_reg r17
1066 pop_reg r18
1067 pop_reg r19
1068 pop_reg r20
1069 pop_reg r21
1070 pop_reg r22
1071 pop_reg r23
1072 pop_reg r24
1073 pop_reg r25
1074 pop_reg r26
1075 pop_reg r27
1076 pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28)
1077 /* r29 already restored above */
1078 bnz lr, .Lkernel_return
1079 pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1080 pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1081 lw sp, sp
1082 iret
1083
1084 /*
1085 * We can't restore tp when in kernel mode, since a thread might
1086 * have migrated from another cpu and brought a stale tp value.
1087 */
1088 .Lkernel_return:
1089 pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
1090 lw sp, sp
1091 iret
1092
1093 /* Restore callee-saved registers from r34 to r51. */
1094 .Lrestore_callees:
1095 addli sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29)
1096 pop_reg r34
1097 pop_reg r35
1098 pop_reg r36
1099 pop_reg r37
1100 pop_reg r38
1101 pop_reg r39
1102 pop_reg r40
1103 pop_reg r41
1104 pop_reg r42
1105 pop_reg r43
1106 pop_reg r44
1107 pop_reg r45
1108 pop_reg r46
1109 pop_reg r47
1110 pop_reg r48
1111 pop_reg r49
1112 pop_reg r50
1113 pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51)
1114 j .Lcontinue_restore_regs
1115 STD_ENDPROC(interrupt_return)
1116
1117 /*
1118 * Some interrupts don't check for single stepping
1119 */
1120 .pushsection .text.handle_interrupt_no_single_step,"ax"
1121 handle_interrupt_no_single_step:
1122 finish_interrupt_save handle_interrupt_no_single_step
1123 {
1124 jalr r0
1125 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1126 }
1127 FEEDBACK_REENTER(handle_interrupt_no_single_step)
1128 {
1129 movei r30, 0 /* not an NMI */
1130 j interrupt_return
1131 }
1132 STD_ENDPROC(handle_interrupt_no_single_step)
1133
1134 /*
1135 * "NMI" interrupts mask ALL interrupts before calling the
1136 * handler, and don't check thread flags, etc., on the way
1137 * back out. In general, the only things we do here for NMIs
1138 * are the register save/restore, fixing the PC if we were
1139 * doing single step, and the dataplane kernel-TLB management.
1140 * We don't (for example) deal with start/stop of the sched tick.
1141 */
1142 .pushsection .text.handle_nmi,"ax"
1143 handle_nmi:
1144 finish_interrupt_save handle_nmi
1145 check_single_stepping normal, .Ldispatch_nmi
1146 .Ldispatch_nmi:
1147 {
1148 jalr r0
1149 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1150 }
1151 FEEDBACK_REENTER(handle_nmi)
1152 j interrupt_return
1153 STD_ENDPROC(handle_nmi)
1154
1155 /*
1156 * Parallel code for syscalls to handle_interrupt.
1157 */
1158 .pushsection .text.handle_syscall,"ax"
1159 handle_syscall:
1160 finish_interrupt_save handle_syscall
1161
1162 /*
1163 * Check for if we are single stepping in user level. If so, then
1164 * we need to restore the PC.
1165 */
1166 check_single_stepping syscall, .Ldispatch_syscall
1167 .Ldispatch_syscall:
1168
1169 /* Enable irqs. */
1170 TRACE_IRQS_ON
1171 IRQ_ENABLE(r20, r21)
1172
1173 /* Bump the counter for syscalls made on this tile. */
1174 moveli r20, lo16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1175 auli r20, r20, ha16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1176 add r20, r20, tp
1177 lw r21, r20
1178 addi r21, r21, 1
1179 sw r20, r21
1180
1181 /* Trace syscalls, if requested. */
1182 GET_THREAD_INFO(r31)
1183 addi r31, r31, THREAD_INFO_FLAGS_OFFSET
1184 lw r30, r31
1185 andi r30, r30, _TIF_SYSCALL_TRACE
1186 bzt r30, .Lrestore_syscall_regs
1187 jal do_syscall_trace
1188 FEEDBACK_REENTER(handle_syscall)
1189
1190 /*
1191 * We always reload our registers from the stack at this
1192 * point. They might be valid, if we didn't build with
1193 * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not
1194 * doing syscall tracing, but there are enough cases now that it
1195 * seems simplest just to do the reload unconditionally.
1196 */
1197 .Lrestore_syscall_regs:
1198 PTREGS_PTR(r11, PTREGS_OFFSET_REG(0))
1199 pop_reg r0, r11
1200 pop_reg r1, r11
1201 pop_reg r2, r11
1202 pop_reg r3, r11
1203 pop_reg r4, r11
1204 pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5)
1205 pop_reg TREG_SYSCALL_NR_NAME, r11
1206
1207 /* Ensure that the syscall number is within the legal range. */
1208 moveli r21, __NR_syscalls
1209 {
1210 slt_u r21, TREG_SYSCALL_NR_NAME, r21
1211 moveli r20, lo16(sys_call_table)
1212 }
1213 {
1214 bbns r21, .Linvalid_syscall
1215 auli r20, r20, ha16(sys_call_table)
1216 }
1217 s2a r20, TREG_SYSCALL_NR_NAME, r20
1218 lw r20, r20
1219
1220 /* Jump to syscall handler. */
1221 jalr r20
1222 .Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */
1223
1224 /*
1225 * Write our r0 onto the stack so it gets restored instead
1226 * of whatever the user had there before.
1227 */
1228 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1229 sw r29, r0
1230
1231 .Lsyscall_sigreturn_skip:
1232 FEEDBACK_REENTER(handle_syscall)
1233
1234 /* Do syscall trace again, if requested. */
1235 lw r30, r31
1236 andi r30, r30, _TIF_SYSCALL_TRACE
1237 bzt r30, 1f
1238 jal do_syscall_trace
1239 FEEDBACK_REENTER(handle_syscall)
1240 1: j .Lresume_userspace /* jump into middle of interrupt_return */
1241
1242 .Linvalid_syscall:
1243 /* Report an invalid syscall back to the user program */
1244 {
1245 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1246 movei r28, -ENOSYS
1247 }
1248 sw r29, r28
1249 j .Lresume_userspace /* jump into middle of interrupt_return */
1250 STD_ENDPROC(handle_syscall)
1251
1252 /* Return the address for oprofile to suppress in backtraces. */
1253 STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall)
1254 lnk r0
1255 {
1256 addli r0, r0, .Lhandle_syscall_link - .
1257 jrp lr
1258 }
1259 STD_ENDPROC(handle_syscall_link_address)
1260
1261 STD_ENTRY(ret_from_fork)
1262 jal sim_notify_fork
1263 jal schedule_tail
1264 FEEDBACK_REENTER(ret_from_fork)
1265 j .Lresume_userspace /* jump into middle of interrupt_return */
1266 STD_ENDPROC(ret_from_fork)
1267
1268 /*
1269 * Code for ill interrupt.
1270 */
1271 .pushsection .text.handle_ill,"ax"
1272 handle_ill:
1273 finish_interrupt_save handle_ill
1274
1275 /*
1276 * Check for if we are single stepping in user level. If so, then
1277 * we need to restore the PC.
1278 */
1279 check_single_stepping ill, .Ldispatch_normal_ill
1280
1281 {
1282 /* See if the PC is the 1st bundle in the buffer */
1283 seq r25, r27, r26
1284
1285 /* Point to the 2nd bundle in the buffer */
1286 addi r26, r26, 8
1287 }
1288 {
1289 /* Point to the original pc */
1290 addi r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
1291
1292 /* Branch if the PC is the 1st bundle in the buffer */
1293 bnz r25, 3f
1294 }
1295 {
1296 /* See if the PC is the 2nd bundle of the buffer */
1297 seq r25, r27, r26
1298
1299 /* Set PC to next instruction */
1300 addi r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
1301 }
1302 {
1303 /* Point to flags */
1304 addi r25, r29, SINGLESTEP_STATE_FLAGS_OFFSET
1305
1306 /* Branch if PC is in the second bundle */
1307 bz r25, 2f
1308 }
1309 /* Load flags */
1310 lw r25, r25
1311 {
1312 /*
1313 * Get the offset for the register to restore
1314 * Note: the lower bound is 2, so we have implicit scaling by 4.
1315 * No multiplication of the register number by the size of a register
1316 * is needed.
1317 */
1318 mm r27, r25, zero, SINGLESTEP_STATE_TARGET_LB, \
1319 SINGLESTEP_STATE_TARGET_UB
1320
1321 /* Mask Rewrite_LR */
1322 andi r25, r25, SINGLESTEP_STATE_MASK_UPDATE
1323 }
1324 {
1325 addi r29, r29, SINGLESTEP_STATE_UPDATE_VALUE_OFFSET
1326
1327 /* Don't rewrite temp register */
1328 bz r25, 3f
1329 }
1330 {
1331 /* Get the temp value */
1332 lw r29, r29
1333
1334 /* Point to where the register is stored */
1335 add r27, r27, sp
1336 }
1337
1338 /* Add in the C ABI save area size to the register offset */
1339 addi r27, r27, C_ABI_SAVE_AREA_SIZE
1340
1341 /* Restore the user's register with the temp value */
1342 sw r27, r29
1343 j 3f
1344
1345 2:
1346 /* Must be in the third bundle */
1347 addi r24, r29, SINGLESTEP_STATE_BRANCH_NEXT_PC_OFFSET
1348
1349 3:
1350 /* set PC and continue */
1351 lw r26, r24
1352 sw r28, r26
1353
1354 /*
1355 * Clear TIF_SINGLESTEP to prevent recursion if we execute an ill.
1356 * The normal non-arch flow redundantly clears TIF_SINGLESTEP, but we
1357 * need to clear it here and can't really impose on all other arches.
1358 * So what's another write between friends?
1359 */
1360 GET_THREAD_INFO(r0)
1361
1362 addi r1, r0, THREAD_INFO_FLAGS_OFFSET
1363 {
1364 lw r2, r1
1365 addi r0, r0, THREAD_INFO_TASK_OFFSET /* currently a no-op */
1366 }
1367 andi r2, r2, ~_TIF_SINGLESTEP
1368 sw r1, r2
1369
1370 /* Issue a sigtrap */
1371 {
1372 lw r0, r0 /* indirect thru thread_info to get task_info*/
1373 addi r1, sp, C_ABI_SAVE_AREA_SIZE /* put ptregs pointer into r1 */
1374 move r2, zero /* load error code into r2 */
1375 }
1376
1377 jal send_sigtrap /* issue a SIGTRAP */
1378 FEEDBACK_REENTER(handle_ill)
1379 j .Lresume_userspace /* jump into middle of interrupt_return */
1380
1381 .Ldispatch_normal_ill:
1382 {
1383 jalr r0
1384 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1385 }
1386 FEEDBACK_REENTER(handle_ill)
1387 {
1388 movei r30, 0 /* not an NMI */
1389 j interrupt_return
1390 }
1391 STD_ENDPROC(handle_ill)
1392
1393 /* Various stub interrupt handlers and syscall handlers */
1394
1395 STD_ENTRY_LOCAL(_kernel_double_fault)
1396 mfspr r1, SPR_EX_CONTEXT_K_0
1397 move r2, lr
1398 move r3, sp
1399 move r4, r52
1400 addi sp, sp, -C_ABI_SAVE_AREA_SIZE
1401 j kernel_double_fault
1402 STD_ENDPROC(_kernel_double_fault)
1403
1404 STD_ENTRY_LOCAL(bad_intr)
1405 mfspr r2, SPR_EX_CONTEXT_K_0
1406 panic "Unhandled interrupt %#x: PC %#lx"
1407 STD_ENDPROC(bad_intr)
1408
1409 /* Put address of pt_regs in reg and jump. */
1410 #define PTREGS_SYSCALL(x, reg) \
1411 STD_ENTRY(_##x); \
1412 { \
1413 PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \
1414 j x \
1415 }; \
1416 STD_ENDPROC(_##x)
1417
1418 /*
1419 * Special-case sigreturn to not write r0 to the stack on return.
1420 * This is technically more efficient, but it also avoids difficulties
1421 * in the 64-bit OS when handling 32-bit compat code, since we must not
1422 * sign-extend r0 for the sigreturn return-value case.
1423 */
1424 #define PTREGS_SYSCALL_SIGRETURN(x, reg) \
1425 STD_ENTRY(_##x); \
1426 addli lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \
1427 { \
1428 PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \
1429 j x \
1430 }; \
1431 STD_ENDPROC(_##x)
1432
1433 PTREGS_SYSCALL(sys_execve, r3)
1434 PTREGS_SYSCALL(sys_sigaltstack, r2)
1435 PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0)
1436 PTREGS_SYSCALL(sys_cmpxchg_badaddr, r1)
1437
1438 /* Save additional callee-saves to pt_regs, put address in r4 and jump. */
1439 STD_ENTRY(_sys_clone)
1440 push_extra_callee_saves r4
1441 j sys_clone
1442 STD_ENDPROC(_sys_clone)
1443
1444 /*
1445 * This entrypoint is taken for the cmpxchg and atomic_update fast
1446 * swints. We may wish to generalize it to other fast swints at some
1447 * point, but for now there are just two very similar ones, which
1448 * makes it faster.
1449 *
1450 * The fast swint code is designed to have a small footprint. It does
1451 * not save or restore any GPRs, counting on the caller-save registers
1452 * to be available to it on entry. It does not modify any callee-save
1453 * registers (including "lr"). It does not check what PL it is being
1454 * called at, so you'd better not call it other than at PL0.
1455 * The <atomic.h> wrapper assumes it only clobbers r20-r29, so if
1456 * it ever is necessary to use more registers, be aware.
1457 *
1458 * It does not use the stack, but since it might be re-interrupted by
1459 * a page fault which would assume the stack was valid, it does
1460 * save/restore the stack pointer and zero it out to make sure it gets reset.
1461 * Since we always keep interrupts disabled, the hypervisor won't
1462 * clobber our EX_CONTEXT_K_x registers, so we don't save/restore them
1463 * (other than to advance the PC on return).
1464 *
1465 * We have to manually validate the user vs kernel address range
1466 * (since at PL1 we can read/write both), and for performance reasons
1467 * we don't allow cmpxchg on the fc000000 memory region, since we only
1468 * validate that the user address is below PAGE_OFFSET.
1469 *
1470 * We place it in the __HEAD section to ensure it is relatively
1471 * near to the intvec_SWINT_1 code (reachable by a conditional branch).
1472 *
1473 * Our use of ATOMIC_LOCK_REG here must match do_page_fault_ics().
1474 *
1475 * As we do in lib/atomic_asm_32.S, we bypass a store if the value we
1476 * would store is the same as the value we just loaded.
1477 */
1478 __HEAD
1479 .align 64
1480 /* Align much later jump on the start of a cache line. */
1481 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
1482 nop
1483 #if PAGE_SIZE >= 0x10000
1484 nop
1485 #endif
1486 #endif
1487 ENTRY(sys_cmpxchg)
1488
1489 /*
1490 * Save "sp" and set it zero for any possible page fault.
1491 *
1492 * HACK: We want to both zero sp and check r0's alignment,
1493 * so we do both at once. If "sp" becomes nonzero we
1494 * know r0 is unaligned and branch to the error handler that
1495 * restores sp, so this is OK.
1496 *
1497 * ICS is disabled right now so having a garbage but nonzero
1498 * sp is OK, since we won't execute any faulting instructions
1499 * when it is nonzero.
1500 */
1501 {
1502 move r27, sp
1503 andi sp, r0, 3
1504 }
1505
1506 /*
1507 * Get the lock address in ATOMIC_LOCK_REG, and also validate that the
1508 * address is less than PAGE_OFFSET, since that won't trap at PL1.
1509 * We only use bits less than PAGE_SHIFT to avoid having to worry
1510 * about aliasing among multiple mappings of the same physical page,
1511 * and we ignore the low 3 bits so we have one lock that covers
1512 * both a cmpxchg64() and a cmpxchg() on either its low or high word.
1513 * NOTE: this must match __atomic_hashed_lock() in lib/atomic_32.c.
1514 */
1515
1516 #if (PAGE_OFFSET & 0xffff) != 0
1517 # error Code here assumes PAGE_OFFSET can be loaded with just hi16()
1518 #endif
1519
1520 #if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1521 {
1522 /* Check for unaligned input. */
1523 bnz sp, .Lcmpxchg_badaddr
1524 mm r25, r0, zero, 3, PAGE_SHIFT-1
1525 }
1526 {
1527 crc32_32 r25, zero, r25
1528 moveli r21, lo16(atomic_lock_ptr)
1529 }
1530 {
1531 auli r21, r21, ha16(atomic_lock_ptr)
1532 auli r23, zero, hi16(PAGE_OFFSET) /* hugepage-aligned */
1533 }
1534 {
1535 shri r20, r25, 32 - ATOMIC_HASH_L1_SHIFT
1536 slt_u r23, r0, r23
1537 lw r26, r0 /* see comment in the "#else" for the "lw r26". */
1538 }
1539 {
1540 s2a r21, r20, r21
1541 bbns r23, .Lcmpxchg_badaddr
1542 }
1543 {
1544 lw r21, r21
1545 seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1546 andi r25, r25, ATOMIC_HASH_L2_SIZE - 1
1547 }
1548 {
1549 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1550 bbs r23, .Lcmpxchg64
1551 andi r23, r0, 7 /* Precompute alignment for cmpxchg64. */
1552 }
1553 {
1554 s2a ATOMIC_LOCK_REG_NAME, r25, r21
1555 j .Lcmpxchg32_tns /* see comment in the #else for the jump. */
1556 }
1557
1558 #else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1559 {
1560 /* Check for unaligned input. */
1561 bnz sp, .Lcmpxchg_badaddr
1562 auli r23, zero, hi16(PAGE_OFFSET) /* hugepage-aligned */
1563 }
1564 {
1565 /*
1566 * Slide bits into position for 'mm'. We want to ignore
1567 * the low 3 bits of r0, and consider only the next
1568 * ATOMIC_HASH_SHIFT bits.
1569 * Because of C pointer arithmetic, we want to compute this:
1570 *
1571 * ((char*)atomic_locks +
1572 * (((r0 >> 3) & (1 << (ATOMIC_HASH_SIZE - 1))) << 2))
1573 *
1574 * Instead of two shifts we just ">> 1", and use 'mm'
1575 * to ignore the low and high bits we don't want.
1576 */
1577 shri r25, r0, 1
1578
1579 slt_u r23, r0, r23
1580
1581 /*
1582 * Ensure that the TLB is loaded before we take out the lock.
1583 * On tilepro, this will start fetching the value all the way
1584 * into our L1 as well (and if it gets modified before we
1585 * grab the lock, it will be invalidated from our cache
1586 * before we reload it). On tile64, we'll start fetching it
1587 * into our L1 if we're the home, and if we're not, we'll
1588 * still at least start fetching it into the home's L2.
1589 */
1590 lw r26, r0
1591 }
1592 {
1593 auli r21, zero, ha16(atomic_locks)
1594
1595 bbns r23, .Lcmpxchg_badaddr
1596 }
1597 #if PAGE_SIZE < 0x10000
1598 /* atomic_locks is page-aligned so for big pages we don't need this. */
1599 addli r21, r21, lo16(atomic_locks)
1600 #endif
1601 {
1602 /*
1603 * Insert the hash bits into the page-aligned pointer.
1604 * ATOMIC_HASH_SHIFT is so big that we don't actually hash
1605 * the unmasked address bits, as that may cause unnecessary
1606 * collisions.
1607 */
1608 mm ATOMIC_LOCK_REG_NAME, r25, r21, 2, (ATOMIC_HASH_SHIFT + 2) - 1
1609
1610 seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1611 }
1612 {
1613 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1614 bbs r23, .Lcmpxchg64
1615 andi r23, r0, 7 /* Precompute alignment for cmpxchg64. */
1616 }
1617 {
1618 /*
1619 * We very carefully align the code that actually runs with
1620 * the lock held (twelve bundles) so that we know it is all in
1621 * the icache when we start. This instruction (the jump) is
1622 * at the start of the first cache line, address zero mod 64;
1623 * we jump to the very end of the second cache line to get that
1624 * line loaded in the icache, then fall through to issue the tns
1625 * in the third cache line, at which point it's all cached.
1626 * Note that is for performance, not correctness.
1627 */
1628 j .Lcmpxchg32_tns
1629 }
1630
1631 #endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1632
1633 /* Symbol for do_page_fault_ics() to use to compare against the PC. */
1634 .global __sys_cmpxchg_grab_lock
1635 __sys_cmpxchg_grab_lock:
1636
1637 /*
1638 * Perform the actual cmpxchg or atomic_update.
1639 */
1640 .Ldo_cmpxchg32:
1641 {
1642 lw r21, r0
1643 seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_atomic_update
1644 move r24, r2
1645 }
1646 {
1647 seq r22, r21, r1 /* See if cmpxchg matches. */
1648 and r25, r21, r1 /* If atomic_update, compute (*mem & mask) */
1649 }
1650 {
1651 or r22, r22, r23 /* Skip compare branch for atomic_update. */
1652 add r25, r25, r2 /* Compute (*mem & mask) + addend. */
1653 }
1654 {
1655 mvnz r24, r23, r25 /* Use atomic_update value if appropriate. */
1656 bbns r22, .Lcmpxchg32_nostore
1657 }
1658 seq r22, r24, r21 /* Are we storing the value we loaded? */
1659 bbs r22, .Lcmpxchg32_nostore
1660 sw r0, r24
1661
1662 /* The following instruction is the start of the second cache line. */
1663 /* Do slow mtspr here so the following "mf" waits less. */
1664 {
1665 move sp, r27
1666 mtspr SPR_EX_CONTEXT_K_0, r28
1667 }
1668 mf
1669
1670 {
1671 move r0, r21
1672 sw ATOMIC_LOCK_REG_NAME, zero
1673 }
1674 iret
1675
1676 /* Duplicated code here in the case where we don't overlap "mf" */
1677 .Lcmpxchg32_nostore:
1678 {
1679 move r0, r21
1680 sw ATOMIC_LOCK_REG_NAME, zero
1681 }
1682 {
1683 move sp, r27
1684 mtspr SPR_EX_CONTEXT_K_0, r28
1685 }
1686 iret
1687
1688 /*
1689 * The locking code is the same for 32-bit cmpxchg/atomic_update,
1690 * and for 64-bit cmpxchg. We provide it as a macro and put
1691 * it into both versions. We can't share the code literally
1692 * since it depends on having the right branch-back address.
1693 */
1694 .macro cmpxchg_lock, bitwidth
1695
1696 /* Lock; if we succeed, jump back up to the read-modify-write. */
1697 #ifdef CONFIG_SMP
1698 tns r21, ATOMIC_LOCK_REG_NAME
1699 #else
1700 /*
1701 * Non-SMP preserves all the lock infrastructure, to keep the
1702 * code simpler for the interesting (SMP) case. However, we do
1703 * one small optimization here and in atomic_asm.S, which is
1704 * to fake out acquiring the actual lock in the atomic_lock table.
1705 */
1706 movei r21, 0
1707 #endif
1708
1709 /* Issue the slow SPR here while the tns result is in flight. */
1710 mfspr r28, SPR_EX_CONTEXT_K_0
1711
1712 {
1713 addi r28, r28, 8 /* return to the instruction after the swint1 */
1714 bzt r21, .Ldo_cmpxchg\bitwidth
1715 }
1716 /*
1717 * The preceding instruction is the last thing that must be
1718 * hot in the icache before we do the "tns" above.
1719 */
1720
1721 #ifdef CONFIG_SMP
1722 /*
1723 * We failed to acquire the tns lock on our first try. Now use
1724 * bounded exponential backoff to retry, like __atomic_spinlock().
1725 */
1726 {
1727 moveli r23, 2048 /* maximum backoff time in cycles */
1728 moveli r25, 32 /* starting backoff time in cycles */
1729 }
1730 1: mfspr r26, CYCLE_LOW /* get start point for this backoff */
1731 2: mfspr r22, CYCLE_LOW /* test to see if we've backed off enough */
1732 sub r22, r22, r26
1733 slt r22, r22, r25
1734 bbst r22, 2b
1735 {
1736 shli r25, r25, 1 /* double the backoff; retry the tns */
1737 tns r21, ATOMIC_LOCK_REG_NAME
1738 }
1739 slt r26, r23, r25 /* is the proposed backoff too big? */
1740 {
1741 mvnz r25, r26, r23
1742 bzt r21, .Ldo_cmpxchg\bitwidth
1743 }
1744 j 1b
1745 #endif /* CONFIG_SMP */
1746 .endm
1747
1748 .Lcmpxchg32_tns:
1749 /*
1750 * This is the last instruction on the second cache line.
1751 * The nop here loads the second line, then we fall through
1752 * to the tns to load the third line before we take the lock.
1753 */
1754 nop
1755 cmpxchg_lock 32
1756
1757 /*
1758 * This code is invoked from sys_cmpxchg after most of the
1759 * preconditions have been checked. We still need to check
1760 * that r0 is 8-byte aligned, since if it's not we won't
1761 * actually be atomic. However, ATOMIC_LOCK_REG has the atomic
1762 * lock pointer and r27/r28 have the saved SP/PC.
1763 * r23 is holding "r0 & 7" so we can test for alignment.
1764 * The compare value is in r2/r3; the new value is in r4/r5.
1765 * On return, we must put the old value in r0/r1.
1766 */
1767 .align 64
1768 .Lcmpxchg64:
1769 {
1770 #if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1771 s2a ATOMIC_LOCK_REG_NAME, r25, r21
1772 #endif
1773 bzt r23, .Lcmpxchg64_tns
1774 }
1775 j .Lcmpxchg_badaddr
1776
1777 .Ldo_cmpxchg64:
1778 {
1779 lw r21, r0
1780 addi r25, r0, 4
1781 }
1782 {
1783 lw r1, r25
1784 }
1785 seq r26, r21, r2
1786 {
1787 bz r26, .Lcmpxchg64_mismatch
1788 seq r26, r1, r3
1789 }
1790 {
1791 bz r26, .Lcmpxchg64_mismatch
1792 }
1793 sw r0, r4
1794 sw r25, r5
1795
1796 /*
1797 * The 32-bit path provides optimized "match" and "mismatch"
1798 * iret paths, but we don't have enough bundles in this cache line
1799 * to do that, so we just make even the "mismatch" path do an "mf".
1800 */
1801 .Lcmpxchg64_mismatch:
1802 {
1803 move sp, r27
1804 mtspr SPR_EX_CONTEXT_K_0, r28
1805 }
1806 mf
1807 {
1808 move r0, r21
1809 sw ATOMIC_LOCK_REG_NAME, zero
1810 }
1811 iret
1812
1813 .Lcmpxchg64_tns:
1814 cmpxchg_lock 64
1815
1816
1817 /*
1818 * Reset sp and revector to sys_cmpxchg_badaddr(), which will
1819 * just raise the appropriate signal and exit. Doing it this
1820 * way means we don't have to duplicate the code in intvec.S's
1821 * int_hand macro that locates the top of the stack.
1822 */
1823 .Lcmpxchg_badaddr:
1824 {
1825 moveli TREG_SYSCALL_NR_NAME, __NR_cmpxchg_badaddr
1826 move sp, r27
1827 }
1828 j intvec_SWINT_1
1829 ENDPROC(sys_cmpxchg)
1830 ENTRY(__sys_cmpxchg_end)
1831
1832
1833 /* The single-step support may need to read all the registers. */
1834 int_unalign:
1835 push_extra_callee_saves r0
1836 j do_trap
1837
1838 /* Include .intrpt1 array of interrupt vectors */
1839 .section ".intrpt1", "ax"
1840
1841 #define op_handle_perf_interrupt bad_intr
1842 #define op_handle_aux_perf_interrupt bad_intr
1843
1844 #ifndef CONFIG_HARDWALL
1845 #define do_hardwall_trap bad_intr
1846 #endif
1847
1848 int_hand INT_ITLB_MISS, ITLB_MISS, \
1849 do_page_fault, handle_interrupt_no_single_step
1850 int_hand INT_MEM_ERROR, MEM_ERROR, bad_intr
1851 int_hand INT_ILL, ILL, do_trap, handle_ill
1852 int_hand INT_GPV, GPV, do_trap
1853 int_hand INT_SN_ACCESS, SN_ACCESS, do_trap
1854 int_hand INT_IDN_ACCESS, IDN_ACCESS, do_trap
1855 int_hand INT_UDN_ACCESS, UDN_ACCESS, do_trap
1856 int_hand INT_IDN_REFILL, IDN_REFILL, bad_intr
1857 int_hand INT_UDN_REFILL, UDN_REFILL, bad_intr
1858 int_hand INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr
1859 int_hand INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr
1860 int_hand INT_SWINT_3, SWINT_3, do_trap
1861 int_hand INT_SWINT_2, SWINT_2, do_trap
1862 int_hand INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall
1863 int_hand INT_SWINT_0, SWINT_0, do_trap
1864 int_hand INT_UNALIGN_DATA, UNALIGN_DATA, int_unalign
1865 int_hand INT_DTLB_MISS, DTLB_MISS, do_page_fault
1866 int_hand INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault
1867 int_hand INT_DMATLB_MISS, DMATLB_MISS, do_page_fault
1868 int_hand INT_DMATLB_ACCESS, DMATLB_ACCESS, do_page_fault
1869 int_hand INT_SNITLB_MISS, SNITLB_MISS, do_page_fault
1870 int_hand INT_SN_NOTIFY, SN_NOTIFY, bad_intr
1871 int_hand INT_SN_FIREWALL, SN_FIREWALL, do_hardwall_trap
1872 int_hand INT_IDN_FIREWALL, IDN_FIREWALL, bad_intr
1873 int_hand INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap
1874 int_hand INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt
1875 int_hand INT_IDN_TIMER, IDN_TIMER, bad_intr
1876 int_hand INT_UDN_TIMER, UDN_TIMER, bad_intr
1877 int_hand INT_DMA_NOTIFY, DMA_NOTIFY, bad_intr
1878 int_hand INT_IDN_CA, IDN_CA, bad_intr
1879 int_hand INT_UDN_CA, UDN_CA, bad_intr
1880 int_hand INT_IDN_AVAIL, IDN_AVAIL, bad_intr
1881 int_hand INT_UDN_AVAIL, UDN_AVAIL, bad_intr
1882 int_hand INT_PERF_COUNT, PERF_COUNT, \
1883 op_handle_perf_interrupt, handle_nmi
1884 int_hand INT_INTCTRL_3, INTCTRL_3, bad_intr
1885 #if CONFIG_KERNEL_PL == 2
1886 dc_dispatch INT_INTCTRL_2, INTCTRL_2
1887 int_hand INT_INTCTRL_1, INTCTRL_1, bad_intr
1888 #else
1889 int_hand INT_INTCTRL_2, INTCTRL_2, bad_intr
1890 dc_dispatch INT_INTCTRL_1, INTCTRL_1
1891 #endif
1892 int_hand INT_INTCTRL_0, INTCTRL_0, bad_intr
1893 int_hand INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \
1894 hv_message_intr
1895 int_hand INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, \
1896 tile_dev_intr
1897 int_hand INT_I_ASID, I_ASID, bad_intr
1898 int_hand INT_D_ASID, D_ASID, bad_intr
1899 int_hand INT_DMATLB_MISS_DWNCL, DMATLB_MISS_DWNCL, \
1900 do_page_fault
1901 int_hand INT_SNITLB_MISS_DWNCL, SNITLB_MISS_DWNCL, \
1902 do_page_fault
1903 int_hand INT_DMATLB_ACCESS_DWNCL, DMATLB_ACCESS_DWNCL, \
1904 do_page_fault
1905 int_hand INT_SN_CPL, SN_CPL, bad_intr
1906 int_hand INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap
1907 #if CHIP_HAS_AUX_PERF_COUNTERS()
1908 int_hand INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \
1909 op_handle_aux_perf_interrupt, handle_nmi
1910 #endif
1911
1912 /* Synthetic interrupt delivered only by the simulator */
1913 int_hand INT_BREAKPOINT, BREAKPOINT, do_breakpoint