Merge branch 'master' into upstream
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / sparc64 / kernel / traps.c
1 /* $Id: traps.c,v 1.85 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/kernel/traps.c
3 *
4 * Copyright (C) 1995,1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
6 */
7
8 /*
9 * I like traps on v9, :))))
10 */
11
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for jiffies */
15 #include <linux/kernel.h>
16 #include <linux/kallsyms.h>
17 #include <linux/signal.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/mm.h>
21 #include <linux/init.h>
22
23 #include <asm/delay.h>
24 #include <asm/system.h>
25 #include <asm/ptrace.h>
26 #include <asm/oplib.h>
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/unistd.h>
30 #include <asm/uaccess.h>
31 #include <asm/fpumacro.h>
32 #include <asm/lsu.h>
33 #include <asm/dcu.h>
34 #include <asm/estate.h>
35 #include <asm/chafsr.h>
36 #include <asm/sfafsr.h>
37 #include <asm/psrcompat.h>
38 #include <asm/processor.h>
39 #include <asm/timer.h>
40 #include <asm/kdebug.h>
41 #include <asm/head.h>
42 #ifdef CONFIG_KMOD
43 #include <linux/kmod.h>
44 #endif
45
46 ATOMIC_NOTIFIER_HEAD(sparc64die_chain);
47
48 int register_die_notifier(struct notifier_block *nb)
49 {
50 return atomic_notifier_chain_register(&sparc64die_chain, nb);
51 }
52 EXPORT_SYMBOL(register_die_notifier);
53
54 int unregister_die_notifier(struct notifier_block *nb)
55 {
56 return atomic_notifier_chain_unregister(&sparc64die_chain, nb);
57 }
58 EXPORT_SYMBOL(unregister_die_notifier);
59
60 /* When an irrecoverable trap occurs at tl > 0, the trap entry
61 * code logs the trap state registers at every level in the trap
62 * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout
63 * is as follows:
64 */
65 struct tl1_traplog {
66 struct {
67 unsigned long tstate;
68 unsigned long tpc;
69 unsigned long tnpc;
70 unsigned long tt;
71 } trapstack[4];
72 unsigned long tl;
73 };
74
75 static void dump_tl1_traplog(struct tl1_traplog *p)
76 {
77 int i, limit;
78
79 printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
80 "dumping track stack.\n", p->tl);
81
82 limit = (tlb_type == hypervisor) ? 2 : 4;
83 for (i = 0; i < limit; i++) {
84 printk(KERN_EMERG
85 "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
86 "TNPC[%016lx] TT[%lx]\n",
87 i + 1,
88 p->trapstack[i].tstate, p->trapstack[i].tpc,
89 p->trapstack[i].tnpc, p->trapstack[i].tt);
90 }
91 }
92
93 void do_call_debug(struct pt_regs *regs)
94 {
95 notify_die(DIE_CALL, "debug call", regs, 0, 255, SIGINT);
96 }
97
98 void bad_trap(struct pt_regs *regs, long lvl)
99 {
100 char buffer[32];
101 siginfo_t info;
102
103 if (notify_die(DIE_TRAP, "bad trap", regs,
104 0, lvl, SIGTRAP) == NOTIFY_STOP)
105 return;
106
107 if (lvl < 0x100) {
108 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
109 die_if_kernel(buffer, regs);
110 }
111
112 lvl -= 0x100;
113 if (regs->tstate & TSTATE_PRIV) {
114 sprintf(buffer, "Kernel bad sw trap %lx", lvl);
115 die_if_kernel(buffer, regs);
116 }
117 if (test_thread_flag(TIF_32BIT)) {
118 regs->tpc &= 0xffffffff;
119 regs->tnpc &= 0xffffffff;
120 }
121 info.si_signo = SIGILL;
122 info.si_errno = 0;
123 info.si_code = ILL_ILLTRP;
124 info.si_addr = (void __user *)regs->tpc;
125 info.si_trapno = lvl;
126 force_sig_info(SIGILL, &info, current);
127 }
128
129 void bad_trap_tl1(struct pt_regs *regs, long lvl)
130 {
131 char buffer[32];
132
133 if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
134 0, lvl, SIGTRAP) == NOTIFY_STOP)
135 return;
136
137 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
138
139 sprintf (buffer, "Bad trap %lx at tl>0", lvl);
140 die_if_kernel (buffer, regs);
141 }
142
143 #ifdef CONFIG_DEBUG_BUGVERBOSE
144 void do_BUG(const char *file, int line)
145 {
146 bust_spinlocks(1);
147 printk("kernel BUG at %s:%d!\n", file, line);
148 }
149 #endif
150
151 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
152 {
153 siginfo_t info;
154
155 if (notify_die(DIE_TRAP, "instruction access exception", regs,
156 0, 0x8, SIGTRAP) == NOTIFY_STOP)
157 return;
158
159 if (regs->tstate & TSTATE_PRIV) {
160 printk("spitfire_insn_access_exception: SFSR[%016lx] "
161 "SFAR[%016lx], going.\n", sfsr, sfar);
162 die_if_kernel("Iax", regs);
163 }
164 if (test_thread_flag(TIF_32BIT)) {
165 regs->tpc &= 0xffffffff;
166 regs->tnpc &= 0xffffffff;
167 }
168 info.si_signo = SIGSEGV;
169 info.si_errno = 0;
170 info.si_code = SEGV_MAPERR;
171 info.si_addr = (void __user *)regs->tpc;
172 info.si_trapno = 0;
173 force_sig_info(SIGSEGV, &info, current);
174 }
175
176 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
177 {
178 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
179 0, 0x8, SIGTRAP) == NOTIFY_STOP)
180 return;
181
182 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
183 spitfire_insn_access_exception(regs, sfsr, sfar);
184 }
185
186 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
187 {
188 unsigned short type = (type_ctx >> 16);
189 unsigned short ctx = (type_ctx & 0xffff);
190 siginfo_t info;
191
192 if (notify_die(DIE_TRAP, "instruction access exception", regs,
193 0, 0x8, SIGTRAP) == NOTIFY_STOP)
194 return;
195
196 if (regs->tstate & TSTATE_PRIV) {
197 printk("sun4v_insn_access_exception: ADDR[%016lx] "
198 "CTX[%04x] TYPE[%04x], going.\n",
199 addr, ctx, type);
200 die_if_kernel("Iax", regs);
201 }
202
203 if (test_thread_flag(TIF_32BIT)) {
204 regs->tpc &= 0xffffffff;
205 regs->tnpc &= 0xffffffff;
206 }
207 info.si_signo = SIGSEGV;
208 info.si_errno = 0;
209 info.si_code = SEGV_MAPERR;
210 info.si_addr = (void __user *) addr;
211 info.si_trapno = 0;
212 force_sig_info(SIGSEGV, &info, current);
213 }
214
215 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
216 {
217 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
218 0, 0x8, SIGTRAP) == NOTIFY_STOP)
219 return;
220
221 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
222 sun4v_insn_access_exception(regs, addr, type_ctx);
223 }
224
225 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
226 {
227 siginfo_t info;
228
229 if (notify_die(DIE_TRAP, "data access exception", regs,
230 0, 0x30, SIGTRAP) == NOTIFY_STOP)
231 return;
232
233 if (regs->tstate & TSTATE_PRIV) {
234 /* Test if this comes from uaccess places. */
235 const struct exception_table_entry *entry;
236
237 entry = search_exception_tables(regs->tpc);
238 if (entry) {
239 /* Ouch, somebody is trying VM hole tricks on us... */
240 #ifdef DEBUG_EXCEPTIONS
241 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
242 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
243 regs->tpc, entry->fixup);
244 #endif
245 regs->tpc = entry->fixup;
246 regs->tnpc = regs->tpc + 4;
247 return;
248 }
249 /* Shit... */
250 printk("spitfire_data_access_exception: SFSR[%016lx] "
251 "SFAR[%016lx], going.\n", sfsr, sfar);
252 die_if_kernel("Dax", regs);
253 }
254
255 info.si_signo = SIGSEGV;
256 info.si_errno = 0;
257 info.si_code = SEGV_MAPERR;
258 info.si_addr = (void __user *)sfar;
259 info.si_trapno = 0;
260 force_sig_info(SIGSEGV, &info, current);
261 }
262
263 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
264 {
265 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
266 0, 0x30, SIGTRAP) == NOTIFY_STOP)
267 return;
268
269 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
270 spitfire_data_access_exception(regs, sfsr, sfar);
271 }
272
273 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
274 {
275 unsigned short type = (type_ctx >> 16);
276 unsigned short ctx = (type_ctx & 0xffff);
277 siginfo_t info;
278
279 if (notify_die(DIE_TRAP, "data access exception", regs,
280 0, 0x8, SIGTRAP) == NOTIFY_STOP)
281 return;
282
283 if (regs->tstate & TSTATE_PRIV) {
284 printk("sun4v_data_access_exception: ADDR[%016lx] "
285 "CTX[%04x] TYPE[%04x], going.\n",
286 addr, ctx, type);
287 die_if_kernel("Dax", regs);
288 }
289
290 if (test_thread_flag(TIF_32BIT)) {
291 regs->tpc &= 0xffffffff;
292 regs->tnpc &= 0xffffffff;
293 }
294 info.si_signo = SIGSEGV;
295 info.si_errno = 0;
296 info.si_code = SEGV_MAPERR;
297 info.si_addr = (void __user *) addr;
298 info.si_trapno = 0;
299 force_sig_info(SIGSEGV, &info, current);
300 }
301
302 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
303 {
304 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
305 0, 0x8, SIGTRAP) == NOTIFY_STOP)
306 return;
307
308 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
309 sun4v_data_access_exception(regs, addr, type_ctx);
310 }
311
312 #ifdef CONFIG_PCI
313 /* This is really pathetic... */
314 extern volatile int pci_poke_in_progress;
315 extern volatile int pci_poke_cpu;
316 extern volatile int pci_poke_faulted;
317 #endif
318
319 /* When access exceptions happen, we must do this. */
320 static void spitfire_clean_and_reenable_l1_caches(void)
321 {
322 unsigned long va;
323
324 if (tlb_type != spitfire)
325 BUG();
326
327 /* Clean 'em. */
328 for (va = 0; va < (PAGE_SIZE << 1); va += 32) {
329 spitfire_put_icache_tag(va, 0x0);
330 spitfire_put_dcache_tag(va, 0x0);
331 }
332
333 /* Re-enable in LSU. */
334 __asm__ __volatile__("flush %%g6\n\t"
335 "membar #Sync\n\t"
336 "stxa %0, [%%g0] %1\n\t"
337 "membar #Sync"
338 : /* no outputs */
339 : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
340 LSU_CONTROL_IM | LSU_CONTROL_DM),
341 "i" (ASI_LSU_CONTROL)
342 : "memory");
343 }
344
345 static void spitfire_enable_estate_errors(void)
346 {
347 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
348 "membar #Sync"
349 : /* no outputs */
350 : "r" (ESTATE_ERR_ALL),
351 "i" (ASI_ESTATE_ERROR_EN));
352 }
353
354 static char ecc_syndrome_table[] = {
355 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
356 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
357 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
358 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
359 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
360 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
361 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
362 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
363 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
364 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
365 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
366 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
367 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
368 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
369 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
370 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
371 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
372 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
373 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
374 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
375 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
376 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
377 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
378 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
379 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
380 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
381 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
382 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
383 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
384 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
385 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
386 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
387 };
388
389 static char *syndrome_unknown = "<Unknown>";
390
391 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
392 {
393 unsigned short scode;
394 char memmod_str[64], *p;
395
396 if (udbl & bit) {
397 scode = ecc_syndrome_table[udbl & 0xff];
398 if (prom_getunumber(scode, afar,
399 memmod_str, sizeof(memmod_str)) == -1)
400 p = syndrome_unknown;
401 else
402 p = memmod_str;
403 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
404 "Memory Module \"%s\"\n",
405 smp_processor_id(), scode, p);
406 }
407
408 if (udbh & bit) {
409 scode = ecc_syndrome_table[udbh & 0xff];
410 if (prom_getunumber(scode, afar,
411 memmod_str, sizeof(memmod_str)) == -1)
412 p = syndrome_unknown;
413 else
414 p = memmod_str;
415 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
416 "Memory Module \"%s\"\n",
417 smp_processor_id(), scode, p);
418 }
419
420 }
421
422 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
423 {
424
425 printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
426 "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
427 smp_processor_id(), afsr, afar, udbl, udbh, tl1);
428
429 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
430
431 /* We always log it, even if someone is listening for this
432 * trap.
433 */
434 notify_die(DIE_TRAP, "Correctable ECC Error", regs,
435 0, TRAP_TYPE_CEE, SIGTRAP);
436
437 /* The Correctable ECC Error trap does not disable I/D caches. So
438 * we only have to restore the ESTATE Error Enable register.
439 */
440 spitfire_enable_estate_errors();
441 }
442
443 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
444 {
445 siginfo_t info;
446
447 printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
448 "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
449 smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
450
451 /* XXX add more human friendly logging of the error status
452 * XXX as is implemented for cheetah
453 */
454
455 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
456
457 /* We always log it, even if someone is listening for this
458 * trap.
459 */
460 notify_die(DIE_TRAP, "Uncorrectable Error", regs,
461 0, tt, SIGTRAP);
462
463 if (regs->tstate & TSTATE_PRIV) {
464 if (tl1)
465 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
466 die_if_kernel("UE", regs);
467 }
468
469 /* XXX need more intelligent processing here, such as is implemented
470 * XXX for cheetah errors, in fact if the E-cache still holds the
471 * XXX line with bad parity this will loop
472 */
473
474 spitfire_clean_and_reenable_l1_caches();
475 spitfire_enable_estate_errors();
476
477 if (test_thread_flag(TIF_32BIT)) {
478 regs->tpc &= 0xffffffff;
479 regs->tnpc &= 0xffffffff;
480 }
481 info.si_signo = SIGBUS;
482 info.si_errno = 0;
483 info.si_code = BUS_OBJERR;
484 info.si_addr = (void *)0;
485 info.si_trapno = 0;
486 force_sig_info(SIGBUS, &info, current);
487 }
488
489 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
490 {
491 unsigned long afsr, tt, udbh, udbl;
492 int tl1;
493
494 afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
495 tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
496 tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
497 udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
498 udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
499
500 #ifdef CONFIG_PCI
501 if (tt == TRAP_TYPE_DAE &&
502 pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
503 spitfire_clean_and_reenable_l1_caches();
504 spitfire_enable_estate_errors();
505
506 pci_poke_faulted = 1;
507 regs->tnpc = regs->tpc + 4;
508 return;
509 }
510 #endif
511
512 if (afsr & SFAFSR_UE)
513 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
514
515 if (tt == TRAP_TYPE_CEE) {
516 /* Handle the case where we took a CEE trap, but ACK'd
517 * only the UE state in the UDB error registers.
518 */
519 if (afsr & SFAFSR_UE) {
520 if (udbh & UDBE_CE) {
521 __asm__ __volatile__(
522 "stxa %0, [%1] %2\n\t"
523 "membar #Sync"
524 : /* no outputs */
525 : "r" (udbh & UDBE_CE),
526 "r" (0x0), "i" (ASI_UDB_ERROR_W));
527 }
528 if (udbl & UDBE_CE) {
529 __asm__ __volatile__(
530 "stxa %0, [%1] %2\n\t"
531 "membar #Sync"
532 : /* no outputs */
533 : "r" (udbl & UDBE_CE),
534 "r" (0x18), "i" (ASI_UDB_ERROR_W));
535 }
536 }
537
538 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
539 }
540 }
541
542 int cheetah_pcache_forced_on;
543
544 void cheetah_enable_pcache(void)
545 {
546 unsigned long dcr;
547
548 printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
549 smp_processor_id());
550
551 __asm__ __volatile__("ldxa [%%g0] %1, %0"
552 : "=r" (dcr)
553 : "i" (ASI_DCU_CONTROL_REG));
554 dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
555 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
556 "membar #Sync"
557 : /* no outputs */
558 : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
559 }
560
561 /* Cheetah error trap handling. */
562 static unsigned long ecache_flush_physbase;
563 static unsigned long ecache_flush_linesize;
564 static unsigned long ecache_flush_size;
565
566 /* WARNING: The error trap handlers in assembly know the precise
567 * layout of the following structure.
568 *
569 * C-level handlers below use this information to log the error
570 * and then determine how to recover (if possible).
571 */
572 struct cheetah_err_info {
573 /*0x00*/u64 afsr;
574 /*0x08*/u64 afar;
575
576 /* D-cache state */
577 /*0x10*/u64 dcache_data[4]; /* The actual data */
578 /*0x30*/u64 dcache_index; /* D-cache index */
579 /*0x38*/u64 dcache_tag; /* D-cache tag/valid */
580 /*0x40*/u64 dcache_utag; /* D-cache microtag */
581 /*0x48*/u64 dcache_stag; /* D-cache snooptag */
582
583 /* I-cache state */
584 /*0x50*/u64 icache_data[8]; /* The actual insns + predecode */
585 /*0x90*/u64 icache_index; /* I-cache index */
586 /*0x98*/u64 icache_tag; /* I-cache phys tag */
587 /*0xa0*/u64 icache_utag; /* I-cache microtag */
588 /*0xa8*/u64 icache_stag; /* I-cache snooptag */
589 /*0xb0*/u64 icache_upper; /* I-cache upper-tag */
590 /*0xb8*/u64 icache_lower; /* I-cache lower-tag */
591
592 /* E-cache state */
593 /*0xc0*/u64 ecache_data[4]; /* 32 bytes from staging registers */
594 /*0xe0*/u64 ecache_index; /* E-cache index */
595 /*0xe8*/u64 ecache_tag; /* E-cache tag/state */
596
597 /*0xf0*/u64 __pad[32 - 30];
598 };
599 #define CHAFSR_INVALID ((u64)-1L)
600
601 /* This table is ordered in priority of errors and matches the
602 * AFAR overwrite policy as well.
603 */
604
605 struct afsr_error_table {
606 unsigned long mask;
607 const char *name;
608 };
609
610 static const char CHAFSR_PERR_msg[] =
611 "System interface protocol error";
612 static const char CHAFSR_IERR_msg[] =
613 "Internal processor error";
614 static const char CHAFSR_ISAP_msg[] =
615 "System request parity error on incoming addresss";
616 static const char CHAFSR_UCU_msg[] =
617 "Uncorrectable E-cache ECC error for ifetch/data";
618 static const char CHAFSR_UCC_msg[] =
619 "SW Correctable E-cache ECC error for ifetch/data";
620 static const char CHAFSR_UE_msg[] =
621 "Uncorrectable system bus data ECC error for read";
622 static const char CHAFSR_EDU_msg[] =
623 "Uncorrectable E-cache ECC error for stmerge/blkld";
624 static const char CHAFSR_EMU_msg[] =
625 "Uncorrectable system bus MTAG error";
626 static const char CHAFSR_WDU_msg[] =
627 "Uncorrectable E-cache ECC error for writeback";
628 static const char CHAFSR_CPU_msg[] =
629 "Uncorrectable ECC error for copyout";
630 static const char CHAFSR_CE_msg[] =
631 "HW corrected system bus data ECC error for read";
632 static const char CHAFSR_EDC_msg[] =
633 "HW corrected E-cache ECC error for stmerge/blkld";
634 static const char CHAFSR_EMC_msg[] =
635 "HW corrected system bus MTAG ECC error";
636 static const char CHAFSR_WDC_msg[] =
637 "HW corrected E-cache ECC error for writeback";
638 static const char CHAFSR_CPC_msg[] =
639 "HW corrected ECC error for copyout";
640 static const char CHAFSR_TO_msg[] =
641 "Unmapped error from system bus";
642 static const char CHAFSR_BERR_msg[] =
643 "Bus error response from system bus";
644 static const char CHAFSR_IVC_msg[] =
645 "HW corrected system bus data ECC error for ivec read";
646 static const char CHAFSR_IVU_msg[] =
647 "Uncorrectable system bus data ECC error for ivec read";
648 static struct afsr_error_table __cheetah_error_table[] = {
649 { CHAFSR_PERR, CHAFSR_PERR_msg },
650 { CHAFSR_IERR, CHAFSR_IERR_msg },
651 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
652 { CHAFSR_UCU, CHAFSR_UCU_msg },
653 { CHAFSR_UCC, CHAFSR_UCC_msg },
654 { CHAFSR_UE, CHAFSR_UE_msg },
655 { CHAFSR_EDU, CHAFSR_EDU_msg },
656 { CHAFSR_EMU, CHAFSR_EMU_msg },
657 { CHAFSR_WDU, CHAFSR_WDU_msg },
658 { CHAFSR_CPU, CHAFSR_CPU_msg },
659 { CHAFSR_CE, CHAFSR_CE_msg },
660 { CHAFSR_EDC, CHAFSR_EDC_msg },
661 { CHAFSR_EMC, CHAFSR_EMC_msg },
662 { CHAFSR_WDC, CHAFSR_WDC_msg },
663 { CHAFSR_CPC, CHAFSR_CPC_msg },
664 { CHAFSR_TO, CHAFSR_TO_msg },
665 { CHAFSR_BERR, CHAFSR_BERR_msg },
666 /* These two do not update the AFAR. */
667 { CHAFSR_IVC, CHAFSR_IVC_msg },
668 { CHAFSR_IVU, CHAFSR_IVU_msg },
669 { 0, NULL },
670 };
671 static const char CHPAFSR_DTO_msg[] =
672 "System bus unmapped error for prefetch/storequeue-read";
673 static const char CHPAFSR_DBERR_msg[] =
674 "System bus error for prefetch/storequeue-read";
675 static const char CHPAFSR_THCE_msg[] =
676 "Hardware corrected E-cache Tag ECC error";
677 static const char CHPAFSR_TSCE_msg[] =
678 "SW handled correctable E-cache Tag ECC error";
679 static const char CHPAFSR_TUE_msg[] =
680 "Uncorrectable E-cache Tag ECC error";
681 static const char CHPAFSR_DUE_msg[] =
682 "System bus uncorrectable data ECC error due to prefetch/store-fill";
683 static struct afsr_error_table __cheetah_plus_error_table[] = {
684 { CHAFSR_PERR, CHAFSR_PERR_msg },
685 { CHAFSR_IERR, CHAFSR_IERR_msg },
686 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
687 { CHAFSR_UCU, CHAFSR_UCU_msg },
688 { CHAFSR_UCC, CHAFSR_UCC_msg },
689 { CHAFSR_UE, CHAFSR_UE_msg },
690 { CHAFSR_EDU, CHAFSR_EDU_msg },
691 { CHAFSR_EMU, CHAFSR_EMU_msg },
692 { CHAFSR_WDU, CHAFSR_WDU_msg },
693 { CHAFSR_CPU, CHAFSR_CPU_msg },
694 { CHAFSR_CE, CHAFSR_CE_msg },
695 { CHAFSR_EDC, CHAFSR_EDC_msg },
696 { CHAFSR_EMC, CHAFSR_EMC_msg },
697 { CHAFSR_WDC, CHAFSR_WDC_msg },
698 { CHAFSR_CPC, CHAFSR_CPC_msg },
699 { CHAFSR_TO, CHAFSR_TO_msg },
700 { CHAFSR_BERR, CHAFSR_BERR_msg },
701 { CHPAFSR_DTO, CHPAFSR_DTO_msg },
702 { CHPAFSR_DBERR, CHPAFSR_DBERR_msg },
703 { CHPAFSR_THCE, CHPAFSR_THCE_msg },
704 { CHPAFSR_TSCE, CHPAFSR_TSCE_msg },
705 { CHPAFSR_TUE, CHPAFSR_TUE_msg },
706 { CHPAFSR_DUE, CHPAFSR_DUE_msg },
707 /* These two do not update the AFAR. */
708 { CHAFSR_IVC, CHAFSR_IVC_msg },
709 { CHAFSR_IVU, CHAFSR_IVU_msg },
710 { 0, NULL },
711 };
712 static const char JPAFSR_JETO_msg[] =
713 "System interface protocol error, hw timeout caused";
714 static const char JPAFSR_SCE_msg[] =
715 "Parity error on system snoop results";
716 static const char JPAFSR_JEIC_msg[] =
717 "System interface protocol error, illegal command detected";
718 static const char JPAFSR_JEIT_msg[] =
719 "System interface protocol error, illegal ADTYPE detected";
720 static const char JPAFSR_OM_msg[] =
721 "Out of range memory error has occurred";
722 static const char JPAFSR_ETP_msg[] =
723 "Parity error on L2 cache tag SRAM";
724 static const char JPAFSR_UMS_msg[] =
725 "Error due to unsupported store";
726 static const char JPAFSR_RUE_msg[] =
727 "Uncorrectable ECC error from remote cache/memory";
728 static const char JPAFSR_RCE_msg[] =
729 "Correctable ECC error from remote cache/memory";
730 static const char JPAFSR_BP_msg[] =
731 "JBUS parity error on returned read data";
732 static const char JPAFSR_WBP_msg[] =
733 "JBUS parity error on data for writeback or block store";
734 static const char JPAFSR_FRC_msg[] =
735 "Foreign read to DRAM incurring correctable ECC error";
736 static const char JPAFSR_FRU_msg[] =
737 "Foreign read to DRAM incurring uncorrectable ECC error";
738 static struct afsr_error_table __jalapeno_error_table[] = {
739 { JPAFSR_JETO, JPAFSR_JETO_msg },
740 { JPAFSR_SCE, JPAFSR_SCE_msg },
741 { JPAFSR_JEIC, JPAFSR_JEIC_msg },
742 { JPAFSR_JEIT, JPAFSR_JEIT_msg },
743 { CHAFSR_PERR, CHAFSR_PERR_msg },
744 { CHAFSR_IERR, CHAFSR_IERR_msg },
745 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
746 { CHAFSR_UCU, CHAFSR_UCU_msg },
747 { CHAFSR_UCC, CHAFSR_UCC_msg },
748 { CHAFSR_UE, CHAFSR_UE_msg },
749 { CHAFSR_EDU, CHAFSR_EDU_msg },
750 { JPAFSR_OM, JPAFSR_OM_msg },
751 { CHAFSR_WDU, CHAFSR_WDU_msg },
752 { CHAFSR_CPU, CHAFSR_CPU_msg },
753 { CHAFSR_CE, CHAFSR_CE_msg },
754 { CHAFSR_EDC, CHAFSR_EDC_msg },
755 { JPAFSR_ETP, JPAFSR_ETP_msg },
756 { CHAFSR_WDC, CHAFSR_WDC_msg },
757 { CHAFSR_CPC, CHAFSR_CPC_msg },
758 { CHAFSR_TO, CHAFSR_TO_msg },
759 { CHAFSR_BERR, CHAFSR_BERR_msg },
760 { JPAFSR_UMS, JPAFSR_UMS_msg },
761 { JPAFSR_RUE, JPAFSR_RUE_msg },
762 { JPAFSR_RCE, JPAFSR_RCE_msg },
763 { JPAFSR_BP, JPAFSR_BP_msg },
764 { JPAFSR_WBP, JPAFSR_WBP_msg },
765 { JPAFSR_FRC, JPAFSR_FRC_msg },
766 { JPAFSR_FRU, JPAFSR_FRU_msg },
767 /* These two do not update the AFAR. */
768 { CHAFSR_IVU, CHAFSR_IVU_msg },
769 { 0, NULL },
770 };
771 static struct afsr_error_table *cheetah_error_table;
772 static unsigned long cheetah_afsr_errors;
773
774 /* This is allocated at boot time based upon the largest hardware
775 * cpu ID in the system. We allocate two entries per cpu, one for
776 * TL==0 logging and one for TL >= 1 logging.
777 */
778 struct cheetah_err_info *cheetah_error_log;
779
780 static __inline__ struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
781 {
782 struct cheetah_err_info *p;
783 int cpu = smp_processor_id();
784
785 if (!cheetah_error_log)
786 return NULL;
787
788 p = cheetah_error_log + (cpu * 2);
789 if ((afsr & CHAFSR_TL1) != 0UL)
790 p++;
791
792 return p;
793 }
794
795 extern unsigned int tl0_icpe[], tl1_icpe[];
796 extern unsigned int tl0_dcpe[], tl1_dcpe[];
797 extern unsigned int tl0_fecc[], tl1_fecc[];
798 extern unsigned int tl0_cee[], tl1_cee[];
799 extern unsigned int tl0_iae[], tl1_iae[];
800 extern unsigned int tl0_dae[], tl1_dae[];
801 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
802 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
803 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
804 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
805 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
806
807 void __init cheetah_ecache_flush_init(void)
808 {
809 unsigned long largest_size, smallest_linesize, order, ver;
810 int node, i, instance;
811
812 /* Scan all cpu device tree nodes, note two values:
813 * 1) largest E-cache size
814 * 2) smallest E-cache line size
815 */
816 largest_size = 0UL;
817 smallest_linesize = ~0UL;
818
819 instance = 0;
820 while (!cpu_find_by_instance(instance, &node, NULL)) {
821 unsigned long val;
822
823 val = prom_getintdefault(node, "ecache-size",
824 (2 * 1024 * 1024));
825 if (val > largest_size)
826 largest_size = val;
827 val = prom_getintdefault(node, "ecache-line-size", 64);
828 if (val < smallest_linesize)
829 smallest_linesize = val;
830 instance++;
831 }
832
833 if (largest_size == 0UL || smallest_linesize == ~0UL) {
834 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
835 "parameters.\n");
836 prom_halt();
837 }
838
839 ecache_flush_size = (2 * largest_size);
840 ecache_flush_linesize = smallest_linesize;
841
842 ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
843
844 if (ecache_flush_physbase == ~0UL) {
845 prom_printf("cheetah_ecache_flush_init: Cannot find %d byte "
846 "contiguous physical memory.\n",
847 ecache_flush_size);
848 prom_halt();
849 }
850
851 /* Now allocate error trap reporting scoreboard. */
852 node = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
853 for (order = 0; order < MAX_ORDER; order++) {
854 if ((PAGE_SIZE << order) >= node)
855 break;
856 }
857 cheetah_error_log = (struct cheetah_err_info *)
858 __get_free_pages(GFP_KERNEL, order);
859 if (!cheetah_error_log) {
860 prom_printf("cheetah_ecache_flush_init: Failed to allocate "
861 "error logging scoreboard (%d bytes).\n", node);
862 prom_halt();
863 }
864 memset(cheetah_error_log, 0, PAGE_SIZE << order);
865
866 /* Mark all AFSRs as invalid so that the trap handler will
867 * log new new information there.
868 */
869 for (i = 0; i < 2 * NR_CPUS; i++)
870 cheetah_error_log[i].afsr = CHAFSR_INVALID;
871
872 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
873 if ((ver >> 32) == __JALAPENO_ID ||
874 (ver >> 32) == __SERRANO_ID) {
875 cheetah_error_table = &__jalapeno_error_table[0];
876 cheetah_afsr_errors = JPAFSR_ERRORS;
877 } else if ((ver >> 32) == 0x003e0015) {
878 cheetah_error_table = &__cheetah_plus_error_table[0];
879 cheetah_afsr_errors = CHPAFSR_ERRORS;
880 } else {
881 cheetah_error_table = &__cheetah_error_table[0];
882 cheetah_afsr_errors = CHAFSR_ERRORS;
883 }
884
885 /* Now patch trap tables. */
886 memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
887 memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
888 memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
889 memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
890 memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
891 memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
892 memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
893 memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
894 if (tlb_type == cheetah_plus) {
895 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
896 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
897 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
898 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
899 }
900 flushi(PAGE_OFFSET);
901 }
902
903 static void cheetah_flush_ecache(void)
904 {
905 unsigned long flush_base = ecache_flush_physbase;
906 unsigned long flush_linesize = ecache_flush_linesize;
907 unsigned long flush_size = ecache_flush_size;
908
909 __asm__ __volatile__("1: subcc %0, %4, %0\n\t"
910 " bne,pt %%xcc, 1b\n\t"
911 " ldxa [%2 + %0] %3, %%g0\n\t"
912 : "=&r" (flush_size)
913 : "0" (flush_size), "r" (flush_base),
914 "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
915 }
916
917 static void cheetah_flush_ecache_line(unsigned long physaddr)
918 {
919 unsigned long alias;
920
921 physaddr &= ~(8UL - 1UL);
922 physaddr = (ecache_flush_physbase +
923 (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
924 alias = physaddr + (ecache_flush_size >> 1UL);
925 __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
926 "ldxa [%1] %2, %%g0\n\t"
927 "membar #Sync"
928 : /* no outputs */
929 : "r" (physaddr), "r" (alias),
930 "i" (ASI_PHYS_USE_EC));
931 }
932
933 /* Unfortunately, the diagnostic access to the I-cache tags we need to
934 * use to clear the thing interferes with I-cache coherency transactions.
935 *
936 * So we must only flush the I-cache when it is disabled.
937 */
938 static void __cheetah_flush_icache(void)
939 {
940 unsigned int icache_size, icache_line_size;
941 unsigned long addr;
942
943 icache_size = local_cpu_data().icache_size;
944 icache_line_size = local_cpu_data().icache_line_size;
945
946 /* Clear the valid bits in all the tags. */
947 for (addr = 0; addr < icache_size; addr += icache_line_size) {
948 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
949 "membar #Sync"
950 : /* no outputs */
951 : "r" (addr | (2 << 3)),
952 "i" (ASI_IC_TAG));
953 }
954 }
955
956 static void cheetah_flush_icache(void)
957 {
958 unsigned long dcu_save;
959
960 /* Save current DCU, disable I-cache. */
961 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
962 "or %0, %2, %%g1\n\t"
963 "stxa %%g1, [%%g0] %1\n\t"
964 "membar #Sync"
965 : "=r" (dcu_save)
966 : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
967 : "g1");
968
969 __cheetah_flush_icache();
970
971 /* Restore DCU register */
972 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
973 "membar #Sync"
974 : /* no outputs */
975 : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
976 }
977
978 static void cheetah_flush_dcache(void)
979 {
980 unsigned int dcache_size, dcache_line_size;
981 unsigned long addr;
982
983 dcache_size = local_cpu_data().dcache_size;
984 dcache_line_size = local_cpu_data().dcache_line_size;
985
986 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
987 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
988 "membar #Sync"
989 : /* no outputs */
990 : "r" (addr), "i" (ASI_DCACHE_TAG));
991 }
992 }
993
994 /* In order to make the even parity correct we must do two things.
995 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
996 * Next, we clear out all 32-bytes of data for that line. Data of
997 * all-zero + tag parity value of zero == correct parity.
998 */
999 static void cheetah_plus_zap_dcache_parity(void)
1000 {
1001 unsigned int dcache_size, dcache_line_size;
1002 unsigned long addr;
1003
1004 dcache_size = local_cpu_data().dcache_size;
1005 dcache_line_size = local_cpu_data().dcache_line_size;
1006
1007 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1008 unsigned long tag = (addr >> 14);
1009 unsigned long line;
1010
1011 __asm__ __volatile__("membar #Sync\n\t"
1012 "stxa %0, [%1] %2\n\t"
1013 "membar #Sync"
1014 : /* no outputs */
1015 : "r" (tag), "r" (addr),
1016 "i" (ASI_DCACHE_UTAG));
1017 for (line = addr; line < addr + dcache_line_size; line += 8)
1018 __asm__ __volatile__("membar #Sync\n\t"
1019 "stxa %%g0, [%0] %1\n\t"
1020 "membar #Sync"
1021 : /* no outputs */
1022 : "r" (line),
1023 "i" (ASI_DCACHE_DATA));
1024 }
1025 }
1026
1027 /* Conversion tables used to frob Cheetah AFSR syndrome values into
1028 * something palatable to the memory controller driver get_unumber
1029 * routine.
1030 */
1031 #define MT0 137
1032 #define MT1 138
1033 #define MT2 139
1034 #define NONE 254
1035 #define MTC0 140
1036 #define MTC1 141
1037 #define MTC2 142
1038 #define MTC3 143
1039 #define C0 128
1040 #define C1 129
1041 #define C2 130
1042 #define C3 131
1043 #define C4 132
1044 #define C5 133
1045 #define C6 134
1046 #define C7 135
1047 #define C8 136
1048 #define M2 144
1049 #define M3 145
1050 #define M4 146
1051 #define M 147
1052 static unsigned char cheetah_ecc_syntab[] = {
1053 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1054 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1055 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1056 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1057 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1058 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1059 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1060 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1061 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1062 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1063 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1064 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1065 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1066 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1067 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1068 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1069 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1070 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1071 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1072 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1073 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1074 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1075 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1076 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1077 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1078 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1079 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1080 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1081 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1082 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1083 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1084 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1085 };
1086 static unsigned char cheetah_mtag_syntab[] = {
1087 NONE, MTC0,
1088 MTC1, NONE,
1089 MTC2, NONE,
1090 NONE, MT0,
1091 MTC3, NONE,
1092 NONE, MT1,
1093 NONE, MT2,
1094 NONE, NONE
1095 };
1096
1097 /* Return the highest priority error conditon mentioned. */
1098 static __inline__ unsigned long cheetah_get_hipri(unsigned long afsr)
1099 {
1100 unsigned long tmp = 0;
1101 int i;
1102
1103 for (i = 0; cheetah_error_table[i].mask; i++) {
1104 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1105 return tmp;
1106 }
1107 return tmp;
1108 }
1109
1110 static const char *cheetah_get_string(unsigned long bit)
1111 {
1112 int i;
1113
1114 for (i = 0; cheetah_error_table[i].mask; i++) {
1115 if ((bit & cheetah_error_table[i].mask) != 0UL)
1116 return cheetah_error_table[i].name;
1117 }
1118 return "???";
1119 }
1120
1121 extern int chmc_getunumber(int, unsigned long, char *, int);
1122
1123 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1124 unsigned long afsr, unsigned long afar, int recoverable)
1125 {
1126 unsigned long hipri;
1127 char unum[256];
1128
1129 printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1130 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1131 afsr, afar,
1132 (afsr & CHAFSR_TL1) ? 1 : 0);
1133 printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1134 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1135 regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1136 printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n",
1137 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1138 (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1139 (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1140 (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1141 (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1142 hipri = cheetah_get_hipri(afsr);
1143 printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1144 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1145 hipri, cheetah_get_string(hipri));
1146
1147 /* Try to get unumber if relevant. */
1148 #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \
1149 CHAFSR_CPC | CHAFSR_CPU | \
1150 CHAFSR_UE | CHAFSR_CE | \
1151 CHAFSR_EDC | CHAFSR_EDU | \
1152 CHAFSR_UCC | CHAFSR_UCU | \
1153 CHAFSR_WDU | CHAFSR_WDC)
1154 #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU)
1155 if (afsr & ESYND_ERRORS) {
1156 int syndrome;
1157 int ret;
1158
1159 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1160 syndrome = cheetah_ecc_syntab[syndrome];
1161 ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum));
1162 if (ret != -1)
1163 printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1164 (recoverable ? KERN_WARNING : KERN_CRIT),
1165 smp_processor_id(), unum);
1166 } else if (afsr & MSYND_ERRORS) {
1167 int syndrome;
1168 int ret;
1169
1170 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1171 syndrome = cheetah_mtag_syntab[syndrome];
1172 ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum));
1173 if (ret != -1)
1174 printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1175 (recoverable ? KERN_WARNING : KERN_CRIT),
1176 smp_processor_id(), unum);
1177 }
1178
1179 /* Now dump the cache snapshots. */
1180 printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx]\n",
1181 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1182 (int) info->dcache_index,
1183 info->dcache_tag,
1184 info->dcache_utag,
1185 info->dcache_stag);
1186 printk("%s" "ERROR(%d): D-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n",
1187 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1188 info->dcache_data[0],
1189 info->dcache_data[1],
1190 info->dcache_data[2],
1191 info->dcache_data[3]);
1192 printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx] "
1193 "u[%016lx] l[%016lx]\n",
1194 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1195 (int) info->icache_index,
1196 info->icache_tag,
1197 info->icache_utag,
1198 info->icache_stag,
1199 info->icache_upper,
1200 info->icache_lower);
1201 printk("%s" "ERROR(%d): I-cache INSN0[%016lx] INSN1[%016lx] INSN2[%016lx] INSN3[%016lx]\n",
1202 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1203 info->icache_data[0],
1204 info->icache_data[1],
1205 info->icache_data[2],
1206 info->icache_data[3]);
1207 printk("%s" "ERROR(%d): I-cache INSN4[%016lx] INSN5[%016lx] INSN6[%016lx] INSN7[%016lx]\n",
1208 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1209 info->icache_data[4],
1210 info->icache_data[5],
1211 info->icache_data[6],
1212 info->icache_data[7]);
1213 printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016lx]\n",
1214 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1215 (int) info->ecache_index, info->ecache_tag);
1216 printk("%s" "ERROR(%d): E-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n",
1217 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1218 info->ecache_data[0],
1219 info->ecache_data[1],
1220 info->ecache_data[2],
1221 info->ecache_data[3]);
1222
1223 afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1224 while (afsr != 0UL) {
1225 unsigned long bit = cheetah_get_hipri(afsr);
1226
1227 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1228 (recoverable ? KERN_WARNING : KERN_CRIT),
1229 bit, cheetah_get_string(bit));
1230
1231 afsr &= ~bit;
1232 }
1233
1234 if (!recoverable)
1235 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1236 }
1237
1238 static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1239 {
1240 unsigned long afsr, afar;
1241 int ret = 0;
1242
1243 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1244 : "=r" (afsr)
1245 : "i" (ASI_AFSR));
1246 if ((afsr & cheetah_afsr_errors) != 0) {
1247 if (logp != NULL) {
1248 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1249 : "=r" (afar)
1250 : "i" (ASI_AFAR));
1251 logp->afsr = afsr;
1252 logp->afar = afar;
1253 }
1254 ret = 1;
1255 }
1256 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1257 "membar #Sync\n\t"
1258 : : "r" (afsr), "i" (ASI_AFSR));
1259
1260 return ret;
1261 }
1262
1263 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1264 {
1265 struct cheetah_err_info local_snapshot, *p;
1266 int recoverable;
1267
1268 /* Flush E-cache */
1269 cheetah_flush_ecache();
1270
1271 p = cheetah_get_error_log(afsr);
1272 if (!p) {
1273 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1274 afsr, afar);
1275 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1276 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1277 prom_halt();
1278 }
1279
1280 /* Grab snapshot of logged error. */
1281 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1282
1283 /* If the current trap snapshot does not match what the
1284 * trap handler passed along into our args, big trouble.
1285 * In such a case, mark the local copy as invalid.
1286 *
1287 * Else, it matches and we mark the afsr in the non-local
1288 * copy as invalid so we may log new error traps there.
1289 */
1290 if (p->afsr != afsr || p->afar != afar)
1291 local_snapshot.afsr = CHAFSR_INVALID;
1292 else
1293 p->afsr = CHAFSR_INVALID;
1294
1295 cheetah_flush_icache();
1296 cheetah_flush_dcache();
1297
1298 /* Re-enable I-cache/D-cache */
1299 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1300 "or %%g1, %1, %%g1\n\t"
1301 "stxa %%g1, [%%g0] %0\n\t"
1302 "membar #Sync"
1303 : /* no outputs */
1304 : "i" (ASI_DCU_CONTROL_REG),
1305 "i" (DCU_DC | DCU_IC)
1306 : "g1");
1307
1308 /* Re-enable error reporting */
1309 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1310 "or %%g1, %1, %%g1\n\t"
1311 "stxa %%g1, [%%g0] %0\n\t"
1312 "membar #Sync"
1313 : /* no outputs */
1314 : "i" (ASI_ESTATE_ERROR_EN),
1315 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1316 : "g1");
1317
1318 /* Decide if we can continue after handling this trap and
1319 * logging the error.
1320 */
1321 recoverable = 1;
1322 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1323 recoverable = 0;
1324
1325 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1326 * error was logged while we had error reporting traps disabled.
1327 */
1328 if (cheetah_recheck_errors(&local_snapshot)) {
1329 unsigned long new_afsr = local_snapshot.afsr;
1330
1331 /* If we got a new asynchronous error, die... */
1332 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1333 CHAFSR_WDU | CHAFSR_CPU |
1334 CHAFSR_IVU | CHAFSR_UE |
1335 CHAFSR_BERR | CHAFSR_TO))
1336 recoverable = 0;
1337 }
1338
1339 /* Log errors. */
1340 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1341
1342 if (!recoverable)
1343 panic("Irrecoverable Fast-ECC error trap.\n");
1344
1345 /* Flush E-cache to kick the error trap handlers out. */
1346 cheetah_flush_ecache();
1347 }
1348
1349 /* Try to fix a correctable error by pushing the line out from
1350 * the E-cache. Recheck error reporting registers to see if the
1351 * problem is intermittent.
1352 */
1353 static int cheetah_fix_ce(unsigned long physaddr)
1354 {
1355 unsigned long orig_estate;
1356 unsigned long alias1, alias2;
1357 int ret;
1358
1359 /* Make sure correctable error traps are disabled. */
1360 __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t"
1361 "andn %0, %1, %%g1\n\t"
1362 "stxa %%g1, [%%g0] %2\n\t"
1363 "membar #Sync"
1364 : "=&r" (orig_estate)
1365 : "i" (ESTATE_ERROR_CEEN),
1366 "i" (ASI_ESTATE_ERROR_EN)
1367 : "g1");
1368
1369 /* We calculate alias addresses that will force the
1370 * cache line in question out of the E-cache. Then
1371 * we bring it back in with an atomic instruction so
1372 * that we get it in some modified/exclusive state,
1373 * then we displace it again to try and get proper ECC
1374 * pushed back into the system.
1375 */
1376 physaddr &= ~(8UL - 1UL);
1377 alias1 = (ecache_flush_physbase +
1378 (physaddr & ((ecache_flush_size >> 1) - 1)));
1379 alias2 = alias1 + (ecache_flush_size >> 1);
1380 __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t"
1381 "ldxa [%1] %3, %%g0\n\t"
1382 "casxa [%2] %3, %%g0, %%g0\n\t"
1383 "membar #StoreLoad | #StoreStore\n\t"
1384 "ldxa [%0] %3, %%g0\n\t"
1385 "ldxa [%1] %3, %%g0\n\t"
1386 "membar #Sync"
1387 : /* no outputs */
1388 : "r" (alias1), "r" (alias2),
1389 "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1390
1391 /* Did that trigger another error? */
1392 if (cheetah_recheck_errors(NULL)) {
1393 /* Try one more time. */
1394 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1395 "membar #Sync"
1396 : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1397 if (cheetah_recheck_errors(NULL))
1398 ret = 2;
1399 else
1400 ret = 1;
1401 } else {
1402 /* No new error, intermittent problem. */
1403 ret = 0;
1404 }
1405
1406 /* Restore error enables. */
1407 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1408 "membar #Sync"
1409 : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1410
1411 return ret;
1412 }
1413
1414 /* Return non-zero if PADDR is a valid physical memory address. */
1415 static int cheetah_check_main_memory(unsigned long paddr)
1416 {
1417 unsigned long vaddr = PAGE_OFFSET + paddr;
1418
1419 if (vaddr > (unsigned long) high_memory)
1420 return 0;
1421
1422 return kern_addr_valid(vaddr);
1423 }
1424
1425 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1426 {
1427 struct cheetah_err_info local_snapshot, *p;
1428 int recoverable, is_memory;
1429
1430 p = cheetah_get_error_log(afsr);
1431 if (!p) {
1432 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1433 afsr, afar);
1434 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1435 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1436 prom_halt();
1437 }
1438
1439 /* Grab snapshot of logged error. */
1440 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1441
1442 /* If the current trap snapshot does not match what the
1443 * trap handler passed along into our args, big trouble.
1444 * In such a case, mark the local copy as invalid.
1445 *
1446 * Else, it matches and we mark the afsr in the non-local
1447 * copy as invalid so we may log new error traps there.
1448 */
1449 if (p->afsr != afsr || p->afar != afar)
1450 local_snapshot.afsr = CHAFSR_INVALID;
1451 else
1452 p->afsr = CHAFSR_INVALID;
1453
1454 is_memory = cheetah_check_main_memory(afar);
1455
1456 if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1457 /* XXX Might want to log the results of this operation
1458 * XXX somewhere... -DaveM
1459 */
1460 cheetah_fix_ce(afar);
1461 }
1462
1463 {
1464 int flush_all, flush_line;
1465
1466 flush_all = flush_line = 0;
1467 if ((afsr & CHAFSR_EDC) != 0UL) {
1468 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1469 flush_line = 1;
1470 else
1471 flush_all = 1;
1472 } else if ((afsr & CHAFSR_CPC) != 0UL) {
1473 if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1474 flush_line = 1;
1475 else
1476 flush_all = 1;
1477 }
1478
1479 /* Trap handler only disabled I-cache, flush it. */
1480 cheetah_flush_icache();
1481
1482 /* Re-enable I-cache */
1483 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1484 "or %%g1, %1, %%g1\n\t"
1485 "stxa %%g1, [%%g0] %0\n\t"
1486 "membar #Sync"
1487 : /* no outputs */
1488 : "i" (ASI_DCU_CONTROL_REG),
1489 "i" (DCU_IC)
1490 : "g1");
1491
1492 if (flush_all)
1493 cheetah_flush_ecache();
1494 else if (flush_line)
1495 cheetah_flush_ecache_line(afar);
1496 }
1497
1498 /* Re-enable error reporting */
1499 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1500 "or %%g1, %1, %%g1\n\t"
1501 "stxa %%g1, [%%g0] %0\n\t"
1502 "membar #Sync"
1503 : /* no outputs */
1504 : "i" (ASI_ESTATE_ERROR_EN),
1505 "i" (ESTATE_ERROR_CEEN)
1506 : "g1");
1507
1508 /* Decide if we can continue after handling this trap and
1509 * logging the error.
1510 */
1511 recoverable = 1;
1512 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1513 recoverable = 0;
1514
1515 /* Re-check AFSR/AFAR */
1516 (void) cheetah_recheck_errors(&local_snapshot);
1517
1518 /* Log errors. */
1519 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1520
1521 if (!recoverable)
1522 panic("Irrecoverable Correctable-ECC error trap.\n");
1523 }
1524
1525 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1526 {
1527 struct cheetah_err_info local_snapshot, *p;
1528 int recoverable, is_memory;
1529
1530 #ifdef CONFIG_PCI
1531 /* Check for the special PCI poke sequence. */
1532 if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1533 cheetah_flush_icache();
1534 cheetah_flush_dcache();
1535
1536 /* Re-enable I-cache/D-cache */
1537 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1538 "or %%g1, %1, %%g1\n\t"
1539 "stxa %%g1, [%%g0] %0\n\t"
1540 "membar #Sync"
1541 : /* no outputs */
1542 : "i" (ASI_DCU_CONTROL_REG),
1543 "i" (DCU_DC | DCU_IC)
1544 : "g1");
1545
1546 /* Re-enable error reporting */
1547 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1548 "or %%g1, %1, %%g1\n\t"
1549 "stxa %%g1, [%%g0] %0\n\t"
1550 "membar #Sync"
1551 : /* no outputs */
1552 : "i" (ASI_ESTATE_ERROR_EN),
1553 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1554 : "g1");
1555
1556 (void) cheetah_recheck_errors(NULL);
1557
1558 pci_poke_faulted = 1;
1559 regs->tpc += 4;
1560 regs->tnpc = regs->tpc + 4;
1561 return;
1562 }
1563 #endif
1564
1565 p = cheetah_get_error_log(afsr);
1566 if (!p) {
1567 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1568 afsr, afar);
1569 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1570 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1571 prom_halt();
1572 }
1573
1574 /* Grab snapshot of logged error. */
1575 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1576
1577 /* If the current trap snapshot does not match what the
1578 * trap handler passed along into our args, big trouble.
1579 * In such a case, mark the local copy as invalid.
1580 *
1581 * Else, it matches and we mark the afsr in the non-local
1582 * copy as invalid so we may log new error traps there.
1583 */
1584 if (p->afsr != afsr || p->afar != afar)
1585 local_snapshot.afsr = CHAFSR_INVALID;
1586 else
1587 p->afsr = CHAFSR_INVALID;
1588
1589 is_memory = cheetah_check_main_memory(afar);
1590
1591 {
1592 int flush_all, flush_line;
1593
1594 flush_all = flush_line = 0;
1595 if ((afsr & CHAFSR_EDU) != 0UL) {
1596 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1597 flush_line = 1;
1598 else
1599 flush_all = 1;
1600 } else if ((afsr & CHAFSR_BERR) != 0UL) {
1601 if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1602 flush_line = 1;
1603 else
1604 flush_all = 1;
1605 }
1606
1607 cheetah_flush_icache();
1608 cheetah_flush_dcache();
1609
1610 /* Re-enable I/D caches */
1611 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1612 "or %%g1, %1, %%g1\n\t"
1613 "stxa %%g1, [%%g0] %0\n\t"
1614 "membar #Sync"
1615 : /* no outputs */
1616 : "i" (ASI_DCU_CONTROL_REG),
1617 "i" (DCU_IC | DCU_DC)
1618 : "g1");
1619
1620 if (flush_all)
1621 cheetah_flush_ecache();
1622 else if (flush_line)
1623 cheetah_flush_ecache_line(afar);
1624 }
1625
1626 /* Re-enable error reporting */
1627 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1628 "or %%g1, %1, %%g1\n\t"
1629 "stxa %%g1, [%%g0] %0\n\t"
1630 "membar #Sync"
1631 : /* no outputs */
1632 : "i" (ASI_ESTATE_ERROR_EN),
1633 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1634 : "g1");
1635
1636 /* Decide if we can continue after handling this trap and
1637 * logging the error.
1638 */
1639 recoverable = 1;
1640 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1641 recoverable = 0;
1642
1643 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1644 * error was logged while we had error reporting traps disabled.
1645 */
1646 if (cheetah_recheck_errors(&local_snapshot)) {
1647 unsigned long new_afsr = local_snapshot.afsr;
1648
1649 /* If we got a new asynchronous error, die... */
1650 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1651 CHAFSR_WDU | CHAFSR_CPU |
1652 CHAFSR_IVU | CHAFSR_UE |
1653 CHAFSR_BERR | CHAFSR_TO))
1654 recoverable = 0;
1655 }
1656
1657 /* Log errors. */
1658 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1659
1660 /* "Recoverable" here means we try to yank the page from ever
1661 * being newly used again. This depends upon a few things:
1662 * 1) Must be main memory, and AFAR must be valid.
1663 * 2) If we trapped from user, OK.
1664 * 3) Else, if we trapped from kernel we must find exception
1665 * table entry (ie. we have to have been accessing user
1666 * space).
1667 *
1668 * If AFAR is not in main memory, or we trapped from kernel
1669 * and cannot find an exception table entry, it is unacceptable
1670 * to try and continue.
1671 */
1672 if (recoverable && is_memory) {
1673 if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1674 /* OK, usermode access. */
1675 recoverable = 1;
1676 } else {
1677 const struct exception_table_entry *entry;
1678
1679 entry = search_exception_tables(regs->tpc);
1680 if (entry) {
1681 /* OK, kernel access to userspace. */
1682 recoverable = 1;
1683
1684 } else {
1685 /* BAD, privileged state is corrupted. */
1686 recoverable = 0;
1687 }
1688
1689 if (recoverable) {
1690 if (pfn_valid(afar >> PAGE_SHIFT))
1691 get_page(pfn_to_page(afar >> PAGE_SHIFT));
1692 else
1693 recoverable = 0;
1694
1695 /* Only perform fixup if we still have a
1696 * recoverable condition.
1697 */
1698 if (recoverable) {
1699 regs->tpc = entry->fixup;
1700 regs->tnpc = regs->tpc + 4;
1701 }
1702 }
1703 }
1704 } else {
1705 recoverable = 0;
1706 }
1707
1708 if (!recoverable)
1709 panic("Irrecoverable deferred error trap.\n");
1710 }
1711
1712 /* Handle a D/I cache parity error trap. TYPE is encoded as:
1713 *
1714 * Bit0: 0=dcache,1=icache
1715 * Bit1: 0=recoverable,1=unrecoverable
1716 *
1717 * The hardware has disabled both the I-cache and D-cache in
1718 * the %dcr register.
1719 */
1720 void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1721 {
1722 if (type & 0x1)
1723 __cheetah_flush_icache();
1724 else
1725 cheetah_plus_zap_dcache_parity();
1726 cheetah_flush_dcache();
1727
1728 /* Re-enable I-cache/D-cache */
1729 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1730 "or %%g1, %1, %%g1\n\t"
1731 "stxa %%g1, [%%g0] %0\n\t"
1732 "membar #Sync"
1733 : /* no outputs */
1734 : "i" (ASI_DCU_CONTROL_REG),
1735 "i" (DCU_DC | DCU_IC)
1736 : "g1");
1737
1738 if (type & 0x2) {
1739 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1740 smp_processor_id(),
1741 (type & 0x1) ? 'I' : 'D',
1742 regs->tpc);
1743 panic("Irrecoverable Cheetah+ parity error.");
1744 }
1745
1746 printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1747 smp_processor_id(),
1748 (type & 0x1) ? 'I' : 'D',
1749 regs->tpc);
1750 }
1751
1752 struct sun4v_error_entry {
1753 u64 err_handle;
1754 u64 err_stick;
1755
1756 u32 err_type;
1757 #define SUN4V_ERR_TYPE_UNDEFINED 0
1758 #define SUN4V_ERR_TYPE_UNCORRECTED_RES 1
1759 #define SUN4V_ERR_TYPE_PRECISE_NONRES 2
1760 #define SUN4V_ERR_TYPE_DEFERRED_NONRES 3
1761 #define SUN4V_ERR_TYPE_WARNING_RES 4
1762
1763 u32 err_attrs;
1764 #define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001
1765 #define SUN4V_ERR_ATTRS_MEMORY 0x00000002
1766 #define SUN4V_ERR_ATTRS_PIO 0x00000004
1767 #define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008
1768 #define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010
1769 #define SUN4V_ERR_ATTRS_USER_MODE 0x01000000
1770 #define SUN4V_ERR_ATTRS_PRIV_MODE 0x02000000
1771 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000
1772
1773 u64 err_raddr;
1774 u32 err_size;
1775 u16 err_cpu;
1776 u16 err_pad;
1777 };
1778
1779 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1780 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1781
1782 static const char *sun4v_err_type_to_str(u32 type)
1783 {
1784 switch (type) {
1785 case SUN4V_ERR_TYPE_UNDEFINED:
1786 return "undefined";
1787 case SUN4V_ERR_TYPE_UNCORRECTED_RES:
1788 return "uncorrected resumable";
1789 case SUN4V_ERR_TYPE_PRECISE_NONRES:
1790 return "precise nonresumable";
1791 case SUN4V_ERR_TYPE_DEFERRED_NONRES:
1792 return "deferred nonresumable";
1793 case SUN4V_ERR_TYPE_WARNING_RES:
1794 return "warning resumable";
1795 default:
1796 return "unknown";
1797 };
1798 }
1799
1800 extern void __show_regs(struct pt_regs * regs);
1801
1802 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent, int cpu, const char *pfx, atomic_t *ocnt)
1803 {
1804 int cnt;
1805
1806 printk("%s: Reporting on cpu %d\n", pfx, cpu);
1807 printk("%s: err_handle[%lx] err_stick[%lx] err_type[%08x:%s]\n",
1808 pfx,
1809 ent->err_handle, ent->err_stick,
1810 ent->err_type,
1811 sun4v_err_type_to_str(ent->err_type));
1812 printk("%s: err_attrs[%08x:%s %s %s %s %s %s %s %s]\n",
1813 pfx,
1814 ent->err_attrs,
1815 ((ent->err_attrs & SUN4V_ERR_ATTRS_PROCESSOR) ?
1816 "processor" : ""),
1817 ((ent->err_attrs & SUN4V_ERR_ATTRS_MEMORY) ?
1818 "memory" : ""),
1819 ((ent->err_attrs & SUN4V_ERR_ATTRS_PIO) ?
1820 "pio" : ""),
1821 ((ent->err_attrs & SUN4V_ERR_ATTRS_INT_REGISTERS) ?
1822 "integer-regs" : ""),
1823 ((ent->err_attrs & SUN4V_ERR_ATTRS_FPU_REGISTERS) ?
1824 "fpu-regs" : ""),
1825 ((ent->err_attrs & SUN4V_ERR_ATTRS_USER_MODE) ?
1826 "user" : ""),
1827 ((ent->err_attrs & SUN4V_ERR_ATTRS_PRIV_MODE) ?
1828 "privileged" : ""),
1829 ((ent->err_attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) ?
1830 "queue-full" : ""));
1831 printk("%s: err_raddr[%016lx] err_size[%u] err_cpu[%u]\n",
1832 pfx,
1833 ent->err_raddr, ent->err_size, ent->err_cpu);
1834
1835 __show_regs(regs);
1836
1837 if ((cnt = atomic_read(ocnt)) != 0) {
1838 atomic_set(ocnt, 0);
1839 wmb();
1840 printk("%s: Queue overflowed %d times.\n",
1841 pfx, cnt);
1842 }
1843 }
1844
1845 /* We run with %pil set to 15 and PSTATE_IE enabled in %pstate.
1846 * Log the event and clear the first word of the entry.
1847 */
1848 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
1849 {
1850 struct sun4v_error_entry *ent, local_copy;
1851 struct trap_per_cpu *tb;
1852 unsigned long paddr;
1853 int cpu;
1854
1855 cpu = get_cpu();
1856
1857 tb = &trap_block[cpu];
1858 paddr = tb->resum_kernel_buf_pa + offset;
1859 ent = __va(paddr);
1860
1861 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
1862
1863 /* We have a local copy now, so release the entry. */
1864 ent->err_handle = 0;
1865 wmb();
1866
1867 put_cpu();
1868
1869 sun4v_log_error(regs, &local_copy, cpu,
1870 KERN_ERR "RESUMABLE ERROR",
1871 &sun4v_resum_oflow_cnt);
1872 }
1873
1874 /* If we try to printk() we'll probably make matters worse, by trying
1875 * to retake locks this cpu already holds or causing more errors. So
1876 * just bump a counter, and we'll report these counter bumps above.
1877 */
1878 void sun4v_resum_overflow(struct pt_regs *regs)
1879 {
1880 atomic_inc(&sun4v_resum_oflow_cnt);
1881 }
1882
1883 /* We run with %pil set to 15 and PSTATE_IE enabled in %pstate.
1884 * Log the event, clear the first word of the entry, and die.
1885 */
1886 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
1887 {
1888 struct sun4v_error_entry *ent, local_copy;
1889 struct trap_per_cpu *tb;
1890 unsigned long paddr;
1891 int cpu;
1892
1893 cpu = get_cpu();
1894
1895 tb = &trap_block[cpu];
1896 paddr = tb->nonresum_kernel_buf_pa + offset;
1897 ent = __va(paddr);
1898
1899 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
1900
1901 /* We have a local copy now, so release the entry. */
1902 ent->err_handle = 0;
1903 wmb();
1904
1905 put_cpu();
1906
1907 #ifdef CONFIG_PCI
1908 /* Check for the special PCI poke sequence. */
1909 if (pci_poke_in_progress && pci_poke_cpu == cpu) {
1910 pci_poke_faulted = 1;
1911 regs->tpc += 4;
1912 regs->tnpc = regs->tpc + 4;
1913 return;
1914 }
1915 #endif
1916
1917 sun4v_log_error(regs, &local_copy, cpu,
1918 KERN_EMERG "NON-RESUMABLE ERROR",
1919 &sun4v_nonresum_oflow_cnt);
1920
1921 panic("Non-resumable error.");
1922 }
1923
1924 /* If we try to printk() we'll probably make matters worse, by trying
1925 * to retake locks this cpu already holds or causing more errors. So
1926 * just bump a counter, and we'll report these counter bumps above.
1927 */
1928 void sun4v_nonresum_overflow(struct pt_regs *regs)
1929 {
1930 /* XXX Actually even this can make not that much sense. Perhaps
1931 * XXX we should just pull the plug and panic directly from here?
1932 */
1933 atomic_inc(&sun4v_nonresum_oflow_cnt);
1934 }
1935
1936 unsigned long sun4v_err_itlb_vaddr;
1937 unsigned long sun4v_err_itlb_ctx;
1938 unsigned long sun4v_err_itlb_pte;
1939 unsigned long sun4v_err_itlb_error;
1940
1941 void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
1942 {
1943 if (tl > 1)
1944 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
1945
1946 printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
1947 regs->tpc, tl);
1948 printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
1949 "pte[%lx] error[%lx]\n",
1950 sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
1951 sun4v_err_itlb_pte, sun4v_err_itlb_error);
1952
1953 prom_halt();
1954 }
1955
1956 unsigned long sun4v_err_dtlb_vaddr;
1957 unsigned long sun4v_err_dtlb_ctx;
1958 unsigned long sun4v_err_dtlb_pte;
1959 unsigned long sun4v_err_dtlb_error;
1960
1961 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
1962 {
1963 if (tl > 1)
1964 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
1965
1966 printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
1967 regs->tpc, tl);
1968 printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
1969 "pte[%lx] error[%lx]\n",
1970 sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
1971 sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
1972
1973 prom_halt();
1974 }
1975
1976 void hypervisor_tlbop_error(unsigned long err, unsigned long op)
1977 {
1978 printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
1979 err, op);
1980 }
1981
1982 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
1983 {
1984 printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
1985 err, op);
1986 }
1987
1988 void do_fpe_common(struct pt_regs *regs)
1989 {
1990 if (regs->tstate & TSTATE_PRIV) {
1991 regs->tpc = regs->tnpc;
1992 regs->tnpc += 4;
1993 } else {
1994 unsigned long fsr = current_thread_info()->xfsr[0];
1995 siginfo_t info;
1996
1997 if (test_thread_flag(TIF_32BIT)) {
1998 regs->tpc &= 0xffffffff;
1999 regs->tnpc &= 0xffffffff;
2000 }
2001 info.si_signo = SIGFPE;
2002 info.si_errno = 0;
2003 info.si_addr = (void __user *)regs->tpc;
2004 info.si_trapno = 0;
2005 info.si_code = __SI_FAULT;
2006 if ((fsr & 0x1c000) == (1 << 14)) {
2007 if (fsr & 0x10)
2008 info.si_code = FPE_FLTINV;
2009 else if (fsr & 0x08)
2010 info.si_code = FPE_FLTOVF;
2011 else if (fsr & 0x04)
2012 info.si_code = FPE_FLTUND;
2013 else if (fsr & 0x02)
2014 info.si_code = FPE_FLTDIV;
2015 else if (fsr & 0x01)
2016 info.si_code = FPE_FLTRES;
2017 }
2018 force_sig_info(SIGFPE, &info, current);
2019 }
2020 }
2021
2022 void do_fpieee(struct pt_regs *regs)
2023 {
2024 if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2025 0, 0x24, SIGFPE) == NOTIFY_STOP)
2026 return;
2027
2028 do_fpe_common(regs);
2029 }
2030
2031 extern int do_mathemu(struct pt_regs *, struct fpustate *);
2032
2033 void do_fpother(struct pt_regs *regs)
2034 {
2035 struct fpustate *f = FPUSTATE;
2036 int ret = 0;
2037
2038 if (notify_die(DIE_TRAP, "fpu exception other", regs,
2039 0, 0x25, SIGFPE) == NOTIFY_STOP)
2040 return;
2041
2042 switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2043 case (2 << 14): /* unfinished_FPop */
2044 case (3 << 14): /* unimplemented_FPop */
2045 ret = do_mathemu(regs, f);
2046 break;
2047 }
2048 if (ret)
2049 return;
2050 do_fpe_common(regs);
2051 }
2052
2053 void do_tof(struct pt_regs *regs)
2054 {
2055 siginfo_t info;
2056
2057 if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2058 0, 0x26, SIGEMT) == NOTIFY_STOP)
2059 return;
2060
2061 if (regs->tstate & TSTATE_PRIV)
2062 die_if_kernel("Penguin overflow trap from kernel mode", regs);
2063 if (test_thread_flag(TIF_32BIT)) {
2064 regs->tpc &= 0xffffffff;
2065 regs->tnpc &= 0xffffffff;
2066 }
2067 info.si_signo = SIGEMT;
2068 info.si_errno = 0;
2069 info.si_code = EMT_TAGOVF;
2070 info.si_addr = (void __user *)regs->tpc;
2071 info.si_trapno = 0;
2072 force_sig_info(SIGEMT, &info, current);
2073 }
2074
2075 void do_div0(struct pt_regs *regs)
2076 {
2077 siginfo_t info;
2078
2079 if (notify_die(DIE_TRAP, "integer division by zero", regs,
2080 0, 0x28, SIGFPE) == NOTIFY_STOP)
2081 return;
2082
2083 if (regs->tstate & TSTATE_PRIV)
2084 die_if_kernel("TL0: Kernel divide by zero.", regs);
2085 if (test_thread_flag(TIF_32BIT)) {
2086 regs->tpc &= 0xffffffff;
2087 regs->tnpc &= 0xffffffff;
2088 }
2089 info.si_signo = SIGFPE;
2090 info.si_errno = 0;
2091 info.si_code = FPE_INTDIV;
2092 info.si_addr = (void __user *)regs->tpc;
2093 info.si_trapno = 0;
2094 force_sig_info(SIGFPE, &info, current);
2095 }
2096
2097 void instruction_dump (unsigned int *pc)
2098 {
2099 int i;
2100
2101 if ((((unsigned long) pc) & 3))
2102 return;
2103
2104 printk("Instruction DUMP:");
2105 for (i = -3; i < 6; i++)
2106 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2107 printk("\n");
2108 }
2109
2110 static void user_instruction_dump (unsigned int __user *pc)
2111 {
2112 int i;
2113 unsigned int buf[9];
2114
2115 if ((((unsigned long) pc) & 3))
2116 return;
2117
2118 if (copy_from_user(buf, pc - 3, sizeof(buf)))
2119 return;
2120
2121 printk("Instruction DUMP:");
2122 for (i = 0; i < 9; i++)
2123 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2124 printk("\n");
2125 }
2126
2127 void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2128 {
2129 unsigned long pc, fp, thread_base, ksp;
2130 void *tp = task_stack_page(tsk);
2131 struct reg_window *rw;
2132 int count = 0;
2133
2134 ksp = (unsigned long) _ksp;
2135
2136 if (tp == current_thread_info())
2137 flushw_all();
2138
2139 fp = ksp + STACK_BIAS;
2140 thread_base = (unsigned long) tp;
2141
2142 printk("Call Trace:");
2143 #ifdef CONFIG_KALLSYMS
2144 printk("\n");
2145 #endif
2146 do {
2147 /* Bogus frame pointer? */
2148 if (fp < (thread_base + sizeof(struct thread_info)) ||
2149 fp >= (thread_base + THREAD_SIZE))
2150 break;
2151 rw = (struct reg_window *)fp;
2152 pc = rw->ins[7];
2153 printk(" [%016lx] ", pc);
2154 print_symbol("%s\n", pc);
2155 fp = rw->ins[6] + STACK_BIAS;
2156 } while (++count < 16);
2157 #ifndef CONFIG_KALLSYMS
2158 printk("\n");
2159 #endif
2160 }
2161
2162 void dump_stack(void)
2163 {
2164 unsigned long *ksp;
2165
2166 __asm__ __volatile__("mov %%fp, %0"
2167 : "=r" (ksp));
2168 show_stack(current, ksp);
2169 }
2170
2171 EXPORT_SYMBOL(dump_stack);
2172
2173 static inline int is_kernel_stack(struct task_struct *task,
2174 struct reg_window *rw)
2175 {
2176 unsigned long rw_addr = (unsigned long) rw;
2177 unsigned long thread_base, thread_end;
2178
2179 if (rw_addr < PAGE_OFFSET) {
2180 if (task != &init_task)
2181 return 0;
2182 }
2183
2184 thread_base = (unsigned long) task_stack_page(task);
2185 thread_end = thread_base + sizeof(union thread_union);
2186 if (rw_addr >= thread_base &&
2187 rw_addr < thread_end &&
2188 !(rw_addr & 0x7UL))
2189 return 1;
2190
2191 return 0;
2192 }
2193
2194 static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2195 {
2196 unsigned long fp = rw->ins[6];
2197
2198 if (!fp)
2199 return NULL;
2200
2201 return (struct reg_window *) (fp + STACK_BIAS);
2202 }
2203
2204 void die_if_kernel(char *str, struct pt_regs *regs)
2205 {
2206 static int die_counter;
2207 extern void smp_report_regs(void);
2208 int count = 0;
2209
2210 /* Amuse the user. */
2211 printk(
2212 " \\|/ ____ \\|/\n"
2213 " \"@'/ .. \\`@\"\n"
2214 " /_| \\__/ |_\\\n"
2215 " \\__U_/\n");
2216
2217 printk("%s(%d): %s [#%d]\n", current->comm, current->pid, str, ++die_counter);
2218 notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2219 __asm__ __volatile__("flushw");
2220 __show_regs(regs);
2221 if (regs->tstate & TSTATE_PRIV) {
2222 struct reg_window *rw = (struct reg_window *)
2223 (regs->u_regs[UREG_FP] + STACK_BIAS);
2224
2225 /* Stop the back trace when we hit userland or we
2226 * find some badly aligned kernel stack.
2227 */
2228 while (rw &&
2229 count++ < 30&&
2230 is_kernel_stack(current, rw)) {
2231 printk("Caller[%016lx]", rw->ins[7]);
2232 print_symbol(": %s", rw->ins[7]);
2233 printk("\n");
2234
2235 rw = kernel_stack_up(rw);
2236 }
2237 instruction_dump ((unsigned int *) regs->tpc);
2238 } else {
2239 if (test_thread_flag(TIF_32BIT)) {
2240 regs->tpc &= 0xffffffff;
2241 regs->tnpc &= 0xffffffff;
2242 }
2243 user_instruction_dump ((unsigned int __user *) regs->tpc);
2244 }
2245 #if 0
2246 #ifdef CONFIG_SMP
2247 smp_report_regs();
2248 #endif
2249 #endif
2250 if (regs->tstate & TSTATE_PRIV)
2251 do_exit(SIGKILL);
2252 do_exit(SIGSEGV);
2253 }
2254
2255 extern int handle_popc(u32 insn, struct pt_regs *regs);
2256 extern int handle_ldf_stq(u32 insn, struct pt_regs *regs);
2257
2258 void do_illegal_instruction(struct pt_regs *regs)
2259 {
2260 unsigned long pc = regs->tpc;
2261 unsigned long tstate = regs->tstate;
2262 u32 insn;
2263 siginfo_t info;
2264
2265 if (notify_die(DIE_TRAP, "illegal instruction", regs,
2266 0, 0x10, SIGILL) == NOTIFY_STOP)
2267 return;
2268
2269 if (tstate & TSTATE_PRIV)
2270 die_if_kernel("Kernel illegal instruction", regs);
2271 if (test_thread_flag(TIF_32BIT))
2272 pc = (u32)pc;
2273 if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2274 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2275 if (handle_popc(insn, regs))
2276 return;
2277 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2278 if (handle_ldf_stq(insn, regs))
2279 return;
2280 } else if (tlb_type == hypervisor) {
2281 extern int vis_emul(struct pt_regs *, unsigned int);
2282
2283 if (!vis_emul(regs, insn))
2284 return;
2285 }
2286 }
2287 info.si_signo = SIGILL;
2288 info.si_errno = 0;
2289 info.si_code = ILL_ILLOPC;
2290 info.si_addr = (void __user *)pc;
2291 info.si_trapno = 0;
2292 force_sig_info(SIGILL, &info, current);
2293 }
2294
2295 extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn);
2296
2297 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2298 {
2299 siginfo_t info;
2300
2301 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2302 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2303 return;
2304
2305 if (regs->tstate & TSTATE_PRIV) {
2306 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2307 return;
2308 }
2309 info.si_signo = SIGBUS;
2310 info.si_errno = 0;
2311 info.si_code = BUS_ADRALN;
2312 info.si_addr = (void __user *)sfar;
2313 info.si_trapno = 0;
2314 force_sig_info(SIGBUS, &info, current);
2315 }
2316
2317 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2318 {
2319 siginfo_t info;
2320
2321 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2322 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2323 return;
2324
2325 if (regs->tstate & TSTATE_PRIV) {
2326 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2327 return;
2328 }
2329 info.si_signo = SIGBUS;
2330 info.si_errno = 0;
2331 info.si_code = BUS_ADRALN;
2332 info.si_addr = (void __user *) addr;
2333 info.si_trapno = 0;
2334 force_sig_info(SIGBUS, &info, current);
2335 }
2336
2337 void do_privop(struct pt_regs *regs)
2338 {
2339 siginfo_t info;
2340
2341 if (notify_die(DIE_TRAP, "privileged operation", regs,
2342 0, 0x11, SIGILL) == NOTIFY_STOP)
2343 return;
2344
2345 if (test_thread_flag(TIF_32BIT)) {
2346 regs->tpc &= 0xffffffff;
2347 regs->tnpc &= 0xffffffff;
2348 }
2349 info.si_signo = SIGILL;
2350 info.si_errno = 0;
2351 info.si_code = ILL_PRVOPC;
2352 info.si_addr = (void __user *)regs->tpc;
2353 info.si_trapno = 0;
2354 force_sig_info(SIGILL, &info, current);
2355 }
2356
2357 void do_privact(struct pt_regs *regs)
2358 {
2359 do_privop(regs);
2360 }
2361
2362 /* Trap level 1 stuff or other traps we should never see... */
2363 void do_cee(struct pt_regs *regs)
2364 {
2365 die_if_kernel("TL0: Cache Error Exception", regs);
2366 }
2367
2368 void do_cee_tl1(struct pt_regs *regs)
2369 {
2370 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2371 die_if_kernel("TL1: Cache Error Exception", regs);
2372 }
2373
2374 void do_dae_tl1(struct pt_regs *regs)
2375 {
2376 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2377 die_if_kernel("TL1: Data Access Exception", regs);
2378 }
2379
2380 void do_iae_tl1(struct pt_regs *regs)
2381 {
2382 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2383 die_if_kernel("TL1: Instruction Access Exception", regs);
2384 }
2385
2386 void do_div0_tl1(struct pt_regs *regs)
2387 {
2388 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2389 die_if_kernel("TL1: DIV0 Exception", regs);
2390 }
2391
2392 void do_fpdis_tl1(struct pt_regs *regs)
2393 {
2394 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2395 die_if_kernel("TL1: FPU Disabled", regs);
2396 }
2397
2398 void do_fpieee_tl1(struct pt_regs *regs)
2399 {
2400 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2401 die_if_kernel("TL1: FPU IEEE Exception", regs);
2402 }
2403
2404 void do_fpother_tl1(struct pt_regs *regs)
2405 {
2406 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2407 die_if_kernel("TL1: FPU Other Exception", regs);
2408 }
2409
2410 void do_ill_tl1(struct pt_regs *regs)
2411 {
2412 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2413 die_if_kernel("TL1: Illegal Instruction Exception", regs);
2414 }
2415
2416 void do_irq_tl1(struct pt_regs *regs)
2417 {
2418 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2419 die_if_kernel("TL1: IRQ Exception", regs);
2420 }
2421
2422 void do_lddfmna_tl1(struct pt_regs *regs)
2423 {
2424 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2425 die_if_kernel("TL1: LDDF Exception", regs);
2426 }
2427
2428 void do_stdfmna_tl1(struct pt_regs *regs)
2429 {
2430 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2431 die_if_kernel("TL1: STDF Exception", regs);
2432 }
2433
2434 void do_paw(struct pt_regs *regs)
2435 {
2436 die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2437 }
2438
2439 void do_paw_tl1(struct pt_regs *regs)
2440 {
2441 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2442 die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2443 }
2444
2445 void do_vaw(struct pt_regs *regs)
2446 {
2447 die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2448 }
2449
2450 void do_vaw_tl1(struct pt_regs *regs)
2451 {
2452 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2453 die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2454 }
2455
2456 void do_tof_tl1(struct pt_regs *regs)
2457 {
2458 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2459 die_if_kernel("TL1: Tag Overflow Exception", regs);
2460 }
2461
2462 void do_getpsr(struct pt_regs *regs)
2463 {
2464 regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2465 regs->tpc = regs->tnpc;
2466 regs->tnpc += 4;
2467 if (test_thread_flag(TIF_32BIT)) {
2468 regs->tpc &= 0xffffffff;
2469 regs->tnpc &= 0xffffffff;
2470 }
2471 }
2472
2473 struct trap_per_cpu trap_block[NR_CPUS];
2474
2475 /* This can get invoked before sched_init() so play it super safe
2476 * and use hard_smp_processor_id().
2477 */
2478 void init_cur_cpu_trap(struct thread_info *t)
2479 {
2480 int cpu = hard_smp_processor_id();
2481 struct trap_per_cpu *p = &trap_block[cpu];
2482
2483 p->thread = t;
2484 p->pgd_paddr = 0;
2485 }
2486
2487 extern void thread_info_offsets_are_bolixed_dave(void);
2488 extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2489 extern void tsb_config_offsets_are_bolixed_dave(void);
2490
2491 /* Only invoked on boot processor. */
2492 void __init trap_init(void)
2493 {
2494 /* Compile time sanity check. */
2495 if (TI_TASK != offsetof(struct thread_info, task) ||
2496 TI_FLAGS != offsetof(struct thread_info, flags) ||
2497 TI_CPU != offsetof(struct thread_info, cpu) ||
2498 TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2499 TI_KSP != offsetof(struct thread_info, ksp) ||
2500 TI_FAULT_ADDR != offsetof(struct thread_info, fault_address) ||
2501 TI_KREGS != offsetof(struct thread_info, kregs) ||
2502 TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2503 TI_EXEC_DOMAIN != offsetof(struct thread_info, exec_domain) ||
2504 TI_REG_WINDOW != offsetof(struct thread_info, reg_window) ||
2505 TI_RWIN_SPTRS != offsetof(struct thread_info, rwbuf_stkptrs) ||
2506 TI_GSR != offsetof(struct thread_info, gsr) ||
2507 TI_XFSR != offsetof(struct thread_info, xfsr) ||
2508 TI_USER_CNTD0 != offsetof(struct thread_info, user_cntd0) ||
2509 TI_USER_CNTD1 != offsetof(struct thread_info, user_cntd1) ||
2510 TI_KERN_CNTD0 != offsetof(struct thread_info, kernel_cntd0) ||
2511 TI_KERN_CNTD1 != offsetof(struct thread_info, kernel_cntd1) ||
2512 TI_PCR != offsetof(struct thread_info, pcr_reg) ||
2513 TI_PRE_COUNT != offsetof(struct thread_info, preempt_count) ||
2514 TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2515 TI_SYS_NOERROR != offsetof(struct thread_info, syscall_noerror) ||
2516 TI_RESTART_BLOCK != offsetof(struct thread_info, restart_block) ||
2517 TI_KUNA_REGS != offsetof(struct thread_info, kern_una_regs) ||
2518 TI_KUNA_INSN != offsetof(struct thread_info, kern_una_insn) ||
2519 TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2520 (TI_FPREGS & (64 - 1)))
2521 thread_info_offsets_are_bolixed_dave();
2522
2523 if (TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, thread) ||
2524 (TRAP_PER_CPU_PGD_PADDR !=
2525 offsetof(struct trap_per_cpu, pgd_paddr)) ||
2526 (TRAP_PER_CPU_CPU_MONDO_PA !=
2527 offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2528 (TRAP_PER_CPU_DEV_MONDO_PA !=
2529 offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2530 (TRAP_PER_CPU_RESUM_MONDO_PA !=
2531 offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2532 (TRAP_PER_CPU_RESUM_KBUF_PA !=
2533 offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2534 (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2535 offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2536 (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2537 offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2538 (TRAP_PER_CPU_FAULT_INFO !=
2539 offsetof(struct trap_per_cpu, fault_info)) ||
2540 (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2541 offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2542 (TRAP_PER_CPU_CPU_LIST_PA !=
2543 offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2544 (TRAP_PER_CPU_TSB_HUGE !=
2545 offsetof(struct trap_per_cpu, tsb_huge)) ||
2546 (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2547 offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2548 (TRAP_PER_CPU_IRQ_WORKLIST !=
2549 offsetof(struct trap_per_cpu, irq_worklist)))
2550 trap_per_cpu_offsets_are_bolixed_dave();
2551
2552 if ((TSB_CONFIG_TSB !=
2553 offsetof(struct tsb_config, tsb)) ||
2554 (TSB_CONFIG_RSS_LIMIT !=
2555 offsetof(struct tsb_config, tsb_rss_limit)) ||
2556 (TSB_CONFIG_NENTRIES !=
2557 offsetof(struct tsb_config, tsb_nentries)) ||
2558 (TSB_CONFIG_REG_VAL !=
2559 offsetof(struct tsb_config, tsb_reg_val)) ||
2560 (TSB_CONFIG_MAP_VADDR !=
2561 offsetof(struct tsb_config, tsb_map_vaddr)) ||
2562 (TSB_CONFIG_MAP_PTE !=
2563 offsetof(struct tsb_config, tsb_map_pte)))
2564 tsb_config_offsets_are_bolixed_dave();
2565
2566 /* Attach to the address space of init_task. On SMP we
2567 * do this in smp.c:smp_callin for other cpus.
2568 */
2569 atomic_inc(&init_mm.mm_count);
2570 current->active_mm = &init_mm;
2571 }