[SPARC64]: Fix endless loop in cheetah_xcall_deliver().
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
32 #include <asm/io.h>
33
34 #include <asm/irq.h>
35 #include <asm/irq_regs.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/oplib.h>
39 #include <asm/uaccess.h>
40 #include <asm/timer.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/sections.h>
44 #include <asm/prom.h>
45 #include <asm/mdesc.h>
46 #include <asm/ldc.h>
47 #include <asm/hypervisor.h>
48
49 extern void calibrate_delay(void);
50
51 int sparc64_multi_core __read_mostly;
52
53 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
54 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
55 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
56 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
57 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
58
59 EXPORT_SYMBOL(cpu_possible_map);
60 EXPORT_SYMBOL(cpu_online_map);
61 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
62 EXPORT_SYMBOL(cpu_core_map);
63
64 static cpumask_t smp_commenced_mask;
65
66 void smp_info(struct seq_file *m)
67 {
68 int i;
69
70 seq_printf(m, "State:\n");
71 for_each_online_cpu(i)
72 seq_printf(m, "CPU%d:\t\tonline\n", i);
73 }
74
75 void smp_bogo(struct seq_file *m)
76 {
77 int i;
78
79 for_each_online_cpu(i)
80 seq_printf(m,
81 "Cpu%dClkTck\t: %016lx\n",
82 i, cpu_data(i).clock_tick);
83 }
84
85 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
86
87 extern void setup_sparc64_timer(void);
88
89 static volatile unsigned long callin_flag = 0;
90
91 void __devinit smp_callin(void)
92 {
93 int cpuid = hard_smp_processor_id();
94
95 __local_per_cpu_offset = __per_cpu_offset(cpuid);
96
97 if (tlb_type == hypervisor)
98 sun4v_ktsb_register();
99
100 __flush_tlb_all();
101
102 setup_sparc64_timer();
103
104 if (cheetah_pcache_forced_on)
105 cheetah_enable_pcache();
106
107 local_irq_enable();
108
109 callin_flag = 1;
110 __asm__ __volatile__("membar #Sync\n\t"
111 "flush %%g6" : : : "memory");
112
113 /* Clear this or we will die instantly when we
114 * schedule back to this idler...
115 */
116 current_thread_info()->new_child = 0;
117
118 /* Attach to the address space of init_task. */
119 atomic_inc(&init_mm.mm_count);
120 current->active_mm = &init_mm;
121
122 while (!cpu_isset(cpuid, smp_commenced_mask))
123 rmb();
124
125 spin_lock(&call_lock);
126 cpu_set(cpuid, cpu_online_map);
127 spin_unlock(&call_lock);
128
129 /* idle thread is expected to have preempt disabled */
130 preempt_disable();
131 }
132
133 void cpu_panic(void)
134 {
135 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
136 panic("SMP bolixed\n");
137 }
138
139 /* This tick register synchronization scheme is taken entirely from
140 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
141 *
142 * The only change I've made is to rework it so that the master
143 * initiates the synchonization instead of the slave. -DaveM
144 */
145
146 #define MASTER 0
147 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
148
149 #define NUM_ROUNDS 64 /* magic value */
150 #define NUM_ITERS 5 /* likewise */
151
152 static DEFINE_SPINLOCK(itc_sync_lock);
153 static unsigned long go[SLAVE + 1];
154
155 #define DEBUG_TICK_SYNC 0
156
157 static inline long get_delta (long *rt, long *master)
158 {
159 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
160 unsigned long tcenter, t0, t1, tm;
161 unsigned long i;
162
163 for (i = 0; i < NUM_ITERS; i++) {
164 t0 = tick_ops->get_tick();
165 go[MASTER] = 1;
166 membar_storeload();
167 while (!(tm = go[SLAVE]))
168 rmb();
169 go[SLAVE] = 0;
170 wmb();
171 t1 = tick_ops->get_tick();
172
173 if (t1 - t0 < best_t1 - best_t0)
174 best_t0 = t0, best_t1 = t1, best_tm = tm;
175 }
176
177 *rt = best_t1 - best_t0;
178 *master = best_tm - best_t0;
179
180 /* average best_t0 and best_t1 without overflow: */
181 tcenter = (best_t0/2 + best_t1/2);
182 if (best_t0 % 2 + best_t1 % 2 == 2)
183 tcenter++;
184 return tcenter - best_tm;
185 }
186
187 void smp_synchronize_tick_client(void)
188 {
189 long i, delta, adj, adjust_latency = 0, done = 0;
190 unsigned long flags, rt, master_time_stamp, bound;
191 #if DEBUG_TICK_SYNC
192 struct {
193 long rt; /* roundtrip time */
194 long master; /* master's timestamp */
195 long diff; /* difference between midpoint and master's timestamp */
196 long lat; /* estimate of itc adjustment latency */
197 } t[NUM_ROUNDS];
198 #endif
199
200 go[MASTER] = 1;
201
202 while (go[MASTER])
203 rmb();
204
205 local_irq_save(flags);
206 {
207 for (i = 0; i < NUM_ROUNDS; i++) {
208 delta = get_delta(&rt, &master_time_stamp);
209 if (delta == 0) {
210 done = 1; /* let's lock on to this... */
211 bound = rt;
212 }
213
214 if (!done) {
215 if (i > 0) {
216 adjust_latency += -delta;
217 adj = -delta + adjust_latency/4;
218 } else
219 adj = -delta;
220
221 tick_ops->add_tick(adj);
222 }
223 #if DEBUG_TICK_SYNC
224 t[i].rt = rt;
225 t[i].master = master_time_stamp;
226 t[i].diff = delta;
227 t[i].lat = adjust_latency/4;
228 #endif
229 }
230 }
231 local_irq_restore(flags);
232
233 #if DEBUG_TICK_SYNC
234 for (i = 0; i < NUM_ROUNDS; i++)
235 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236 t[i].rt, t[i].master, t[i].diff, t[i].lat);
237 #endif
238
239 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
240 "(last diff %ld cycles, maxerr %lu cycles)\n",
241 smp_processor_id(), delta, rt);
242 }
243
244 static void smp_start_sync_tick_client(int cpu);
245
246 static void smp_synchronize_one_tick(int cpu)
247 {
248 unsigned long flags, i;
249
250 go[MASTER] = 0;
251
252 smp_start_sync_tick_client(cpu);
253
254 /* wait for client to be ready */
255 while (!go[MASTER])
256 rmb();
257
258 /* now let the client proceed into his loop */
259 go[MASTER] = 0;
260 membar_storeload();
261
262 spin_lock_irqsave(&itc_sync_lock, flags);
263 {
264 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265 while (!go[MASTER])
266 rmb();
267 go[MASTER] = 0;
268 wmb();
269 go[SLAVE] = tick_ops->get_tick();
270 membar_storeload();
271 }
272 }
273 spin_unlock_irqrestore(&itc_sync_lock, flags);
274 }
275
276 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277 /* XXX Put this in some common place. XXX */
278 static unsigned long kimage_addr_to_ra(void *p)
279 {
280 unsigned long val = (unsigned long) p;
281
282 return kern_base + (val - KERNBASE);
283 }
284
285 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
286 {
287 extern unsigned long sparc64_ttable_tl0;
288 extern unsigned long kern_locked_tte_data;
289 extern int bigkernel;
290 struct hvtramp_descr *hdesc;
291 unsigned long trampoline_ra;
292 struct trap_per_cpu *tb;
293 u64 tte_vaddr, tte_data;
294 unsigned long hv_err;
295
296 hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
297 if (!hdesc) {
298 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
299 "hvtramp_descr.\n");
300 return;
301 }
302
303 hdesc->cpu = cpu;
304 hdesc->num_mappings = (bigkernel ? 2 : 1);
305
306 tb = &trap_block[cpu];
307 tb->hdesc = hdesc;
308
309 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
310 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311
312 hdesc->thread_reg = thread_reg;
313
314 tte_vaddr = (unsigned long) KERNBASE;
315 tte_data = kern_locked_tte_data;
316
317 hdesc->maps[0].vaddr = tte_vaddr;
318 hdesc->maps[0].tte = tte_data;
319 if (bigkernel) {
320 tte_vaddr += 0x400000;
321 tte_data += 0x400000;
322 hdesc->maps[1].vaddr = tte_vaddr;
323 hdesc->maps[1].tte = tte_data;
324 }
325
326 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327
328 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
329 kimage_addr_to_ra(&sparc64_ttable_tl0),
330 __pa(hdesc));
331 if (hv_err)
332 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
333 "gives error %lu\n", hv_err);
334 }
335 #endif
336
337 extern unsigned long sparc64_cpu_startup;
338
339 /* The OBP cpu startup callback truncates the 3rd arg cookie to
340 * 32-bits (I think) so to be safe we have it read the pointer
341 * contained here so we work on >4GB machines. -DaveM
342 */
343 static struct thread_info *cpu_new_thread = NULL;
344
345 static int __devinit smp_boot_one_cpu(unsigned int cpu)
346 {
347 struct trap_per_cpu *tb = &trap_block[cpu];
348 unsigned long entry =
349 (unsigned long)(&sparc64_cpu_startup);
350 unsigned long cookie =
351 (unsigned long)(&cpu_new_thread);
352 struct task_struct *p;
353 int timeout, ret;
354
355 p = fork_idle(cpu);
356 if (IS_ERR(p))
357 return PTR_ERR(p);
358 callin_flag = 0;
359 cpu_new_thread = task_thread_info(p);
360
361 if (tlb_type == hypervisor) {
362 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
363 if (ldom_domaining_enabled)
364 ldom_startcpu_cpuid(cpu,
365 (unsigned long) cpu_new_thread);
366 else
367 #endif
368 prom_startcpu_cpuid(cpu, entry, cookie);
369 } else {
370 struct device_node *dp = of_find_node_by_cpuid(cpu);
371
372 prom_startcpu(dp->node, entry, cookie);
373 }
374
375 for (timeout = 0; timeout < 50000; timeout++) {
376 if (callin_flag)
377 break;
378 udelay(100);
379 }
380
381 if (callin_flag) {
382 ret = 0;
383 } else {
384 printk("Processor %d is stuck.\n", cpu);
385 ret = -ENODEV;
386 }
387 cpu_new_thread = NULL;
388
389 if (tb->hdesc) {
390 kfree(tb->hdesc);
391 tb->hdesc = NULL;
392 }
393
394 return ret;
395 }
396
397 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
398 {
399 u64 result, target;
400 int stuck, tmp;
401
402 if (this_is_starfire) {
403 /* map to real upaid */
404 cpu = (((cpu & 0x3c) << 1) |
405 ((cpu & 0x40) >> 4) |
406 (cpu & 0x3));
407 }
408
409 target = (cpu << 14) | 0x70;
410 again:
411 /* Ok, this is the real Spitfire Errata #54.
412 * One must read back from a UDB internal register
413 * after writes to the UDB interrupt dispatch, but
414 * before the membar Sync for that write.
415 * So we use the high UDB control register (ASI 0x7f,
416 * ADDR 0x20) for the dummy read. -DaveM
417 */
418 tmp = 0x40;
419 __asm__ __volatile__(
420 "wrpr %1, %2, %%pstate\n\t"
421 "stxa %4, [%0] %3\n\t"
422 "stxa %5, [%0+%8] %3\n\t"
423 "add %0, %8, %0\n\t"
424 "stxa %6, [%0+%8] %3\n\t"
425 "membar #Sync\n\t"
426 "stxa %%g0, [%7] %3\n\t"
427 "membar #Sync\n\t"
428 "mov 0x20, %%g1\n\t"
429 "ldxa [%%g1] 0x7f, %%g0\n\t"
430 "membar #Sync"
431 : "=r" (tmp)
432 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
433 "r" (data0), "r" (data1), "r" (data2), "r" (target),
434 "r" (0x10), "0" (tmp)
435 : "g1");
436
437 /* NOTE: PSTATE_IE is still clear. */
438 stuck = 100000;
439 do {
440 __asm__ __volatile__("ldxa [%%g0] %1, %0"
441 : "=r" (result)
442 : "i" (ASI_INTR_DISPATCH_STAT));
443 if (result == 0) {
444 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445 : : "r" (pstate));
446 return;
447 }
448 stuck -= 1;
449 if (stuck == 0)
450 break;
451 } while (result & 0x1);
452 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
453 : : "r" (pstate));
454 if (stuck == 0) {
455 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
456 smp_processor_id(), result);
457 } else {
458 udelay(2);
459 goto again;
460 }
461 }
462
463 static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
464 {
465 u64 pstate;
466 int i;
467
468 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
469 for_each_cpu_mask(i, mask)
470 spitfire_xcall_helper(data0, data1, data2, pstate, i);
471 }
472
473 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474 * packet, but we have no use for that. However we do take advantage of
475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476 */
477 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
478 {
479 u64 pstate, ver, busy_mask;
480 int nack_busy_id, is_jbus, need_more;
481
482 if (cpus_empty(mask))
483 return;
484
485 /* Unfortunately, someone at Sun had the brilliant idea to make the
486 * busy/nack fields hard-coded by ITID number for this Ultra-III
487 * derivative processor.
488 */
489 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
490 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
491 (ver >> 32) == __SERRANO_ID);
492
493 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
494
495 retry:
496 need_more = 0;
497 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
498 : : "r" (pstate), "i" (PSTATE_IE));
499
500 /* Setup the dispatch data registers. */
501 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
502 "stxa %1, [%4] %6\n\t"
503 "stxa %2, [%5] %6\n\t"
504 "membar #Sync\n\t"
505 : /* no outputs */
506 : "r" (data0), "r" (data1), "r" (data2),
507 "r" (0x40), "r" (0x50), "r" (0x60),
508 "i" (ASI_INTR_W));
509
510 nack_busy_id = 0;
511 busy_mask = 0;
512 {
513 int i;
514
515 for_each_cpu_mask(i, mask) {
516 u64 target = (i << 14) | 0x70;
517
518 if (is_jbus) {
519 busy_mask |= (0x1UL << (i * 2));
520 } else {
521 target |= (nack_busy_id << 24);
522 busy_mask |= (0x1UL <<
523 (nack_busy_id * 2));
524 }
525 __asm__ __volatile__(
526 "stxa %%g0, [%0] %1\n\t"
527 "membar #Sync\n\t"
528 : /* no outputs */
529 : "r" (target), "i" (ASI_INTR_W));
530 nack_busy_id++;
531 if (nack_busy_id == 32) {
532 need_more = 1;
533 break;
534 }
535 }
536 }
537
538 /* Now, poll for completion. */
539 {
540 u64 dispatch_stat, nack_mask;
541 long stuck;
542
543 stuck = 100000 * nack_busy_id;
544 nack_mask = busy_mask << 1;
545 do {
546 __asm__ __volatile__("ldxa [%%g0] %1, %0"
547 : "=r" (dispatch_stat)
548 : "i" (ASI_INTR_DISPATCH_STAT));
549 if (!(dispatch_stat & (busy_mask | nack_mask))) {
550 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
551 : : "r" (pstate));
552 if (unlikely(need_more)) {
553 int i, cnt = 0;
554 for_each_cpu_mask(i, mask) {
555 cpu_clear(i, mask);
556 cnt++;
557 if (cnt == 32)
558 break;
559 }
560 goto retry;
561 }
562 return;
563 }
564 if (!--stuck)
565 break;
566 } while (dispatch_stat & busy_mask);
567
568 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
569 : : "r" (pstate));
570
571 if (dispatch_stat & busy_mask) {
572 /* Busy bits will not clear, continue instead
573 * of freezing up on this cpu.
574 */
575 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
576 smp_processor_id(), dispatch_stat);
577 } else {
578 int i, this_busy_nack = 0;
579
580 /* Delay some random time with interrupts enabled
581 * to prevent deadlock.
582 */
583 udelay(2 * nack_busy_id);
584
585 /* Clear out the mask bits for cpus which did not
586 * NACK us.
587 */
588 for_each_cpu_mask(i, mask) {
589 u64 check_mask;
590
591 if (is_jbus)
592 check_mask = (0x2UL << (2*i));
593 else
594 check_mask = (0x2UL <<
595 this_busy_nack);
596 if ((dispatch_stat & check_mask) == 0)
597 cpu_clear(i, mask);
598 this_busy_nack += 2;
599 if (this_busy_nack == 64)
600 break;
601 }
602
603 goto retry;
604 }
605 }
606 }
607
608 /* Multi-cpu list version. */
609 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
610 {
611 struct trap_per_cpu *tb;
612 u16 *cpu_list;
613 u64 *mondo;
614 cpumask_t error_mask;
615 unsigned long flags, status;
616 int cnt, retries, this_cpu, prev_sent, i;
617
618 if (cpus_empty(mask))
619 return;
620
621 /* We have to do this whole thing with interrupts fully disabled.
622 * Otherwise if we send an xcall from interrupt context it will
623 * corrupt both our mondo block and cpu list state.
624 *
625 * One consequence of this is that we cannot use timeout mechanisms
626 * that depend upon interrupts being delivered locally. So, for
627 * example, we cannot sample jiffies and expect it to advance.
628 *
629 * Fortunately, udelay() uses %stick/%tick so we can use that.
630 */
631 local_irq_save(flags);
632
633 this_cpu = smp_processor_id();
634 tb = &trap_block[this_cpu];
635
636 mondo = __va(tb->cpu_mondo_block_pa);
637 mondo[0] = data0;
638 mondo[1] = data1;
639 mondo[2] = data2;
640 wmb();
641
642 cpu_list = __va(tb->cpu_list_pa);
643
644 /* Setup the initial cpu list. */
645 cnt = 0;
646 for_each_cpu_mask(i, mask)
647 cpu_list[cnt++] = i;
648
649 cpus_clear(error_mask);
650 retries = 0;
651 prev_sent = 0;
652 do {
653 int forward_progress, n_sent;
654
655 status = sun4v_cpu_mondo_send(cnt,
656 tb->cpu_list_pa,
657 tb->cpu_mondo_block_pa);
658
659 /* HV_EOK means all cpus received the xcall, we're done. */
660 if (likely(status == HV_EOK))
661 break;
662
663 /* First, see if we made any forward progress.
664 *
665 * The hypervisor indicates successful sends by setting
666 * cpu list entries to the value 0xffff.
667 */
668 n_sent = 0;
669 for (i = 0; i < cnt; i++) {
670 if (likely(cpu_list[i] == 0xffff))
671 n_sent++;
672 }
673
674 forward_progress = 0;
675 if (n_sent > prev_sent)
676 forward_progress = 1;
677
678 prev_sent = n_sent;
679
680 /* If we get a HV_ECPUERROR, then one or more of the cpus
681 * in the list are in error state. Use the cpu_state()
682 * hypervisor call to find out which cpus are in error state.
683 */
684 if (unlikely(status == HV_ECPUERROR)) {
685 for (i = 0; i < cnt; i++) {
686 long err;
687 u16 cpu;
688
689 cpu = cpu_list[i];
690 if (cpu == 0xffff)
691 continue;
692
693 err = sun4v_cpu_state(cpu);
694 if (err >= 0 &&
695 err == HV_CPU_STATE_ERROR) {
696 cpu_list[i] = 0xffff;
697 cpu_set(cpu, error_mask);
698 }
699 }
700 } else if (unlikely(status != HV_EWOULDBLOCK))
701 goto fatal_mondo_error;
702
703 /* Don't bother rewriting the CPU list, just leave the
704 * 0xffff and non-0xffff entries in there and the
705 * hypervisor will do the right thing.
706 *
707 * Only advance timeout state if we didn't make any
708 * forward progress.
709 */
710 if (unlikely(!forward_progress)) {
711 if (unlikely(++retries > 10000))
712 goto fatal_mondo_timeout;
713
714 /* Delay a little bit to let other cpus catch up
715 * on their cpu mondo queue work.
716 */
717 udelay(2 * cnt);
718 }
719 } while (1);
720
721 local_irq_restore(flags);
722
723 if (unlikely(!cpus_empty(error_mask)))
724 goto fatal_mondo_cpu_error;
725
726 return;
727
728 fatal_mondo_cpu_error:
729 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
730 "were in error state\n",
731 this_cpu);
732 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
733 for_each_cpu_mask(i, error_mask)
734 printk("%d ", i);
735 printk("]\n");
736 return;
737
738 fatal_mondo_timeout:
739 local_irq_restore(flags);
740 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
741 " progress after %d retries.\n",
742 this_cpu, retries);
743 goto dump_cpu_list_and_out;
744
745 fatal_mondo_error:
746 local_irq_restore(flags);
747 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
748 this_cpu, status);
749 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
750 "mondo_block_pa(%lx)\n",
751 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
752
753 dump_cpu_list_and_out:
754 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
755 for (i = 0; i < cnt; i++)
756 printk("%u ", cpu_list[i]);
757 printk("]\n");
758 }
759
760 /* Send cross call to all processors mentioned in MASK
761 * except self.
762 */
763 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
764 {
765 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
766 int this_cpu = get_cpu();
767
768 cpus_and(mask, mask, cpu_online_map);
769 cpu_clear(this_cpu, mask);
770
771 if (tlb_type == spitfire)
772 spitfire_xcall_deliver(data0, data1, data2, mask);
773 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
774 cheetah_xcall_deliver(data0, data1, data2, mask);
775 else
776 hypervisor_xcall_deliver(data0, data1, data2, mask);
777 /* NOTE: Caller runs local copy on master. */
778
779 put_cpu();
780 }
781
782 extern unsigned long xcall_sync_tick;
783
784 static void smp_start_sync_tick_client(int cpu)
785 {
786 cpumask_t mask = cpumask_of_cpu(cpu);
787
788 smp_cross_call_masked(&xcall_sync_tick,
789 0, 0, 0, mask);
790 }
791
792 /* Send cross call to all processors except self. */
793 #define smp_cross_call(func, ctx, data1, data2) \
794 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
795
796 struct call_data_struct {
797 void (*func) (void *info);
798 void *info;
799 atomic_t finished;
800 int wait;
801 };
802
803 static struct call_data_struct *call_data;
804
805 extern unsigned long xcall_call_function;
806
807 /**
808 * smp_call_function(): Run a function on all other CPUs.
809 * @func: The function to run. This must be fast and non-blocking.
810 * @info: An arbitrary pointer to pass to the function.
811 * @nonatomic: currently unused.
812 * @wait: If true, wait (atomically) until function has completed on other CPUs.
813 *
814 * Returns 0 on success, else a negative status code. Does not return until
815 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
816 *
817 * You must not call this function with disabled interrupts or from a
818 * hardware interrupt handler or from a bottom half handler.
819 */
820 static int smp_call_function_mask(void (*func)(void *info), void *info,
821 int nonatomic, int wait, cpumask_t mask)
822 {
823 struct call_data_struct data;
824 int cpus;
825
826 /* Can deadlock when called with interrupts disabled */
827 WARN_ON(irqs_disabled());
828
829 data.func = func;
830 data.info = info;
831 atomic_set(&data.finished, 0);
832 data.wait = wait;
833
834 spin_lock(&call_lock);
835
836 cpu_clear(smp_processor_id(), mask);
837 cpus = cpus_weight(mask);
838 if (!cpus)
839 goto out_unlock;
840
841 call_data = &data;
842 mb();
843
844 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
845
846 /* Wait for response */
847 while (atomic_read(&data.finished) != cpus)
848 cpu_relax();
849
850 out_unlock:
851 spin_unlock(&call_lock);
852
853 return 0;
854 }
855
856 int smp_call_function(void (*func)(void *info), void *info,
857 int nonatomic, int wait)
858 {
859 return smp_call_function_mask(func, info, nonatomic, wait,
860 cpu_online_map);
861 }
862
863 void smp_call_function_client(int irq, struct pt_regs *regs)
864 {
865 void (*func) (void *info) = call_data->func;
866 void *info = call_data->info;
867
868 clear_softint(1 << irq);
869 if (call_data->wait) {
870 /* let initiator proceed only after completion */
871 func(info);
872 atomic_inc(&call_data->finished);
873 } else {
874 /* let initiator proceed after getting data */
875 atomic_inc(&call_data->finished);
876 func(info);
877 }
878 }
879
880 static void tsb_sync(void *info)
881 {
882 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
883 struct mm_struct *mm = info;
884
885 /* It is not valid to test "currrent->active_mm == mm" here.
886 *
887 * The value of "current" is not changed atomically with
888 * switch_mm(). But that's OK, we just need to check the
889 * current cpu's trap block PGD physical address.
890 */
891 if (tp->pgd_paddr == __pa(mm->pgd))
892 tsb_context_switch(mm);
893 }
894
895 void smp_tsb_sync(struct mm_struct *mm)
896 {
897 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
898 }
899
900 extern unsigned long xcall_flush_tlb_mm;
901 extern unsigned long xcall_flush_tlb_pending;
902 extern unsigned long xcall_flush_tlb_kernel_range;
903 extern unsigned long xcall_report_regs;
904 extern unsigned long xcall_receive_signal;
905 extern unsigned long xcall_new_mmu_context_version;
906
907 #ifdef DCACHE_ALIASING_POSSIBLE
908 extern unsigned long xcall_flush_dcache_page_cheetah;
909 #endif
910 extern unsigned long xcall_flush_dcache_page_spitfire;
911
912 #ifdef CONFIG_DEBUG_DCFLUSH
913 extern atomic_t dcpage_flushes;
914 extern atomic_t dcpage_flushes_xcall;
915 #endif
916
917 static inline void __local_flush_dcache_page(struct page *page)
918 {
919 #ifdef DCACHE_ALIASING_POSSIBLE
920 __flush_dcache_page(page_address(page),
921 ((tlb_type == spitfire) &&
922 page_mapping(page) != NULL));
923 #else
924 if (page_mapping(page) != NULL &&
925 tlb_type == spitfire)
926 __flush_icache_page(__pa(page_address(page)));
927 #endif
928 }
929
930 void smp_flush_dcache_page_impl(struct page *page, int cpu)
931 {
932 cpumask_t mask = cpumask_of_cpu(cpu);
933 int this_cpu;
934
935 if (tlb_type == hypervisor)
936 return;
937
938 #ifdef CONFIG_DEBUG_DCFLUSH
939 atomic_inc(&dcpage_flushes);
940 #endif
941
942 this_cpu = get_cpu();
943
944 if (cpu == this_cpu) {
945 __local_flush_dcache_page(page);
946 } else if (cpu_online(cpu)) {
947 void *pg_addr = page_address(page);
948 u64 data0;
949
950 if (tlb_type == spitfire) {
951 data0 =
952 ((u64)&xcall_flush_dcache_page_spitfire);
953 if (page_mapping(page) != NULL)
954 data0 |= ((u64)1 << 32);
955 spitfire_xcall_deliver(data0,
956 __pa(pg_addr),
957 (u64) pg_addr,
958 mask);
959 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
960 #ifdef DCACHE_ALIASING_POSSIBLE
961 data0 =
962 ((u64)&xcall_flush_dcache_page_cheetah);
963 cheetah_xcall_deliver(data0,
964 __pa(pg_addr),
965 0, mask);
966 #endif
967 }
968 #ifdef CONFIG_DEBUG_DCFLUSH
969 atomic_inc(&dcpage_flushes_xcall);
970 #endif
971 }
972
973 put_cpu();
974 }
975
976 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
977 {
978 void *pg_addr = page_address(page);
979 cpumask_t mask = cpu_online_map;
980 u64 data0;
981 int this_cpu;
982
983 if (tlb_type == hypervisor)
984 return;
985
986 this_cpu = get_cpu();
987
988 cpu_clear(this_cpu, mask);
989
990 #ifdef CONFIG_DEBUG_DCFLUSH
991 atomic_inc(&dcpage_flushes);
992 #endif
993 if (cpus_empty(mask))
994 goto flush_self;
995 if (tlb_type == spitfire) {
996 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
997 if (page_mapping(page) != NULL)
998 data0 |= ((u64)1 << 32);
999 spitfire_xcall_deliver(data0,
1000 __pa(pg_addr),
1001 (u64) pg_addr,
1002 mask);
1003 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1004 #ifdef DCACHE_ALIASING_POSSIBLE
1005 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1006 cheetah_xcall_deliver(data0,
1007 __pa(pg_addr),
1008 0, mask);
1009 #endif
1010 }
1011 #ifdef CONFIG_DEBUG_DCFLUSH
1012 atomic_inc(&dcpage_flushes_xcall);
1013 #endif
1014 flush_self:
1015 __local_flush_dcache_page(page);
1016
1017 put_cpu();
1018 }
1019
1020 static void __smp_receive_signal_mask(cpumask_t mask)
1021 {
1022 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1023 }
1024
1025 void smp_receive_signal(int cpu)
1026 {
1027 cpumask_t mask = cpumask_of_cpu(cpu);
1028
1029 if (cpu_online(cpu))
1030 __smp_receive_signal_mask(mask);
1031 }
1032
1033 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1034 {
1035 clear_softint(1 << irq);
1036 }
1037
1038 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1039 {
1040 struct mm_struct *mm;
1041 unsigned long flags;
1042
1043 clear_softint(1 << irq);
1044
1045 /* See if we need to allocate a new TLB context because
1046 * the version of the one we are using is now out of date.
1047 */
1048 mm = current->active_mm;
1049 if (unlikely(!mm || (mm == &init_mm)))
1050 return;
1051
1052 spin_lock_irqsave(&mm->context.lock, flags);
1053
1054 if (unlikely(!CTX_VALID(mm->context)))
1055 get_new_mmu_context(mm);
1056
1057 spin_unlock_irqrestore(&mm->context.lock, flags);
1058
1059 load_secondary_context(mm);
1060 __flush_tlb_mm(CTX_HWBITS(mm->context),
1061 SECONDARY_CONTEXT);
1062 }
1063
1064 void smp_new_mmu_context_version(void)
1065 {
1066 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1067 }
1068
1069 void smp_report_regs(void)
1070 {
1071 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1072 }
1073
1074 /* We know that the window frames of the user have been flushed
1075 * to the stack before we get here because all callers of us
1076 * are flush_tlb_*() routines, and these run after flush_cache_*()
1077 * which performs the flushw.
1078 *
1079 * The SMP TLB coherency scheme we use works as follows:
1080 *
1081 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1082 * space has (potentially) executed on, this is the heuristic
1083 * we use to avoid doing cross calls.
1084 *
1085 * Also, for flushing from kswapd and also for clones, we
1086 * use cpu_vm_mask as the list of cpus to make run the TLB.
1087 *
1088 * 2) TLB context numbers are shared globally across all processors
1089 * in the system, this allows us to play several games to avoid
1090 * cross calls.
1091 *
1092 * One invariant is that when a cpu switches to a process, and
1093 * that processes tsk->active_mm->cpu_vm_mask does not have the
1094 * current cpu's bit set, that tlb context is flushed locally.
1095 *
1096 * If the address space is non-shared (ie. mm->count == 1) we avoid
1097 * cross calls when we want to flush the currently running process's
1098 * tlb state. This is done by clearing all cpu bits except the current
1099 * processor's in current->active_mm->cpu_vm_mask and performing the
1100 * flush locally only. This will force any subsequent cpus which run
1101 * this task to flush the context from the local tlb if the process
1102 * migrates to another cpu (again).
1103 *
1104 * 3) For shared address spaces (threads) and swapping we bite the
1105 * bullet for most cases and perform the cross call (but only to
1106 * the cpus listed in cpu_vm_mask).
1107 *
1108 * The performance gain from "optimizing" away the cross call for threads is
1109 * questionable (in theory the big win for threads is the massive sharing of
1110 * address space state across processors).
1111 */
1112
1113 /* This currently is only used by the hugetlb arch pre-fault
1114 * hook on UltraSPARC-III+ and later when changing the pagesize
1115 * bits of the context register for an address space.
1116 */
1117 void smp_flush_tlb_mm(struct mm_struct *mm)
1118 {
1119 u32 ctx = CTX_HWBITS(mm->context);
1120 int cpu = get_cpu();
1121
1122 if (atomic_read(&mm->mm_users) == 1) {
1123 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1124 goto local_flush_and_out;
1125 }
1126
1127 smp_cross_call_masked(&xcall_flush_tlb_mm,
1128 ctx, 0, 0,
1129 mm->cpu_vm_mask);
1130
1131 local_flush_and_out:
1132 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1133
1134 put_cpu();
1135 }
1136
1137 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1138 {
1139 u32 ctx = CTX_HWBITS(mm->context);
1140 int cpu = get_cpu();
1141
1142 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1143 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1144 else
1145 smp_cross_call_masked(&xcall_flush_tlb_pending,
1146 ctx, nr, (unsigned long) vaddrs,
1147 mm->cpu_vm_mask);
1148
1149 __flush_tlb_pending(ctx, nr, vaddrs);
1150
1151 put_cpu();
1152 }
1153
1154 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1155 {
1156 start &= PAGE_MASK;
1157 end = PAGE_ALIGN(end);
1158 if (start != end) {
1159 smp_cross_call(&xcall_flush_tlb_kernel_range,
1160 0, start, end);
1161
1162 __flush_tlb_kernel_range(start, end);
1163 }
1164 }
1165
1166 /* CPU capture. */
1167 /* #define CAPTURE_DEBUG */
1168 extern unsigned long xcall_capture;
1169
1170 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1171 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1172 static unsigned long penguins_are_doing_time;
1173
1174 void smp_capture(void)
1175 {
1176 int result = atomic_add_ret(1, &smp_capture_depth);
1177
1178 if (result == 1) {
1179 int ncpus = num_online_cpus();
1180
1181 #ifdef CAPTURE_DEBUG
1182 printk("CPU[%d]: Sending penguins to jail...",
1183 smp_processor_id());
1184 #endif
1185 penguins_are_doing_time = 1;
1186 membar_storestore_loadstore();
1187 atomic_inc(&smp_capture_registry);
1188 smp_cross_call(&xcall_capture, 0, 0, 0);
1189 while (atomic_read(&smp_capture_registry) != ncpus)
1190 rmb();
1191 #ifdef CAPTURE_DEBUG
1192 printk("done\n");
1193 #endif
1194 }
1195 }
1196
1197 void smp_release(void)
1198 {
1199 if (atomic_dec_and_test(&smp_capture_depth)) {
1200 #ifdef CAPTURE_DEBUG
1201 printk("CPU[%d]: Giving pardon to "
1202 "imprisoned penguins\n",
1203 smp_processor_id());
1204 #endif
1205 penguins_are_doing_time = 0;
1206 membar_storeload_storestore();
1207 atomic_dec(&smp_capture_registry);
1208 }
1209 }
1210
1211 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1212 * can service tlb flush xcalls...
1213 */
1214 extern void prom_world(int);
1215
1216 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1217 {
1218 clear_softint(1 << irq);
1219
1220 preempt_disable();
1221
1222 __asm__ __volatile__("flushw");
1223 prom_world(1);
1224 atomic_inc(&smp_capture_registry);
1225 membar_storeload_storestore();
1226 while (penguins_are_doing_time)
1227 rmb();
1228 atomic_dec(&smp_capture_registry);
1229 prom_world(0);
1230
1231 preempt_enable();
1232 }
1233
1234 /* /proc/profile writes can call this, don't __init it please. */
1235 int setup_profiling_timer(unsigned int multiplier)
1236 {
1237 return -EINVAL;
1238 }
1239
1240 void __init smp_prepare_cpus(unsigned int max_cpus)
1241 {
1242 }
1243
1244 void __devinit smp_prepare_boot_cpu(void)
1245 {
1246 }
1247
1248 void __devinit smp_fill_in_sib_core_maps(void)
1249 {
1250 unsigned int i;
1251
1252 for_each_present_cpu(i) {
1253 unsigned int j;
1254
1255 cpus_clear(cpu_core_map[i]);
1256 if (cpu_data(i).core_id == 0) {
1257 cpu_set(i, cpu_core_map[i]);
1258 continue;
1259 }
1260
1261 for_each_present_cpu(j) {
1262 if (cpu_data(i).core_id ==
1263 cpu_data(j).core_id)
1264 cpu_set(j, cpu_core_map[i]);
1265 }
1266 }
1267
1268 for_each_present_cpu(i) {
1269 unsigned int j;
1270
1271 cpus_clear(per_cpu(cpu_sibling_map, i));
1272 if (cpu_data(i).proc_id == -1) {
1273 cpu_set(i, per_cpu(cpu_sibling_map, i));
1274 continue;
1275 }
1276
1277 for_each_present_cpu(j) {
1278 if (cpu_data(i).proc_id ==
1279 cpu_data(j).proc_id)
1280 cpu_set(j, per_cpu(cpu_sibling_map, i));
1281 }
1282 }
1283 }
1284
1285 int __cpuinit __cpu_up(unsigned int cpu)
1286 {
1287 int ret = smp_boot_one_cpu(cpu);
1288
1289 if (!ret) {
1290 cpu_set(cpu, smp_commenced_mask);
1291 while (!cpu_isset(cpu, cpu_online_map))
1292 mb();
1293 if (!cpu_isset(cpu, cpu_online_map)) {
1294 ret = -ENODEV;
1295 } else {
1296 /* On SUN4V, writes to %tick and %stick are
1297 * not allowed.
1298 */
1299 if (tlb_type != hypervisor)
1300 smp_synchronize_one_tick(cpu);
1301 }
1302 }
1303 return ret;
1304 }
1305
1306 #ifdef CONFIG_HOTPLUG_CPU
1307 void cpu_play_dead(void)
1308 {
1309 int cpu = smp_processor_id();
1310 unsigned long pstate;
1311
1312 idle_task_exit();
1313
1314 if (tlb_type == hypervisor) {
1315 struct trap_per_cpu *tb = &trap_block[cpu];
1316
1317 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1318 tb->cpu_mondo_pa, 0);
1319 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1320 tb->dev_mondo_pa, 0);
1321 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1322 tb->resum_mondo_pa, 0);
1323 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1324 tb->nonresum_mondo_pa, 0);
1325 }
1326
1327 cpu_clear(cpu, smp_commenced_mask);
1328 membar_safe("#Sync");
1329
1330 local_irq_disable();
1331
1332 __asm__ __volatile__(
1333 "rdpr %%pstate, %0\n\t"
1334 "wrpr %0, %1, %%pstate"
1335 : "=r" (pstate)
1336 : "i" (PSTATE_IE));
1337
1338 while (1)
1339 barrier();
1340 }
1341
1342 int __cpu_disable(void)
1343 {
1344 int cpu = smp_processor_id();
1345 cpuinfo_sparc *c;
1346 int i;
1347
1348 for_each_cpu_mask(i, cpu_core_map[cpu])
1349 cpu_clear(cpu, cpu_core_map[i]);
1350 cpus_clear(cpu_core_map[cpu]);
1351
1352 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1353 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1354 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1355
1356 c = &cpu_data(cpu);
1357
1358 c->core_id = 0;
1359 c->proc_id = -1;
1360
1361 spin_lock(&call_lock);
1362 cpu_clear(cpu, cpu_online_map);
1363 spin_unlock(&call_lock);
1364
1365 smp_wmb();
1366
1367 /* Make sure no interrupts point to this cpu. */
1368 fixup_irqs();
1369
1370 local_irq_enable();
1371 mdelay(1);
1372 local_irq_disable();
1373
1374 return 0;
1375 }
1376
1377 void __cpu_die(unsigned int cpu)
1378 {
1379 int i;
1380
1381 for (i = 0; i < 100; i++) {
1382 smp_rmb();
1383 if (!cpu_isset(cpu, smp_commenced_mask))
1384 break;
1385 msleep(100);
1386 }
1387 if (cpu_isset(cpu, smp_commenced_mask)) {
1388 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1389 } else {
1390 #if defined(CONFIG_SUN_LDOMS)
1391 unsigned long hv_err;
1392 int limit = 100;
1393
1394 do {
1395 hv_err = sun4v_cpu_stop(cpu);
1396 if (hv_err == HV_EOK) {
1397 cpu_clear(cpu, cpu_present_map);
1398 break;
1399 }
1400 } while (--limit > 0);
1401 if (limit <= 0) {
1402 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1403 hv_err);
1404 }
1405 #endif
1406 }
1407 }
1408 #endif
1409
1410 void __init smp_cpus_done(unsigned int max_cpus)
1411 {
1412 }
1413
1414 void smp_send_reschedule(int cpu)
1415 {
1416 smp_receive_signal(cpu);
1417 }
1418
1419 /* This is a nop because we capture all other cpus
1420 * anyways when making the PROM active.
1421 */
1422 void smp_send_stop(void)
1423 {
1424 }
1425
1426 unsigned long __per_cpu_base __read_mostly;
1427 unsigned long __per_cpu_shift __read_mostly;
1428
1429 EXPORT_SYMBOL(__per_cpu_base);
1430 EXPORT_SYMBOL(__per_cpu_shift);
1431
1432 void __init real_setup_per_cpu_areas(void)
1433 {
1434 unsigned long goal, size, i;
1435 char *ptr;
1436
1437 /* Copy section for each CPU (we discard the original) */
1438 goal = PERCPU_ENOUGH_ROOM;
1439
1440 __per_cpu_shift = PAGE_SHIFT;
1441 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1442 __per_cpu_shift++;
1443
1444 ptr = alloc_bootmem_pages(size * NR_CPUS);
1445
1446 __per_cpu_base = ptr - __per_cpu_start;
1447
1448 for (i = 0; i < NR_CPUS; i++, ptr += size)
1449 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1450
1451 /* Setup %g5 for the boot cpu. */
1452 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1453 }