memory-hotplug: remove page table of x86_64 architecture
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / sparc / mm / init_64.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51
52 #include "init_64.h"
53
54 unsigned long kern_linear_pte_xor[4] __read_mostly;
55
56 /* A bitmap, two bits for every 256MB of physical memory. These two
57 * bits determine what page size we use for kernel linear
58 * translations. They form an index into kern_linear_pte_xor[]. The
59 * value in the indexed slot is XOR'd with the TLB miss virtual
60 * address to form the resulting TTE. The mapping is:
61 *
62 * 0 ==> 4MB
63 * 1 ==> 256MB
64 * 2 ==> 2GB
65 * 3 ==> 16GB
66 *
67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68 * support 2GB pages, and hopefully future cpus will support the 16GB
69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70 * if these larger page sizes are not supported by the cpu.
71 *
72 * It would be nice to determine this from the machine description
73 * 'cpu' properties, but we need to have this table setup before the
74 * MDESC is initialized.
75 */
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80 * Space is allocated for this right after the trap table in
81 * arch/sparc64/kernel/head.S
82 */
83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84 #endif
85
86 static unsigned long cpu_pgsz_mask;
87
88 #define MAX_BANKS 32
89
90 static struct linux_prom64_registers pavail[MAX_BANKS];
91 static int pavail_ents;
92
93 static int cmp_p64(const void *a, const void *b)
94 {
95 const struct linux_prom64_registers *x = a, *y = b;
96
97 if (x->phys_addr > y->phys_addr)
98 return 1;
99 if (x->phys_addr < y->phys_addr)
100 return -1;
101 return 0;
102 }
103
104 static void __init read_obp_memory(const char *property,
105 struct linux_prom64_registers *regs,
106 int *num_ents)
107 {
108 phandle node = prom_finddevice("/memory");
109 int prop_size = prom_getproplen(node, property);
110 int ents, ret, i;
111
112 ents = prop_size / sizeof(struct linux_prom64_registers);
113 if (ents > MAX_BANKS) {
114 prom_printf("The machine has more %s property entries than "
115 "this kernel can support (%d).\n",
116 property, MAX_BANKS);
117 prom_halt();
118 }
119
120 ret = prom_getproperty(node, property, (char *) regs, prop_size);
121 if (ret == -1) {
122 prom_printf("Couldn't get %s property from /memory.\n",
123 property);
124 prom_halt();
125 }
126
127 /* Sanitize what we got from the firmware, by page aligning
128 * everything.
129 */
130 for (i = 0; i < ents; i++) {
131 unsigned long base, size;
132
133 base = regs[i].phys_addr;
134 size = regs[i].reg_size;
135
136 size &= PAGE_MASK;
137 if (base & ~PAGE_MASK) {
138 unsigned long new_base = PAGE_ALIGN(base);
139
140 size -= new_base - base;
141 if ((long) size < 0L)
142 size = 0UL;
143 base = new_base;
144 }
145 if (size == 0UL) {
146 /* If it is empty, simply get rid of it.
147 * This simplifies the logic of the other
148 * functions that process these arrays.
149 */
150 memmove(&regs[i], &regs[i + 1],
151 (ents - i - 1) * sizeof(regs[0]));
152 i--;
153 ents--;
154 continue;
155 }
156 regs[i].phys_addr = base;
157 regs[i].reg_size = size;
158 }
159
160 *num_ents = ents;
161
162 sort(regs, ents, sizeof(struct linux_prom64_registers),
163 cmp_p64, NULL);
164 }
165
166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167 sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
169
170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
181
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
187
188 int num_kernel_image_mappings;
189
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196
197 inline void flush_dcache_page_impl(struct page *page)
198 {
199 BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes);
202 #endif
203
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page),
206 ((tlb_type == spitfire) &&
207 page_mapping(page) != NULL));
208 #else
209 if (page_mapping(page) != NULL &&
210 tlb_type == spitfire)
211 __flush_icache_page(__pa(page_address(page)));
212 #endif
213 }
214
215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219
220 #define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225 unsigned long mask = this_cpu;
226 unsigned long non_cpu_bits;
227
228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230
231 __asm__ __volatile__("1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
236 "cmp %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t"
238 " nop"
239 : /* no outputs */
240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241 : "g1", "g7");
242 }
243
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246 unsigned long mask = (1UL << PG_dcache_dirty);
247
248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249 "1:\n\t"
250 "ldx [%2], %%g7\n\t"
251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t"
253 "cmp %%g1, %0\n\t"
254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t"
257 "cmp %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t"
259 " nop\n"
260 "2:"
261 : /* no outputs */
262 : "r" (cpu), "r" (mask), "r" (&page->flags),
263 "i" (PG_dcache_cpu_mask),
264 "i" (PG_dcache_cpu_shift)
265 : "g1", "g7");
266 }
267
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270 unsigned long tsb_addr = (unsigned long) ent;
271
272 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 tsb_addr = __pa(tsb_addr);
274
275 __tsb_insert(tsb_addr, tag, pte);
276 }
277
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279
280 static void flush_dcache(unsigned long pfn)
281 {
282 struct page *page;
283
284 page = pfn_to_page(pfn);
285 if (page) {
286 unsigned long pg_flags;
287
288 pg_flags = page->flags;
289 if (pg_flags & (1UL << PG_dcache_dirty)) {
290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291 PG_dcache_cpu_mask);
292 int this_cpu = get_cpu();
293
294 /* This is just to optimize away some function calls
295 * in the SMP case.
296 */
297 if (cpu == this_cpu)
298 flush_dcache_page_impl(page);
299 else
300 smp_flush_dcache_page_impl(page, cpu);
301
302 clear_dcache_dirty_cpu(page, cpu);
303
304 put_cpu();
305 }
306 }
307 }
308
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311 unsigned long tsb_hash_shift, unsigned long address,
312 unsigned long tte)
313 {
314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315 unsigned long tag;
316
317 if (unlikely(!tsb))
318 return;
319
320 tsb += ((address >> tsb_hash_shift) &
321 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322 tag = (address >> 22UL);
323 tsb_insert(tsb, tag, tte);
324 }
325
326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
327 static inline bool is_hugetlb_pte(pte_t pte)
328 {
329 if ((tlb_type == hypervisor &&
330 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
331 (tlb_type != hypervisor &&
332 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
333 return true;
334 return false;
335 }
336 #endif
337
338 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
339 {
340 struct mm_struct *mm;
341 unsigned long flags;
342 pte_t pte = *ptep;
343
344 if (tlb_type != hypervisor) {
345 unsigned long pfn = pte_pfn(pte);
346
347 if (pfn_valid(pfn))
348 flush_dcache(pfn);
349 }
350
351 mm = vma->vm_mm;
352
353 spin_lock_irqsave(&mm->context.lock, flags);
354
355 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
356 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
357 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
358 address, pte_val(pte));
359 else
360 #endif
361 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
362 address, pte_val(pte));
363
364 spin_unlock_irqrestore(&mm->context.lock, flags);
365 }
366
367 void flush_dcache_page(struct page *page)
368 {
369 struct address_space *mapping;
370 int this_cpu;
371
372 if (tlb_type == hypervisor)
373 return;
374
375 /* Do not bother with the expensive D-cache flush if it
376 * is merely the zero page. The 'bigcore' testcase in GDB
377 * causes this case to run millions of times.
378 */
379 if (page == ZERO_PAGE(0))
380 return;
381
382 this_cpu = get_cpu();
383
384 mapping = page_mapping(page);
385 if (mapping && !mapping_mapped(mapping)) {
386 int dirty = test_bit(PG_dcache_dirty, &page->flags);
387 if (dirty) {
388 int dirty_cpu = dcache_dirty_cpu(page);
389
390 if (dirty_cpu == this_cpu)
391 goto out;
392 smp_flush_dcache_page_impl(page, dirty_cpu);
393 }
394 set_dcache_dirty(page, this_cpu);
395 } else {
396 /* We could delay the flush for the !page_mapping
397 * case too. But that case is for exec env/arg
398 * pages and those are %99 certainly going to get
399 * faulted into the tlb (and thus flushed) anyways.
400 */
401 flush_dcache_page_impl(page);
402 }
403
404 out:
405 put_cpu();
406 }
407 EXPORT_SYMBOL(flush_dcache_page);
408
409 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
410 {
411 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
412 if (tlb_type == spitfire) {
413 unsigned long kaddr;
414
415 /* This code only runs on Spitfire cpus so this is
416 * why we can assume _PAGE_PADDR_4U.
417 */
418 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
419 unsigned long paddr, mask = _PAGE_PADDR_4U;
420
421 if (kaddr >= PAGE_OFFSET)
422 paddr = kaddr & mask;
423 else {
424 pgd_t *pgdp = pgd_offset_k(kaddr);
425 pud_t *pudp = pud_offset(pgdp, kaddr);
426 pmd_t *pmdp = pmd_offset(pudp, kaddr);
427 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
428
429 paddr = pte_val(*ptep) & mask;
430 }
431 __flush_icache_page(paddr);
432 }
433 }
434 }
435 EXPORT_SYMBOL(flush_icache_range);
436
437 void mmu_info(struct seq_file *m)
438 {
439 static const char *pgsz_strings[] = {
440 "8K", "64K", "512K", "4MB", "32MB",
441 "256MB", "2GB", "16GB",
442 };
443 int i, printed;
444
445 if (tlb_type == cheetah)
446 seq_printf(m, "MMU Type\t: Cheetah\n");
447 else if (tlb_type == cheetah_plus)
448 seq_printf(m, "MMU Type\t: Cheetah+\n");
449 else if (tlb_type == spitfire)
450 seq_printf(m, "MMU Type\t: Spitfire\n");
451 else if (tlb_type == hypervisor)
452 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
453 else
454 seq_printf(m, "MMU Type\t: ???\n");
455
456 seq_printf(m, "MMU PGSZs\t: ");
457 printed = 0;
458 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
459 if (cpu_pgsz_mask & (1UL << i)) {
460 seq_printf(m, "%s%s",
461 printed ? "," : "", pgsz_strings[i]);
462 printed++;
463 }
464 }
465 seq_putc(m, '\n');
466
467 #ifdef CONFIG_DEBUG_DCFLUSH
468 seq_printf(m, "DCPageFlushes\t: %d\n",
469 atomic_read(&dcpage_flushes));
470 #ifdef CONFIG_SMP
471 seq_printf(m, "DCPageFlushesXC\t: %d\n",
472 atomic_read(&dcpage_flushes_xcall));
473 #endif /* CONFIG_SMP */
474 #endif /* CONFIG_DEBUG_DCFLUSH */
475 }
476
477 struct linux_prom_translation prom_trans[512] __read_mostly;
478 unsigned int prom_trans_ents __read_mostly;
479
480 unsigned long kern_locked_tte_data;
481
482 /* The obp translations are saved based on 8k pagesize, since obp can
483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
484 * HI_OBP_ADDRESS range are handled in ktlb.S.
485 */
486 static inline int in_obp_range(unsigned long vaddr)
487 {
488 return (vaddr >= LOW_OBP_ADDRESS &&
489 vaddr < HI_OBP_ADDRESS);
490 }
491
492 static int cmp_ptrans(const void *a, const void *b)
493 {
494 const struct linux_prom_translation *x = a, *y = b;
495
496 if (x->virt > y->virt)
497 return 1;
498 if (x->virt < y->virt)
499 return -1;
500 return 0;
501 }
502
503 /* Read OBP translations property into 'prom_trans[]'. */
504 static void __init read_obp_translations(void)
505 {
506 int n, node, ents, first, last, i;
507
508 node = prom_finddevice("/virtual-memory");
509 n = prom_getproplen(node, "translations");
510 if (unlikely(n == 0 || n == -1)) {
511 prom_printf("prom_mappings: Couldn't get size.\n");
512 prom_halt();
513 }
514 if (unlikely(n > sizeof(prom_trans))) {
515 prom_printf("prom_mappings: Size %d is too big.\n", n);
516 prom_halt();
517 }
518
519 if ((n = prom_getproperty(node, "translations",
520 (char *)&prom_trans[0],
521 sizeof(prom_trans))) == -1) {
522 prom_printf("prom_mappings: Couldn't get property.\n");
523 prom_halt();
524 }
525
526 n = n / sizeof(struct linux_prom_translation);
527
528 ents = n;
529
530 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
531 cmp_ptrans, NULL);
532
533 /* Now kick out all the non-OBP entries. */
534 for (i = 0; i < ents; i++) {
535 if (in_obp_range(prom_trans[i].virt))
536 break;
537 }
538 first = i;
539 for (; i < ents; i++) {
540 if (!in_obp_range(prom_trans[i].virt))
541 break;
542 }
543 last = i;
544
545 for (i = 0; i < (last - first); i++) {
546 struct linux_prom_translation *src = &prom_trans[i + first];
547 struct linux_prom_translation *dest = &prom_trans[i];
548
549 *dest = *src;
550 }
551 for (; i < ents; i++) {
552 struct linux_prom_translation *dest = &prom_trans[i];
553 dest->virt = dest->size = dest->data = 0x0UL;
554 }
555
556 prom_trans_ents = last - first;
557
558 if (tlb_type == spitfire) {
559 /* Clear diag TTE bits. */
560 for (i = 0; i < prom_trans_ents; i++)
561 prom_trans[i].data &= ~0x0003fe0000000000UL;
562 }
563
564 /* Force execute bit on. */
565 for (i = 0; i < prom_trans_ents; i++)
566 prom_trans[i].data |= (tlb_type == hypervisor ?
567 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
568 }
569
570 static void __init hypervisor_tlb_lock(unsigned long vaddr,
571 unsigned long pte,
572 unsigned long mmu)
573 {
574 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
575
576 if (ret != 0) {
577 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
578 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
579 prom_halt();
580 }
581 }
582
583 static unsigned long kern_large_tte(unsigned long paddr);
584
585 static void __init remap_kernel(void)
586 {
587 unsigned long phys_page, tte_vaddr, tte_data;
588 int i, tlb_ent = sparc64_highest_locked_tlbent();
589
590 tte_vaddr = (unsigned long) KERNBASE;
591 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
592 tte_data = kern_large_tte(phys_page);
593
594 kern_locked_tte_data = tte_data;
595
596 /* Now lock us into the TLBs via Hypervisor or OBP. */
597 if (tlb_type == hypervisor) {
598 for (i = 0; i < num_kernel_image_mappings; i++) {
599 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
600 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
601 tte_vaddr += 0x400000;
602 tte_data += 0x400000;
603 }
604 } else {
605 for (i = 0; i < num_kernel_image_mappings; i++) {
606 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
607 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
608 tte_vaddr += 0x400000;
609 tte_data += 0x400000;
610 }
611 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
612 }
613 if (tlb_type == cheetah_plus) {
614 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
615 CTX_CHEETAH_PLUS_NUC);
616 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
617 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
618 }
619 }
620
621
622 static void __init inherit_prom_mappings(void)
623 {
624 /* Now fixup OBP's idea about where we really are mapped. */
625 printk("Remapping the kernel... ");
626 remap_kernel();
627 printk("done.\n");
628 }
629
630 void prom_world(int enter)
631 {
632 if (!enter)
633 set_fs(get_fs());
634
635 __asm__ __volatile__("flushw");
636 }
637
638 void __flush_dcache_range(unsigned long start, unsigned long end)
639 {
640 unsigned long va;
641
642 if (tlb_type == spitfire) {
643 int n = 0;
644
645 for (va = start; va < end; va += 32) {
646 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
647 if (++n >= 512)
648 break;
649 }
650 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
651 start = __pa(start);
652 end = __pa(end);
653 for (va = start; va < end; va += 32)
654 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
655 "membar #Sync"
656 : /* no outputs */
657 : "r" (va),
658 "i" (ASI_DCACHE_INVALIDATE));
659 }
660 }
661 EXPORT_SYMBOL(__flush_dcache_range);
662
663 /* get_new_mmu_context() uses "cache + 1". */
664 DEFINE_SPINLOCK(ctx_alloc_lock);
665 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
666 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
667 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
668 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
669
670 /* Caller does TLB context flushing on local CPU if necessary.
671 * The caller also ensures that CTX_VALID(mm->context) is false.
672 *
673 * We must be careful about boundary cases so that we never
674 * let the user have CTX 0 (nucleus) or we ever use a CTX
675 * version of zero (and thus NO_CONTEXT would not be caught
676 * by version mis-match tests in mmu_context.h).
677 *
678 * Always invoked with interrupts disabled.
679 */
680 void get_new_mmu_context(struct mm_struct *mm)
681 {
682 unsigned long ctx, new_ctx;
683 unsigned long orig_pgsz_bits;
684 unsigned long flags;
685 int new_version;
686
687 spin_lock_irqsave(&ctx_alloc_lock, flags);
688 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
689 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
690 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
691 new_version = 0;
692 if (new_ctx >= (1 << CTX_NR_BITS)) {
693 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
694 if (new_ctx >= ctx) {
695 int i;
696 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
697 CTX_FIRST_VERSION;
698 if (new_ctx == 1)
699 new_ctx = CTX_FIRST_VERSION;
700
701 /* Don't call memset, for 16 entries that's just
702 * plain silly...
703 */
704 mmu_context_bmap[0] = 3;
705 mmu_context_bmap[1] = 0;
706 mmu_context_bmap[2] = 0;
707 mmu_context_bmap[3] = 0;
708 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
709 mmu_context_bmap[i + 0] = 0;
710 mmu_context_bmap[i + 1] = 0;
711 mmu_context_bmap[i + 2] = 0;
712 mmu_context_bmap[i + 3] = 0;
713 }
714 new_version = 1;
715 goto out;
716 }
717 }
718 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
719 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
720 out:
721 tlb_context_cache = new_ctx;
722 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
723 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
724
725 if (unlikely(new_version))
726 smp_new_mmu_context_version();
727 }
728
729 static int numa_enabled = 1;
730 static int numa_debug;
731
732 static int __init early_numa(char *p)
733 {
734 if (!p)
735 return 0;
736
737 if (strstr(p, "off"))
738 numa_enabled = 0;
739
740 if (strstr(p, "debug"))
741 numa_debug = 1;
742
743 return 0;
744 }
745 early_param("numa", early_numa);
746
747 #define numadbg(f, a...) \
748 do { if (numa_debug) \
749 printk(KERN_INFO f, ## a); \
750 } while (0)
751
752 static void __init find_ramdisk(unsigned long phys_base)
753 {
754 #ifdef CONFIG_BLK_DEV_INITRD
755 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
756 unsigned long ramdisk_image;
757
758 /* Older versions of the bootloader only supported a
759 * 32-bit physical address for the ramdisk image
760 * location, stored at sparc_ramdisk_image. Newer
761 * SILO versions set sparc_ramdisk_image to zero and
762 * provide a full 64-bit physical address at
763 * sparc_ramdisk_image64.
764 */
765 ramdisk_image = sparc_ramdisk_image;
766 if (!ramdisk_image)
767 ramdisk_image = sparc_ramdisk_image64;
768
769 /* Another bootloader quirk. The bootloader normalizes
770 * the physical address to KERNBASE, so we have to
771 * factor that back out and add in the lowest valid
772 * physical page address to get the true physical address.
773 */
774 ramdisk_image -= KERNBASE;
775 ramdisk_image += phys_base;
776
777 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
778 ramdisk_image, sparc_ramdisk_size);
779
780 initrd_start = ramdisk_image;
781 initrd_end = ramdisk_image + sparc_ramdisk_size;
782
783 memblock_reserve(initrd_start, sparc_ramdisk_size);
784
785 initrd_start += PAGE_OFFSET;
786 initrd_end += PAGE_OFFSET;
787 }
788 #endif
789 }
790
791 struct node_mem_mask {
792 unsigned long mask;
793 unsigned long val;
794 };
795 static struct node_mem_mask node_masks[MAX_NUMNODES];
796 static int num_node_masks;
797
798 int numa_cpu_lookup_table[NR_CPUS];
799 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
800
801 #ifdef CONFIG_NEED_MULTIPLE_NODES
802
803 struct mdesc_mblock {
804 u64 base;
805 u64 size;
806 u64 offset; /* RA-to-PA */
807 };
808 static struct mdesc_mblock *mblocks;
809 static int num_mblocks;
810
811 static unsigned long ra_to_pa(unsigned long addr)
812 {
813 int i;
814
815 for (i = 0; i < num_mblocks; i++) {
816 struct mdesc_mblock *m = &mblocks[i];
817
818 if (addr >= m->base &&
819 addr < (m->base + m->size)) {
820 addr += m->offset;
821 break;
822 }
823 }
824 return addr;
825 }
826
827 static int find_node(unsigned long addr)
828 {
829 int i;
830
831 addr = ra_to_pa(addr);
832 for (i = 0; i < num_node_masks; i++) {
833 struct node_mem_mask *p = &node_masks[i];
834
835 if ((addr & p->mask) == p->val)
836 return i;
837 }
838 return -1;
839 }
840
841 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
842 {
843 *nid = find_node(start);
844 start += PAGE_SIZE;
845 while (start < end) {
846 int n = find_node(start);
847
848 if (n != *nid)
849 break;
850 start += PAGE_SIZE;
851 }
852
853 if (start > end)
854 start = end;
855
856 return start;
857 }
858 #endif
859
860 /* This must be invoked after performing all of the necessary
861 * memblock_set_node() calls for 'nid'. We need to be able to get
862 * correct data from get_pfn_range_for_nid().
863 */
864 static void __init allocate_node_data(int nid)
865 {
866 struct pglist_data *p;
867 unsigned long start_pfn, end_pfn;
868 #ifdef CONFIG_NEED_MULTIPLE_NODES
869 unsigned long paddr;
870
871 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
872 if (!paddr) {
873 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
874 prom_halt();
875 }
876 NODE_DATA(nid) = __va(paddr);
877 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
878
879 NODE_DATA(nid)->node_id = nid;
880 #endif
881
882 p = NODE_DATA(nid);
883
884 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
885 p->node_start_pfn = start_pfn;
886 p->node_spanned_pages = end_pfn - start_pfn;
887 }
888
889 static void init_node_masks_nonnuma(void)
890 {
891 int i;
892
893 numadbg("Initializing tables for non-numa.\n");
894
895 node_masks[0].mask = node_masks[0].val = 0;
896 num_node_masks = 1;
897
898 for (i = 0; i < NR_CPUS; i++)
899 numa_cpu_lookup_table[i] = 0;
900
901 cpumask_setall(&numa_cpumask_lookup_table[0]);
902 }
903
904 #ifdef CONFIG_NEED_MULTIPLE_NODES
905 struct pglist_data *node_data[MAX_NUMNODES];
906
907 EXPORT_SYMBOL(numa_cpu_lookup_table);
908 EXPORT_SYMBOL(numa_cpumask_lookup_table);
909 EXPORT_SYMBOL(node_data);
910
911 struct mdesc_mlgroup {
912 u64 node;
913 u64 latency;
914 u64 match;
915 u64 mask;
916 };
917 static struct mdesc_mlgroup *mlgroups;
918 static int num_mlgroups;
919
920 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
921 u32 cfg_handle)
922 {
923 u64 arc;
924
925 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
926 u64 target = mdesc_arc_target(md, arc);
927 const u64 *val;
928
929 val = mdesc_get_property(md, target,
930 "cfg-handle", NULL);
931 if (val && *val == cfg_handle)
932 return 0;
933 }
934 return -ENODEV;
935 }
936
937 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
938 u32 cfg_handle)
939 {
940 u64 arc, candidate, best_latency = ~(u64)0;
941
942 candidate = MDESC_NODE_NULL;
943 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
944 u64 target = mdesc_arc_target(md, arc);
945 const char *name = mdesc_node_name(md, target);
946 const u64 *val;
947
948 if (strcmp(name, "pio-latency-group"))
949 continue;
950
951 val = mdesc_get_property(md, target, "latency", NULL);
952 if (!val)
953 continue;
954
955 if (*val < best_latency) {
956 candidate = target;
957 best_latency = *val;
958 }
959 }
960
961 if (candidate == MDESC_NODE_NULL)
962 return -ENODEV;
963
964 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
965 }
966
967 int of_node_to_nid(struct device_node *dp)
968 {
969 const struct linux_prom64_registers *regs;
970 struct mdesc_handle *md;
971 u32 cfg_handle;
972 int count, nid;
973 u64 grp;
974
975 /* This is the right thing to do on currently supported
976 * SUN4U NUMA platforms as well, as the PCI controller does
977 * not sit behind any particular memory controller.
978 */
979 if (!mlgroups)
980 return -1;
981
982 regs = of_get_property(dp, "reg", NULL);
983 if (!regs)
984 return -1;
985
986 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
987
988 md = mdesc_grab();
989
990 count = 0;
991 nid = -1;
992 mdesc_for_each_node_by_name(md, grp, "group") {
993 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
994 nid = count;
995 break;
996 }
997 count++;
998 }
999
1000 mdesc_release(md);
1001
1002 return nid;
1003 }
1004
1005 static void __init add_node_ranges(void)
1006 {
1007 struct memblock_region *reg;
1008
1009 for_each_memblock(memory, reg) {
1010 unsigned long size = reg->size;
1011 unsigned long start, end;
1012
1013 start = reg->base;
1014 end = start + size;
1015 while (start < end) {
1016 unsigned long this_end;
1017 int nid;
1018
1019 this_end = memblock_nid_range(start, end, &nid);
1020
1021 numadbg("Setting memblock NUMA node nid[%d] "
1022 "start[%lx] end[%lx]\n",
1023 nid, start, this_end);
1024
1025 memblock_set_node(start, this_end - start, nid);
1026 start = this_end;
1027 }
1028 }
1029 }
1030
1031 static int __init grab_mlgroups(struct mdesc_handle *md)
1032 {
1033 unsigned long paddr;
1034 int count = 0;
1035 u64 node;
1036
1037 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1038 count++;
1039 if (!count)
1040 return -ENOENT;
1041
1042 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1043 SMP_CACHE_BYTES);
1044 if (!paddr)
1045 return -ENOMEM;
1046
1047 mlgroups = __va(paddr);
1048 num_mlgroups = count;
1049
1050 count = 0;
1051 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1052 struct mdesc_mlgroup *m = &mlgroups[count++];
1053 const u64 *val;
1054
1055 m->node = node;
1056
1057 val = mdesc_get_property(md, node, "latency", NULL);
1058 m->latency = *val;
1059 val = mdesc_get_property(md, node, "address-match", NULL);
1060 m->match = *val;
1061 val = mdesc_get_property(md, node, "address-mask", NULL);
1062 m->mask = *val;
1063
1064 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1065 "match[%llx] mask[%llx]\n",
1066 count - 1, m->node, m->latency, m->match, m->mask);
1067 }
1068
1069 return 0;
1070 }
1071
1072 static int __init grab_mblocks(struct mdesc_handle *md)
1073 {
1074 unsigned long paddr;
1075 int count = 0;
1076 u64 node;
1077
1078 mdesc_for_each_node_by_name(md, node, "mblock")
1079 count++;
1080 if (!count)
1081 return -ENOENT;
1082
1083 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1084 SMP_CACHE_BYTES);
1085 if (!paddr)
1086 return -ENOMEM;
1087
1088 mblocks = __va(paddr);
1089 num_mblocks = count;
1090
1091 count = 0;
1092 mdesc_for_each_node_by_name(md, node, "mblock") {
1093 struct mdesc_mblock *m = &mblocks[count++];
1094 const u64 *val;
1095
1096 val = mdesc_get_property(md, node, "base", NULL);
1097 m->base = *val;
1098 val = mdesc_get_property(md, node, "size", NULL);
1099 m->size = *val;
1100 val = mdesc_get_property(md, node,
1101 "address-congruence-offset", NULL);
1102 m->offset = *val;
1103
1104 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1105 count - 1, m->base, m->size, m->offset);
1106 }
1107
1108 return 0;
1109 }
1110
1111 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1112 u64 grp, cpumask_t *mask)
1113 {
1114 u64 arc;
1115
1116 cpumask_clear(mask);
1117
1118 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1119 u64 target = mdesc_arc_target(md, arc);
1120 const char *name = mdesc_node_name(md, target);
1121 const u64 *id;
1122
1123 if (strcmp(name, "cpu"))
1124 continue;
1125 id = mdesc_get_property(md, target, "id", NULL);
1126 if (*id < nr_cpu_ids)
1127 cpumask_set_cpu(*id, mask);
1128 }
1129 }
1130
1131 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1132 {
1133 int i;
1134
1135 for (i = 0; i < num_mlgroups; i++) {
1136 struct mdesc_mlgroup *m = &mlgroups[i];
1137 if (m->node == node)
1138 return m;
1139 }
1140 return NULL;
1141 }
1142
1143 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1144 int index)
1145 {
1146 struct mdesc_mlgroup *candidate = NULL;
1147 u64 arc, best_latency = ~(u64)0;
1148 struct node_mem_mask *n;
1149
1150 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1151 u64 target = mdesc_arc_target(md, arc);
1152 struct mdesc_mlgroup *m = find_mlgroup(target);
1153 if (!m)
1154 continue;
1155 if (m->latency < best_latency) {
1156 candidate = m;
1157 best_latency = m->latency;
1158 }
1159 }
1160 if (!candidate)
1161 return -ENOENT;
1162
1163 if (num_node_masks != index) {
1164 printk(KERN_ERR "Inconsistent NUMA state, "
1165 "index[%d] != num_node_masks[%d]\n",
1166 index, num_node_masks);
1167 return -EINVAL;
1168 }
1169
1170 n = &node_masks[num_node_masks++];
1171
1172 n->mask = candidate->mask;
1173 n->val = candidate->match;
1174
1175 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1176 index, n->mask, n->val, candidate->latency);
1177
1178 return 0;
1179 }
1180
1181 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1182 int index)
1183 {
1184 cpumask_t mask;
1185 int cpu;
1186
1187 numa_parse_mdesc_group_cpus(md, grp, &mask);
1188
1189 for_each_cpu(cpu, &mask)
1190 numa_cpu_lookup_table[cpu] = index;
1191 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1192
1193 if (numa_debug) {
1194 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1195 for_each_cpu(cpu, &mask)
1196 printk("%d ", cpu);
1197 printk("]\n");
1198 }
1199
1200 return numa_attach_mlgroup(md, grp, index);
1201 }
1202
1203 static int __init numa_parse_mdesc(void)
1204 {
1205 struct mdesc_handle *md = mdesc_grab();
1206 int i, err, count;
1207 u64 node;
1208
1209 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1210 if (node == MDESC_NODE_NULL) {
1211 mdesc_release(md);
1212 return -ENOENT;
1213 }
1214
1215 err = grab_mblocks(md);
1216 if (err < 0)
1217 goto out;
1218
1219 err = grab_mlgroups(md);
1220 if (err < 0)
1221 goto out;
1222
1223 count = 0;
1224 mdesc_for_each_node_by_name(md, node, "group") {
1225 err = numa_parse_mdesc_group(md, node, count);
1226 if (err < 0)
1227 break;
1228 count++;
1229 }
1230
1231 add_node_ranges();
1232
1233 for (i = 0; i < num_node_masks; i++) {
1234 allocate_node_data(i);
1235 node_set_online(i);
1236 }
1237
1238 err = 0;
1239 out:
1240 mdesc_release(md);
1241 return err;
1242 }
1243
1244 static int __init numa_parse_jbus(void)
1245 {
1246 unsigned long cpu, index;
1247
1248 /* NUMA node id is encoded in bits 36 and higher, and there is
1249 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1250 */
1251 index = 0;
1252 for_each_present_cpu(cpu) {
1253 numa_cpu_lookup_table[cpu] = index;
1254 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1255 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1256 node_masks[index].val = cpu << 36UL;
1257
1258 index++;
1259 }
1260 num_node_masks = index;
1261
1262 add_node_ranges();
1263
1264 for (index = 0; index < num_node_masks; index++) {
1265 allocate_node_data(index);
1266 node_set_online(index);
1267 }
1268
1269 return 0;
1270 }
1271
1272 static int __init numa_parse_sun4u(void)
1273 {
1274 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1275 unsigned long ver;
1276
1277 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1278 if ((ver >> 32UL) == __JALAPENO_ID ||
1279 (ver >> 32UL) == __SERRANO_ID)
1280 return numa_parse_jbus();
1281 }
1282 return -1;
1283 }
1284
1285 static int __init bootmem_init_numa(void)
1286 {
1287 int err = -1;
1288
1289 numadbg("bootmem_init_numa()\n");
1290
1291 if (numa_enabled) {
1292 if (tlb_type == hypervisor)
1293 err = numa_parse_mdesc();
1294 else
1295 err = numa_parse_sun4u();
1296 }
1297 return err;
1298 }
1299
1300 #else
1301
1302 static int bootmem_init_numa(void)
1303 {
1304 return -1;
1305 }
1306
1307 #endif
1308
1309 static void __init bootmem_init_nonnuma(void)
1310 {
1311 unsigned long top_of_ram = memblock_end_of_DRAM();
1312 unsigned long total_ram = memblock_phys_mem_size();
1313
1314 numadbg("bootmem_init_nonnuma()\n");
1315
1316 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1317 top_of_ram, total_ram);
1318 printk(KERN_INFO "Memory hole size: %ldMB\n",
1319 (top_of_ram - total_ram) >> 20);
1320
1321 init_node_masks_nonnuma();
1322 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1323 allocate_node_data(0);
1324 node_set_online(0);
1325 }
1326
1327 static unsigned long __init bootmem_init(unsigned long phys_base)
1328 {
1329 unsigned long end_pfn;
1330
1331 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1332 max_pfn = max_low_pfn = end_pfn;
1333 min_low_pfn = (phys_base >> PAGE_SHIFT);
1334
1335 if (bootmem_init_numa() < 0)
1336 bootmem_init_nonnuma();
1337
1338 /* Dump memblock with node info. */
1339 memblock_dump_all();
1340
1341 /* XXX cpu notifier XXX */
1342
1343 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1344 sparse_init();
1345
1346 return end_pfn;
1347 }
1348
1349 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1350 static int pall_ents __initdata;
1351
1352 #ifdef CONFIG_DEBUG_PAGEALLOC
1353 static unsigned long __ref kernel_map_range(unsigned long pstart,
1354 unsigned long pend, pgprot_t prot)
1355 {
1356 unsigned long vstart = PAGE_OFFSET + pstart;
1357 unsigned long vend = PAGE_OFFSET + pend;
1358 unsigned long alloc_bytes = 0UL;
1359
1360 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1361 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1362 vstart, vend);
1363 prom_halt();
1364 }
1365
1366 while (vstart < vend) {
1367 unsigned long this_end, paddr = __pa(vstart);
1368 pgd_t *pgd = pgd_offset_k(vstart);
1369 pud_t *pud;
1370 pmd_t *pmd;
1371 pte_t *pte;
1372
1373 pud = pud_offset(pgd, vstart);
1374 if (pud_none(*pud)) {
1375 pmd_t *new;
1376
1377 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1378 alloc_bytes += PAGE_SIZE;
1379 pud_populate(&init_mm, pud, new);
1380 }
1381
1382 pmd = pmd_offset(pud, vstart);
1383 if (!pmd_present(*pmd)) {
1384 pte_t *new;
1385
1386 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1387 alloc_bytes += PAGE_SIZE;
1388 pmd_populate_kernel(&init_mm, pmd, new);
1389 }
1390
1391 pte = pte_offset_kernel(pmd, vstart);
1392 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1393 if (this_end > vend)
1394 this_end = vend;
1395
1396 while (vstart < this_end) {
1397 pte_val(*pte) = (paddr | pgprot_val(prot));
1398
1399 vstart += PAGE_SIZE;
1400 paddr += PAGE_SIZE;
1401 pte++;
1402 }
1403 }
1404
1405 return alloc_bytes;
1406 }
1407
1408 extern unsigned int kvmap_linear_patch[1];
1409 #endif /* CONFIG_DEBUG_PAGEALLOC */
1410
1411 static void __init kpte_set_val(unsigned long index, unsigned long val)
1412 {
1413 unsigned long *ptr = kpte_linear_bitmap;
1414
1415 val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1416 ptr += (index / (BITS_PER_LONG / 2));
1417
1418 *ptr |= val;
1419 }
1420
1421 static const unsigned long kpte_shift_min = 28; /* 256MB */
1422 static const unsigned long kpte_shift_max = 34; /* 16GB */
1423 static const unsigned long kpte_shift_incr = 3;
1424
1425 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1426 unsigned long shift)
1427 {
1428 unsigned long size = (1UL << shift);
1429 unsigned long mask = (size - 1UL);
1430 unsigned long remains = end - start;
1431 unsigned long val;
1432
1433 if (remains < size || (start & mask))
1434 return start;
1435
1436 /* VAL maps:
1437 *
1438 * shift 28 --> kern_linear_pte_xor index 1
1439 * shift 31 --> kern_linear_pte_xor index 2
1440 * shift 34 --> kern_linear_pte_xor index 3
1441 */
1442 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1443
1444 remains &= ~mask;
1445 if (shift != kpte_shift_max)
1446 remains = size;
1447
1448 while (remains) {
1449 unsigned long index = start >> kpte_shift_min;
1450
1451 kpte_set_val(index, val);
1452
1453 start += 1UL << kpte_shift_min;
1454 remains -= 1UL << kpte_shift_min;
1455 }
1456
1457 return start;
1458 }
1459
1460 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1461 {
1462 unsigned long smallest_size, smallest_mask;
1463 unsigned long s;
1464
1465 smallest_size = (1UL << kpte_shift_min);
1466 smallest_mask = (smallest_size - 1UL);
1467
1468 while (start < end) {
1469 unsigned long orig_start = start;
1470
1471 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1472 start = kpte_mark_using_shift(start, end, s);
1473
1474 if (start != orig_start)
1475 break;
1476 }
1477
1478 if (start == orig_start)
1479 start = (start + smallest_size) & ~smallest_mask;
1480 }
1481 }
1482
1483 static void __init init_kpte_bitmap(void)
1484 {
1485 unsigned long i;
1486
1487 for (i = 0; i < pall_ents; i++) {
1488 unsigned long phys_start, phys_end;
1489
1490 phys_start = pall[i].phys_addr;
1491 phys_end = phys_start + pall[i].reg_size;
1492
1493 mark_kpte_bitmap(phys_start, phys_end);
1494 }
1495 }
1496
1497 static void __init kernel_physical_mapping_init(void)
1498 {
1499 #ifdef CONFIG_DEBUG_PAGEALLOC
1500 unsigned long i, mem_alloced = 0UL;
1501
1502 for (i = 0; i < pall_ents; i++) {
1503 unsigned long phys_start, phys_end;
1504
1505 phys_start = pall[i].phys_addr;
1506 phys_end = phys_start + pall[i].reg_size;
1507
1508 mem_alloced += kernel_map_range(phys_start, phys_end,
1509 PAGE_KERNEL);
1510 }
1511
1512 printk("Allocated %ld bytes for kernel page tables.\n",
1513 mem_alloced);
1514
1515 kvmap_linear_patch[0] = 0x01000000; /* nop */
1516 flushi(&kvmap_linear_patch[0]);
1517
1518 __flush_tlb_all();
1519 #endif
1520 }
1521
1522 #ifdef CONFIG_DEBUG_PAGEALLOC
1523 void kernel_map_pages(struct page *page, int numpages, int enable)
1524 {
1525 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1526 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1527
1528 kernel_map_range(phys_start, phys_end,
1529 (enable ? PAGE_KERNEL : __pgprot(0)));
1530
1531 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1532 PAGE_OFFSET + phys_end);
1533
1534 /* we should perform an IPI and flush all tlbs,
1535 * but that can deadlock->flush only current cpu.
1536 */
1537 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1538 PAGE_OFFSET + phys_end);
1539 }
1540 #endif
1541
1542 unsigned long __init find_ecache_flush_span(unsigned long size)
1543 {
1544 int i;
1545
1546 for (i = 0; i < pavail_ents; i++) {
1547 if (pavail[i].reg_size >= size)
1548 return pavail[i].phys_addr;
1549 }
1550
1551 return ~0UL;
1552 }
1553
1554 static void __init tsb_phys_patch(void)
1555 {
1556 struct tsb_ldquad_phys_patch_entry *pquad;
1557 struct tsb_phys_patch_entry *p;
1558
1559 pquad = &__tsb_ldquad_phys_patch;
1560 while (pquad < &__tsb_ldquad_phys_patch_end) {
1561 unsigned long addr = pquad->addr;
1562
1563 if (tlb_type == hypervisor)
1564 *(unsigned int *) addr = pquad->sun4v_insn;
1565 else
1566 *(unsigned int *) addr = pquad->sun4u_insn;
1567 wmb();
1568 __asm__ __volatile__("flush %0"
1569 : /* no outputs */
1570 : "r" (addr));
1571
1572 pquad++;
1573 }
1574
1575 p = &__tsb_phys_patch;
1576 while (p < &__tsb_phys_patch_end) {
1577 unsigned long addr = p->addr;
1578
1579 *(unsigned int *) addr = p->insn;
1580 wmb();
1581 __asm__ __volatile__("flush %0"
1582 : /* no outputs */
1583 : "r" (addr));
1584
1585 p++;
1586 }
1587 }
1588
1589 /* Don't mark as init, we give this to the Hypervisor. */
1590 #ifndef CONFIG_DEBUG_PAGEALLOC
1591 #define NUM_KTSB_DESCR 2
1592 #else
1593 #define NUM_KTSB_DESCR 1
1594 #endif
1595 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1596 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1597
1598 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1599 {
1600 pa >>= KTSB_PHYS_SHIFT;
1601
1602 while (start < end) {
1603 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1604
1605 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1606 __asm__ __volatile__("flush %0" : : "r" (ia));
1607
1608 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1609 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1610
1611 start++;
1612 }
1613 }
1614
1615 static void ktsb_phys_patch(void)
1616 {
1617 extern unsigned int __swapper_tsb_phys_patch;
1618 extern unsigned int __swapper_tsb_phys_patch_end;
1619 unsigned long ktsb_pa;
1620
1621 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1622 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1623 &__swapper_tsb_phys_patch_end, ktsb_pa);
1624 #ifndef CONFIG_DEBUG_PAGEALLOC
1625 {
1626 extern unsigned int __swapper_4m_tsb_phys_patch;
1627 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1628 ktsb_pa = (kern_base +
1629 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1630 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1631 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1632 }
1633 #endif
1634 }
1635
1636 static void __init sun4v_ktsb_init(void)
1637 {
1638 unsigned long ktsb_pa;
1639
1640 /* First KTSB for PAGE_SIZE mappings. */
1641 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1642
1643 switch (PAGE_SIZE) {
1644 case 8 * 1024:
1645 default:
1646 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1647 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1648 break;
1649
1650 case 64 * 1024:
1651 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1652 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1653 break;
1654
1655 case 512 * 1024:
1656 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1657 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1658 break;
1659
1660 case 4 * 1024 * 1024:
1661 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1662 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1663 break;
1664 }
1665
1666 ktsb_descr[0].assoc = 1;
1667 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1668 ktsb_descr[0].ctx_idx = 0;
1669 ktsb_descr[0].tsb_base = ktsb_pa;
1670 ktsb_descr[0].resv = 0;
1671
1672 #ifndef CONFIG_DEBUG_PAGEALLOC
1673 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1674 ktsb_pa = (kern_base +
1675 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1676
1677 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1678 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1679 HV_PGSZ_MASK_256MB |
1680 HV_PGSZ_MASK_2GB |
1681 HV_PGSZ_MASK_16GB) &
1682 cpu_pgsz_mask);
1683 ktsb_descr[1].assoc = 1;
1684 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1685 ktsb_descr[1].ctx_idx = 0;
1686 ktsb_descr[1].tsb_base = ktsb_pa;
1687 ktsb_descr[1].resv = 0;
1688 #endif
1689 }
1690
1691 void __cpuinit sun4v_ktsb_register(void)
1692 {
1693 unsigned long pa, ret;
1694
1695 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1696
1697 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1698 if (ret != 0) {
1699 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1700 "errors with %lx\n", pa, ret);
1701 prom_halt();
1702 }
1703 }
1704
1705 static void __init sun4u_linear_pte_xor_finalize(void)
1706 {
1707 #ifndef CONFIG_DEBUG_PAGEALLOC
1708 /* This is where we would add Panther support for
1709 * 32MB and 256MB pages.
1710 */
1711 #endif
1712 }
1713
1714 static void __init sun4v_linear_pte_xor_finalize(void)
1715 {
1716 #ifndef CONFIG_DEBUG_PAGEALLOC
1717 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1718 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1719 0xfffff80000000000UL;
1720 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1721 _PAGE_P_4V | _PAGE_W_4V);
1722 } else {
1723 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1724 }
1725
1726 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1727 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1728 0xfffff80000000000UL;
1729 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1730 _PAGE_P_4V | _PAGE_W_4V);
1731 } else {
1732 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1733 }
1734
1735 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1736 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1737 0xfffff80000000000UL;
1738 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1739 _PAGE_P_4V | _PAGE_W_4V);
1740 } else {
1741 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1742 }
1743 #endif
1744 }
1745
1746 /* paging_init() sets up the page tables */
1747
1748 static unsigned long last_valid_pfn;
1749 pgd_t swapper_pg_dir[2048];
1750
1751 static void sun4u_pgprot_init(void);
1752 static void sun4v_pgprot_init(void);
1753
1754 void __init paging_init(void)
1755 {
1756 unsigned long end_pfn, shift, phys_base;
1757 unsigned long real_end, i;
1758 int node;
1759
1760 /* These build time checkes make sure that the dcache_dirty_cpu()
1761 * page->flags usage will work.
1762 *
1763 * When a page gets marked as dcache-dirty, we store the
1764 * cpu number starting at bit 32 in the page->flags. Also,
1765 * functions like clear_dcache_dirty_cpu use the cpu mask
1766 * in 13-bit signed-immediate instruction fields.
1767 */
1768
1769 /*
1770 * Page flags must not reach into upper 32 bits that are used
1771 * for the cpu number
1772 */
1773 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1774
1775 /*
1776 * The bit fields placed in the high range must not reach below
1777 * the 32 bit boundary. Otherwise we cannot place the cpu field
1778 * at the 32 bit boundary.
1779 */
1780 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1781 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1782
1783 BUILD_BUG_ON(NR_CPUS > 4096);
1784
1785 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1786 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1787
1788 /* Invalidate both kernel TSBs. */
1789 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1790 #ifndef CONFIG_DEBUG_PAGEALLOC
1791 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1792 #endif
1793
1794 if (tlb_type == hypervisor)
1795 sun4v_pgprot_init();
1796 else
1797 sun4u_pgprot_init();
1798
1799 if (tlb_type == cheetah_plus ||
1800 tlb_type == hypervisor) {
1801 tsb_phys_patch();
1802 ktsb_phys_patch();
1803 }
1804
1805 if (tlb_type == hypervisor)
1806 sun4v_patch_tlb_handlers();
1807
1808 /* Find available physical memory...
1809 *
1810 * Read it twice in order to work around a bug in openfirmware.
1811 * The call to grab this table itself can cause openfirmware to
1812 * allocate memory, which in turn can take away some space from
1813 * the list of available memory. Reading it twice makes sure
1814 * we really do get the final value.
1815 */
1816 read_obp_translations();
1817 read_obp_memory("reg", &pall[0], &pall_ents);
1818 read_obp_memory("available", &pavail[0], &pavail_ents);
1819 read_obp_memory("available", &pavail[0], &pavail_ents);
1820
1821 phys_base = 0xffffffffffffffffUL;
1822 for (i = 0; i < pavail_ents; i++) {
1823 phys_base = min(phys_base, pavail[i].phys_addr);
1824 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1825 }
1826
1827 memblock_reserve(kern_base, kern_size);
1828
1829 find_ramdisk(phys_base);
1830
1831 memblock_enforce_memory_limit(cmdline_memory_size);
1832
1833 memblock_allow_resize();
1834 memblock_dump_all();
1835
1836 set_bit(0, mmu_context_bmap);
1837
1838 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1839
1840 real_end = (unsigned long)_end;
1841 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1842 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1843 num_kernel_image_mappings);
1844
1845 /* Set kernel pgd to upper alias so physical page computations
1846 * work.
1847 */
1848 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1849
1850 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1851
1852 /* Now can init the kernel/bad page tables. */
1853 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1854 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1855
1856 inherit_prom_mappings();
1857
1858 init_kpte_bitmap();
1859
1860 /* Ok, we can use our TLB miss and window trap handlers safely. */
1861 setup_tba();
1862
1863 __flush_tlb_all();
1864
1865 prom_build_devicetree();
1866 of_populate_present_mask();
1867 #ifndef CONFIG_SMP
1868 of_fill_in_cpu_data();
1869 #endif
1870
1871 if (tlb_type == hypervisor) {
1872 sun4v_mdesc_init();
1873 mdesc_populate_present_mask(cpu_all_mask);
1874 #ifndef CONFIG_SMP
1875 mdesc_fill_in_cpu_data(cpu_all_mask);
1876 #endif
1877 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1878
1879 sun4v_linear_pte_xor_finalize();
1880
1881 sun4v_ktsb_init();
1882 sun4v_ktsb_register();
1883 } else {
1884 unsigned long impl, ver;
1885
1886 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1887 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1888
1889 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1890 impl = ((ver >> 32) & 0xffff);
1891 if (impl == PANTHER_IMPL)
1892 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1893 HV_PGSZ_MASK_256MB);
1894
1895 sun4u_linear_pte_xor_finalize();
1896 }
1897
1898 /* Flush the TLBs and the 4M TSB so that the updated linear
1899 * pte XOR settings are realized for all mappings.
1900 */
1901 __flush_tlb_all();
1902 #ifndef CONFIG_DEBUG_PAGEALLOC
1903 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1904 #endif
1905 __flush_tlb_all();
1906
1907 /* Setup bootmem... */
1908 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1909
1910 /* Once the OF device tree and MDESC have been setup, we know
1911 * the list of possible cpus. Therefore we can allocate the
1912 * IRQ stacks.
1913 */
1914 for_each_possible_cpu(i) {
1915 node = cpu_to_node(i);
1916
1917 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1918 THREAD_SIZE,
1919 THREAD_SIZE, 0);
1920 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1921 THREAD_SIZE,
1922 THREAD_SIZE, 0);
1923 }
1924
1925 kernel_physical_mapping_init();
1926
1927 {
1928 unsigned long max_zone_pfns[MAX_NR_ZONES];
1929
1930 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1931
1932 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1933
1934 free_area_init_nodes(max_zone_pfns);
1935 }
1936
1937 printk("Booting Linux...\n");
1938 }
1939
1940 int page_in_phys_avail(unsigned long paddr)
1941 {
1942 int i;
1943
1944 paddr &= PAGE_MASK;
1945
1946 for (i = 0; i < pavail_ents; i++) {
1947 unsigned long start, end;
1948
1949 start = pavail[i].phys_addr;
1950 end = start + pavail[i].reg_size;
1951
1952 if (paddr >= start && paddr < end)
1953 return 1;
1954 }
1955 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1956 return 1;
1957 #ifdef CONFIG_BLK_DEV_INITRD
1958 if (paddr >= __pa(initrd_start) &&
1959 paddr < __pa(PAGE_ALIGN(initrd_end)))
1960 return 1;
1961 #endif
1962
1963 return 0;
1964 }
1965
1966 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1967 static int pavail_rescan_ents __initdata;
1968
1969 /* Certain OBP calls, such as fetching "available" properties, can
1970 * claim physical memory. So, along with initializing the valid
1971 * address bitmap, what we do here is refetch the physical available
1972 * memory list again, and make sure it provides at least as much
1973 * memory as 'pavail' does.
1974 */
1975 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1976 {
1977 int i;
1978
1979 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1980
1981 for (i = 0; i < pavail_ents; i++) {
1982 unsigned long old_start, old_end;
1983
1984 old_start = pavail[i].phys_addr;
1985 old_end = old_start + pavail[i].reg_size;
1986 while (old_start < old_end) {
1987 int n;
1988
1989 for (n = 0; n < pavail_rescan_ents; n++) {
1990 unsigned long new_start, new_end;
1991
1992 new_start = pavail_rescan[n].phys_addr;
1993 new_end = new_start +
1994 pavail_rescan[n].reg_size;
1995
1996 if (new_start <= old_start &&
1997 new_end >= (old_start + PAGE_SIZE)) {
1998 set_bit(old_start >> 22, bitmap);
1999 goto do_next_page;
2000 }
2001 }
2002
2003 prom_printf("mem_init: Lost memory in pavail\n");
2004 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2005 pavail[i].phys_addr,
2006 pavail[i].reg_size);
2007 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2008 pavail_rescan[i].phys_addr,
2009 pavail_rescan[i].reg_size);
2010 prom_printf("mem_init: Cannot continue, aborting.\n");
2011 prom_halt();
2012
2013 do_next_page:
2014 old_start += PAGE_SIZE;
2015 }
2016 }
2017 }
2018
2019 static void __init patch_tlb_miss_handler_bitmap(void)
2020 {
2021 extern unsigned int valid_addr_bitmap_insn[];
2022 extern unsigned int valid_addr_bitmap_patch[];
2023
2024 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2025 mb();
2026 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2027 flushi(&valid_addr_bitmap_insn[0]);
2028 }
2029
2030 static void __init register_page_bootmem_info(void)
2031 {
2032 #ifdef CONFIG_NEED_MULTIPLE_NODES
2033 int i;
2034
2035 for_each_online_node(i)
2036 if (NODE_DATA(i)->node_spanned_pages)
2037 register_page_bootmem_info_node(NODE_DATA(i));
2038 #endif
2039 }
2040 void __init mem_init(void)
2041 {
2042 unsigned long codepages, datapages, initpages;
2043 unsigned long addr, last;
2044
2045 addr = PAGE_OFFSET + kern_base;
2046 last = PAGE_ALIGN(kern_size) + addr;
2047 while (addr < last) {
2048 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
2049 addr += PAGE_SIZE;
2050 }
2051
2052 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2053 patch_tlb_miss_handler_bitmap();
2054
2055 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2056
2057 register_page_bootmem_info();
2058 totalram_pages = free_all_bootmem();
2059
2060 /* We subtract one to account for the mem_map_zero page
2061 * allocated below.
2062 */
2063 totalram_pages -= 1;
2064 num_physpages = totalram_pages;
2065
2066 /*
2067 * Set up the zero page, mark it reserved, so that page count
2068 * is not manipulated when freeing the page from user ptes.
2069 */
2070 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2071 if (mem_map_zero == NULL) {
2072 prom_printf("paging_init: Cannot alloc zero page.\n");
2073 prom_halt();
2074 }
2075 SetPageReserved(mem_map_zero);
2076
2077 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2078 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2079 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2080 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2081 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2082 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2083
2084 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2085 nr_free_pages() << (PAGE_SHIFT-10),
2086 codepages << (PAGE_SHIFT-10),
2087 datapages << (PAGE_SHIFT-10),
2088 initpages << (PAGE_SHIFT-10),
2089 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2090
2091 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2092 cheetah_ecache_flush_init();
2093 }
2094
2095 void free_initmem(void)
2096 {
2097 unsigned long addr, initend;
2098 int do_free = 1;
2099
2100 /* If the physical memory maps were trimmed by kernel command
2101 * line options, don't even try freeing this initmem stuff up.
2102 * The kernel image could have been in the trimmed out region
2103 * and if so the freeing below will free invalid page structs.
2104 */
2105 if (cmdline_memory_size)
2106 do_free = 0;
2107
2108 /*
2109 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2110 */
2111 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2112 initend = (unsigned long)(__init_end) & PAGE_MASK;
2113 for (; addr < initend; addr += PAGE_SIZE) {
2114 unsigned long page;
2115 struct page *p;
2116
2117 page = (addr +
2118 ((unsigned long) __va(kern_base)) -
2119 ((unsigned long) KERNBASE));
2120 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2121
2122 if (do_free) {
2123 p = virt_to_page(page);
2124
2125 ClearPageReserved(p);
2126 init_page_count(p);
2127 __free_page(p);
2128 num_physpages++;
2129 totalram_pages++;
2130 }
2131 }
2132 }
2133
2134 #ifdef CONFIG_BLK_DEV_INITRD
2135 void free_initrd_mem(unsigned long start, unsigned long end)
2136 {
2137 if (start < end)
2138 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2139 for (; start < end; start += PAGE_SIZE) {
2140 struct page *p = virt_to_page(start);
2141
2142 ClearPageReserved(p);
2143 init_page_count(p);
2144 __free_page(p);
2145 num_physpages++;
2146 totalram_pages++;
2147 }
2148 }
2149 #endif
2150
2151 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2152 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2153 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2154 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2155 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2156 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2157
2158 pgprot_t PAGE_KERNEL __read_mostly;
2159 EXPORT_SYMBOL(PAGE_KERNEL);
2160
2161 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2162 pgprot_t PAGE_COPY __read_mostly;
2163
2164 pgprot_t PAGE_SHARED __read_mostly;
2165 EXPORT_SYMBOL(PAGE_SHARED);
2166
2167 unsigned long pg_iobits __read_mostly;
2168
2169 unsigned long _PAGE_IE __read_mostly;
2170 EXPORT_SYMBOL(_PAGE_IE);
2171
2172 unsigned long _PAGE_E __read_mostly;
2173 EXPORT_SYMBOL(_PAGE_E);
2174
2175 unsigned long _PAGE_CACHE __read_mostly;
2176 EXPORT_SYMBOL(_PAGE_CACHE);
2177
2178 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2179 unsigned long vmemmap_table[VMEMMAP_SIZE];
2180
2181 static long __meminitdata addr_start, addr_end;
2182 static int __meminitdata node_start;
2183
2184 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2185 {
2186 unsigned long vstart = (unsigned long) start;
2187 unsigned long vend = (unsigned long) (start + nr);
2188 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2189 unsigned long phys_end = (vend - VMEMMAP_BASE);
2190 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2191 unsigned long end = VMEMMAP_ALIGN(phys_end);
2192 unsigned long pte_base;
2193
2194 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2195 _PAGE_CP_4U | _PAGE_CV_4U |
2196 _PAGE_P_4U | _PAGE_W_4U);
2197 if (tlb_type == hypervisor)
2198 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2199 _PAGE_CP_4V | _PAGE_CV_4V |
2200 _PAGE_P_4V | _PAGE_W_4V);
2201
2202 for (; addr < end; addr += VMEMMAP_CHUNK) {
2203 unsigned long *vmem_pp =
2204 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2205 void *block;
2206
2207 if (!(*vmem_pp & _PAGE_VALID)) {
2208 block = vmemmap_alloc_block(1UL << 22, node);
2209 if (!block)
2210 return -ENOMEM;
2211
2212 *vmem_pp = pte_base | __pa(block);
2213
2214 /* check to see if we have contiguous blocks */
2215 if (addr_end != addr || node_start != node) {
2216 if (addr_start)
2217 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2218 addr_start, addr_end-1, node_start);
2219 addr_start = addr;
2220 node_start = node;
2221 }
2222 addr_end = addr + VMEMMAP_CHUNK;
2223 }
2224 }
2225 return 0;
2226 }
2227
2228 void __meminit vmemmap_populate_print_last(void)
2229 {
2230 if (addr_start) {
2231 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2232 addr_start, addr_end-1, node_start);
2233 addr_start = 0;
2234 addr_end = 0;
2235 node_start = 0;
2236 }
2237 }
2238
2239 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2240
2241 static void prot_init_common(unsigned long page_none,
2242 unsigned long page_shared,
2243 unsigned long page_copy,
2244 unsigned long page_readonly,
2245 unsigned long page_exec_bit)
2246 {
2247 PAGE_COPY = __pgprot(page_copy);
2248 PAGE_SHARED = __pgprot(page_shared);
2249
2250 protection_map[0x0] = __pgprot(page_none);
2251 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2252 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2253 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2254 protection_map[0x4] = __pgprot(page_readonly);
2255 protection_map[0x5] = __pgprot(page_readonly);
2256 protection_map[0x6] = __pgprot(page_copy);
2257 protection_map[0x7] = __pgprot(page_copy);
2258 protection_map[0x8] = __pgprot(page_none);
2259 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2260 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2261 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2262 protection_map[0xc] = __pgprot(page_readonly);
2263 protection_map[0xd] = __pgprot(page_readonly);
2264 protection_map[0xe] = __pgprot(page_shared);
2265 protection_map[0xf] = __pgprot(page_shared);
2266 }
2267
2268 static void __init sun4u_pgprot_init(void)
2269 {
2270 unsigned long page_none, page_shared, page_copy, page_readonly;
2271 unsigned long page_exec_bit;
2272 int i;
2273
2274 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2275 _PAGE_CACHE_4U | _PAGE_P_4U |
2276 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2277 _PAGE_EXEC_4U);
2278 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2279 _PAGE_CACHE_4U | _PAGE_P_4U |
2280 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2281 _PAGE_EXEC_4U | _PAGE_L_4U);
2282
2283 _PAGE_IE = _PAGE_IE_4U;
2284 _PAGE_E = _PAGE_E_4U;
2285 _PAGE_CACHE = _PAGE_CACHE_4U;
2286
2287 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2288 __ACCESS_BITS_4U | _PAGE_E_4U);
2289
2290 #ifdef CONFIG_DEBUG_PAGEALLOC
2291 kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2292 #else
2293 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2294 0xfffff80000000000UL;
2295 #endif
2296 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2297 _PAGE_P_4U | _PAGE_W_4U);
2298
2299 for (i = 1; i < 4; i++)
2300 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2301
2302 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2303 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2304 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2305
2306
2307 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2308 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2309 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2310 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2311 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2312 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2313 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2314
2315 page_exec_bit = _PAGE_EXEC_4U;
2316
2317 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2318 page_exec_bit);
2319 }
2320
2321 static void __init sun4v_pgprot_init(void)
2322 {
2323 unsigned long page_none, page_shared, page_copy, page_readonly;
2324 unsigned long page_exec_bit;
2325 int i;
2326
2327 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2328 _PAGE_CACHE_4V | _PAGE_P_4V |
2329 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2330 _PAGE_EXEC_4V);
2331 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2332
2333 _PAGE_IE = _PAGE_IE_4V;
2334 _PAGE_E = _PAGE_E_4V;
2335 _PAGE_CACHE = _PAGE_CACHE_4V;
2336
2337 #ifdef CONFIG_DEBUG_PAGEALLOC
2338 kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2339 #else
2340 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2341 0xfffff80000000000UL;
2342 #endif
2343 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2344 _PAGE_P_4V | _PAGE_W_4V);
2345
2346 for (i = 1; i < 4; i++)
2347 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2348
2349 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2350 __ACCESS_BITS_4V | _PAGE_E_4V);
2351
2352 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2353 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2354 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2355 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2356
2357 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2358 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2359 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2360 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2361 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2362 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2363 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2364
2365 page_exec_bit = _PAGE_EXEC_4V;
2366
2367 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2368 page_exec_bit);
2369 }
2370
2371 unsigned long pte_sz_bits(unsigned long sz)
2372 {
2373 if (tlb_type == hypervisor) {
2374 switch (sz) {
2375 case 8 * 1024:
2376 default:
2377 return _PAGE_SZ8K_4V;
2378 case 64 * 1024:
2379 return _PAGE_SZ64K_4V;
2380 case 512 * 1024:
2381 return _PAGE_SZ512K_4V;
2382 case 4 * 1024 * 1024:
2383 return _PAGE_SZ4MB_4V;
2384 }
2385 } else {
2386 switch (sz) {
2387 case 8 * 1024:
2388 default:
2389 return _PAGE_SZ8K_4U;
2390 case 64 * 1024:
2391 return _PAGE_SZ64K_4U;
2392 case 512 * 1024:
2393 return _PAGE_SZ512K_4U;
2394 case 4 * 1024 * 1024:
2395 return _PAGE_SZ4MB_4U;
2396 }
2397 }
2398 }
2399
2400 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2401 {
2402 pte_t pte;
2403
2404 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2405 pte_val(pte) |= (((unsigned long)space) << 32);
2406 pte_val(pte) |= pte_sz_bits(page_size);
2407
2408 return pte;
2409 }
2410
2411 static unsigned long kern_large_tte(unsigned long paddr)
2412 {
2413 unsigned long val;
2414
2415 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2416 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2417 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2418 if (tlb_type == hypervisor)
2419 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2420 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2421 _PAGE_EXEC_4V | _PAGE_W_4V);
2422
2423 return val | paddr;
2424 }
2425
2426 /* If not locked, zap it. */
2427 void __flush_tlb_all(void)
2428 {
2429 unsigned long pstate;
2430 int i;
2431
2432 __asm__ __volatile__("flushw\n\t"
2433 "rdpr %%pstate, %0\n\t"
2434 "wrpr %0, %1, %%pstate"
2435 : "=r" (pstate)
2436 : "i" (PSTATE_IE));
2437 if (tlb_type == hypervisor) {
2438 sun4v_mmu_demap_all();
2439 } else if (tlb_type == spitfire) {
2440 for (i = 0; i < 64; i++) {
2441 /* Spitfire Errata #32 workaround */
2442 /* NOTE: Always runs on spitfire, so no
2443 * cheetah+ page size encodings.
2444 */
2445 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2446 "flush %%g6"
2447 : /* No outputs */
2448 : "r" (0),
2449 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2450
2451 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2452 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2453 "membar #Sync"
2454 : /* no outputs */
2455 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2456 spitfire_put_dtlb_data(i, 0x0UL);
2457 }
2458
2459 /* Spitfire Errata #32 workaround */
2460 /* NOTE: Always runs on spitfire, so no
2461 * cheetah+ page size encodings.
2462 */
2463 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2464 "flush %%g6"
2465 : /* No outputs */
2466 : "r" (0),
2467 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2468
2469 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2470 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2471 "membar #Sync"
2472 : /* no outputs */
2473 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2474 spitfire_put_itlb_data(i, 0x0UL);
2475 }
2476 }
2477 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2478 cheetah_flush_dtlb_all();
2479 cheetah_flush_itlb_all();
2480 }
2481 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2482 : : "r" (pstate));
2483 }
2484
2485 static pte_t *get_from_cache(struct mm_struct *mm)
2486 {
2487 struct page *page;
2488 pte_t *ret;
2489
2490 spin_lock(&mm->page_table_lock);
2491 page = mm->context.pgtable_page;
2492 ret = NULL;
2493 if (page) {
2494 void *p = page_address(page);
2495
2496 mm->context.pgtable_page = NULL;
2497
2498 ret = (pte_t *) (p + (PAGE_SIZE / 2));
2499 }
2500 spin_unlock(&mm->page_table_lock);
2501
2502 return ret;
2503 }
2504
2505 static struct page *__alloc_for_cache(struct mm_struct *mm)
2506 {
2507 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2508 __GFP_REPEAT | __GFP_ZERO);
2509
2510 if (page) {
2511 spin_lock(&mm->page_table_lock);
2512 if (!mm->context.pgtable_page) {
2513 atomic_set(&page->_count, 2);
2514 mm->context.pgtable_page = page;
2515 }
2516 spin_unlock(&mm->page_table_lock);
2517 }
2518 return page;
2519 }
2520
2521 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2522 unsigned long address)
2523 {
2524 struct page *page;
2525 pte_t *pte;
2526
2527 pte = get_from_cache(mm);
2528 if (pte)
2529 return pte;
2530
2531 page = __alloc_for_cache(mm);
2532 if (page)
2533 pte = (pte_t *) page_address(page);
2534
2535 return pte;
2536 }
2537
2538 pgtable_t pte_alloc_one(struct mm_struct *mm,
2539 unsigned long address)
2540 {
2541 struct page *page;
2542 pte_t *pte;
2543
2544 pte = get_from_cache(mm);
2545 if (pte)
2546 return pte;
2547
2548 page = __alloc_for_cache(mm);
2549 if (page) {
2550 pgtable_page_ctor(page);
2551 pte = (pte_t *) page_address(page);
2552 }
2553
2554 return pte;
2555 }
2556
2557 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2558 {
2559 struct page *page = virt_to_page(pte);
2560 if (put_page_testzero(page))
2561 free_hot_cold_page(page, 0);
2562 }
2563
2564 static void __pte_free(pgtable_t pte)
2565 {
2566 struct page *page = virt_to_page(pte);
2567 if (put_page_testzero(page)) {
2568 pgtable_page_dtor(page);
2569 free_hot_cold_page(page, 0);
2570 }
2571 }
2572
2573 void pte_free(struct mm_struct *mm, pgtable_t pte)
2574 {
2575 __pte_free(pte);
2576 }
2577
2578 void pgtable_free(void *table, bool is_page)
2579 {
2580 if (is_page)
2581 __pte_free(table);
2582 else
2583 kmem_cache_free(pgtable_cache, table);
2584 }
2585
2586 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2587 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
2588 {
2589 if (pgprot_val(pgprot) & _PAGE_VALID)
2590 pmd_val(pmd) |= PMD_HUGE_PRESENT;
2591 if (tlb_type == hypervisor) {
2592 if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
2593 pmd_val(pmd) |= PMD_HUGE_WRITE;
2594 if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
2595 pmd_val(pmd) |= PMD_HUGE_EXEC;
2596
2597 if (!for_modify) {
2598 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
2599 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2600 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
2601 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2602 }
2603 } else {
2604 if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
2605 pmd_val(pmd) |= PMD_HUGE_WRITE;
2606 if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
2607 pmd_val(pmd) |= PMD_HUGE_EXEC;
2608
2609 if (!for_modify) {
2610 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
2611 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2612 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
2613 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2614 }
2615 }
2616
2617 return pmd;
2618 }
2619
2620 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
2621 {
2622 pmd_t pmd;
2623
2624 pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
2625 pmd_val(pmd) |= PMD_ISHUGE;
2626 pmd = pmd_set_protbits(pmd, pgprot, false);
2627 return pmd;
2628 }
2629
2630 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
2631 {
2632 pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
2633 PMD_HUGE_WRITE |
2634 PMD_HUGE_EXEC);
2635 pmd = pmd_set_protbits(pmd, newprot, true);
2636 return pmd;
2637 }
2638
2639 pgprot_t pmd_pgprot(pmd_t entry)
2640 {
2641 unsigned long pte = 0;
2642
2643 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2644 pte |= _PAGE_VALID;
2645
2646 if (tlb_type == hypervisor) {
2647 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2648 pte |= _PAGE_PRESENT_4V;
2649 if (pmd_val(entry) & PMD_HUGE_EXEC)
2650 pte |= _PAGE_EXEC_4V;
2651 if (pmd_val(entry) & PMD_HUGE_WRITE)
2652 pte |= _PAGE_W_4V;
2653 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2654 pte |= _PAGE_ACCESSED_4V;
2655 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2656 pte |= _PAGE_MODIFIED_4V;
2657 pte |= _PAGE_CP_4V|_PAGE_CV_4V;
2658 } else {
2659 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2660 pte |= _PAGE_PRESENT_4U;
2661 if (pmd_val(entry) & PMD_HUGE_EXEC)
2662 pte |= _PAGE_EXEC_4U;
2663 if (pmd_val(entry) & PMD_HUGE_WRITE)
2664 pte |= _PAGE_W_4U;
2665 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2666 pte |= _PAGE_ACCESSED_4U;
2667 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2668 pte |= _PAGE_MODIFIED_4U;
2669 pte |= _PAGE_CP_4U|_PAGE_CV_4U;
2670 }
2671
2672 return __pgprot(pte);
2673 }
2674
2675 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2676 pmd_t *pmd)
2677 {
2678 unsigned long pte, flags;
2679 struct mm_struct *mm;
2680 pmd_t entry = *pmd;
2681 pgprot_t prot;
2682
2683 if (!pmd_large(entry) || !pmd_young(entry))
2684 return;
2685
2686 pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
2687 pte <<= PMD_PADDR_SHIFT;
2688 pte |= _PAGE_VALID;
2689
2690 prot = pmd_pgprot(entry);
2691
2692 if (tlb_type == hypervisor)
2693 pgprot_val(prot) |= _PAGE_SZHUGE_4V;
2694 else
2695 pgprot_val(prot) |= _PAGE_SZHUGE_4U;
2696
2697 pte |= pgprot_val(prot);
2698
2699 mm = vma->vm_mm;
2700
2701 spin_lock_irqsave(&mm->context.lock, flags);
2702
2703 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2704 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
2705 addr, pte);
2706
2707 spin_unlock_irqrestore(&mm->context.lock, flags);
2708 }
2709 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2710
2711 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2712 static void context_reload(void *__data)
2713 {
2714 struct mm_struct *mm = __data;
2715
2716 if (mm == current->mm)
2717 load_secondary_context(mm);
2718 }
2719
2720 void hugetlb_setup(struct pt_regs *regs)
2721 {
2722 struct mm_struct *mm = current->mm;
2723 struct tsb_config *tp;
2724
2725 if (in_atomic() || !mm) {
2726 const struct exception_table_entry *entry;
2727
2728 entry = search_exception_tables(regs->tpc);
2729 if (entry) {
2730 regs->tpc = entry->fixup;
2731 regs->tnpc = regs->tpc + 4;
2732 return;
2733 }
2734 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2735 die_if_kernel("HugeTSB in atomic", regs);
2736 }
2737
2738 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2739 if (likely(tp->tsb == NULL))
2740 tsb_grow(mm, MM_TSB_HUGE, 0);
2741
2742 tsb_context_switch(mm);
2743 smp_tsb_sync(mm);
2744
2745 /* On UltraSPARC-III+ and later, configure the second half of
2746 * the Data-TLB for huge pages.
2747 */
2748 if (tlb_type == cheetah_plus) {
2749 unsigned long ctx;
2750
2751 spin_lock(&ctx_alloc_lock);
2752 ctx = mm->context.sparc64_ctx_val;
2753 ctx &= ~CTX_PGSZ_MASK;
2754 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2755 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2756
2757 if (ctx != mm->context.sparc64_ctx_val) {
2758 /* When changing the page size fields, we
2759 * must perform a context flush so that no
2760 * stale entries match. This flush must
2761 * occur with the original context register
2762 * settings.
2763 */
2764 do_flush_tlb_mm(mm);
2765
2766 /* Reload the context register of all processors
2767 * also executing in this address space.
2768 */
2769 mm->context.sparc64_ctx_val = ctx;
2770 on_each_cpu(context_reload, mm, 0);
2771 }
2772 spin_unlock(&ctx_alloc_lock);
2773 }
2774 }
2775 #endif