Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / sparc / kernel / time_64.c
1 /* time.c: UltraSparc timer and TOD clock support.
2 *
3 * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 *
6 * Based largely on code which is:
7 *
8 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
9 */
10
11 #include <linux/errno.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/param.h>
16 #include <linux/string.h>
17 #include <linux/mm.h>
18 #include <linux/interrupt.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/init.h>
22 #include <linux/ioport.h>
23 #include <linux/mc146818rtc.h>
24 #include <linux/delay.h>
25 #include <linux/profile.h>
26 #include <linux/bcd.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpufreq.h>
29 #include <linux/percpu.h>
30 #include <linux/miscdevice.h>
31 #include <linux/rtc.h>
32 #include <linux/rtc/m48t59.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/clockchips.h>
35 #include <linux/clocksource.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38 #include <linux/ftrace.h>
39
40 #include <asm/oplib.h>
41 #include <asm/timer.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/prom.h>
45 #include <asm/starfire.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/cpudata.h>
49 #include <asm/uaccess.h>
50 #include <asm/irq_regs.h>
51
52 #include "entry.h"
53
54 DEFINE_SPINLOCK(rtc_lock);
55
56 #define TICK_PRIV_BIT (1UL << 63)
57 #define TICKCMP_IRQ_BIT (1UL << 63)
58
59 #ifdef CONFIG_SMP
60 unsigned long profile_pc(struct pt_regs *regs)
61 {
62 unsigned long pc = instruction_pointer(regs);
63
64 if (in_lock_functions(pc))
65 return regs->u_regs[UREG_RETPC];
66 return pc;
67 }
68 EXPORT_SYMBOL(profile_pc);
69 #endif
70
71 static void tick_disable_protection(void)
72 {
73 /* Set things up so user can access tick register for profiling
74 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
75 * read back of %tick after writing it.
76 */
77 __asm__ __volatile__(
78 " ba,pt %%xcc, 1f\n"
79 " nop\n"
80 " .align 64\n"
81 "1: rd %%tick, %%g2\n"
82 " add %%g2, 6, %%g2\n"
83 " andn %%g2, %0, %%g2\n"
84 " wrpr %%g2, 0, %%tick\n"
85 " rdpr %%tick, %%g0"
86 : /* no outputs */
87 : "r" (TICK_PRIV_BIT)
88 : "g2");
89 }
90
91 static void tick_disable_irq(void)
92 {
93 __asm__ __volatile__(
94 " ba,pt %%xcc, 1f\n"
95 " nop\n"
96 " .align 64\n"
97 "1: wr %0, 0x0, %%tick_cmpr\n"
98 " rd %%tick_cmpr, %%g0"
99 : /* no outputs */
100 : "r" (TICKCMP_IRQ_BIT));
101 }
102
103 static void tick_init_tick(void)
104 {
105 tick_disable_protection();
106 tick_disable_irq();
107 }
108
109 static unsigned long long tick_get_tick(void)
110 {
111 unsigned long ret;
112
113 __asm__ __volatile__("rd %%tick, %0\n\t"
114 "mov %0, %0"
115 : "=r" (ret));
116
117 return ret & ~TICK_PRIV_BIT;
118 }
119
120 static int tick_add_compare(unsigned long adj)
121 {
122 unsigned long orig_tick, new_tick, new_compare;
123
124 __asm__ __volatile__("rd %%tick, %0"
125 : "=r" (orig_tick));
126
127 orig_tick &= ~TICKCMP_IRQ_BIT;
128
129 /* Workaround for Spitfire Errata (#54 I think??), I discovered
130 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
131 * number 103640.
132 *
133 * On Blackbird writes to %tick_cmpr can fail, the
134 * workaround seems to be to execute the wr instruction
135 * at the start of an I-cache line, and perform a dummy
136 * read back from %tick_cmpr right after writing to it. -DaveM
137 */
138 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
139 " add %1, %2, %0\n\t"
140 ".align 64\n"
141 "1:\n\t"
142 "wr %0, 0, %%tick_cmpr\n\t"
143 "rd %%tick_cmpr, %%g0\n\t"
144 : "=r" (new_compare)
145 : "r" (orig_tick), "r" (adj));
146
147 __asm__ __volatile__("rd %%tick, %0"
148 : "=r" (new_tick));
149 new_tick &= ~TICKCMP_IRQ_BIT;
150
151 return ((long)(new_tick - (orig_tick+adj))) > 0L;
152 }
153
154 static unsigned long tick_add_tick(unsigned long adj)
155 {
156 unsigned long new_tick;
157
158 /* Also need to handle Blackbird bug here too. */
159 __asm__ __volatile__("rd %%tick, %0\n\t"
160 "add %0, %1, %0\n\t"
161 "wrpr %0, 0, %%tick\n\t"
162 : "=&r" (new_tick)
163 : "r" (adj));
164
165 return new_tick;
166 }
167
168 static struct sparc64_tick_ops tick_operations __read_mostly = {
169 .name = "tick",
170 .init_tick = tick_init_tick,
171 .disable_irq = tick_disable_irq,
172 .get_tick = tick_get_tick,
173 .add_tick = tick_add_tick,
174 .add_compare = tick_add_compare,
175 .softint_mask = 1UL << 0,
176 };
177
178 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
179 EXPORT_SYMBOL(tick_ops);
180
181 static void stick_disable_irq(void)
182 {
183 __asm__ __volatile__(
184 "wr %0, 0x0, %%asr25"
185 : /* no outputs */
186 : "r" (TICKCMP_IRQ_BIT));
187 }
188
189 static void stick_init_tick(void)
190 {
191 /* Writes to the %tick and %stick register are not
192 * allowed on sun4v. The Hypervisor controls that
193 * bit, per-strand.
194 */
195 if (tlb_type != hypervisor) {
196 tick_disable_protection();
197 tick_disable_irq();
198
199 /* Let the user get at STICK too. */
200 __asm__ __volatile__(
201 " rd %%asr24, %%g2\n"
202 " andn %%g2, %0, %%g2\n"
203 " wr %%g2, 0, %%asr24"
204 : /* no outputs */
205 : "r" (TICK_PRIV_BIT)
206 : "g1", "g2");
207 }
208
209 stick_disable_irq();
210 }
211
212 static unsigned long long stick_get_tick(void)
213 {
214 unsigned long ret;
215
216 __asm__ __volatile__("rd %%asr24, %0"
217 : "=r" (ret));
218
219 return ret & ~TICK_PRIV_BIT;
220 }
221
222 static unsigned long stick_add_tick(unsigned long adj)
223 {
224 unsigned long new_tick;
225
226 __asm__ __volatile__("rd %%asr24, %0\n\t"
227 "add %0, %1, %0\n\t"
228 "wr %0, 0, %%asr24\n\t"
229 : "=&r" (new_tick)
230 : "r" (adj));
231
232 return new_tick;
233 }
234
235 static int stick_add_compare(unsigned long adj)
236 {
237 unsigned long orig_tick, new_tick;
238
239 __asm__ __volatile__("rd %%asr24, %0"
240 : "=r" (orig_tick));
241 orig_tick &= ~TICKCMP_IRQ_BIT;
242
243 __asm__ __volatile__("wr %0, 0, %%asr25"
244 : /* no outputs */
245 : "r" (orig_tick + adj));
246
247 __asm__ __volatile__("rd %%asr24, %0"
248 : "=r" (new_tick));
249 new_tick &= ~TICKCMP_IRQ_BIT;
250
251 return ((long)(new_tick - (orig_tick+adj))) > 0L;
252 }
253
254 static struct sparc64_tick_ops stick_operations __read_mostly = {
255 .name = "stick",
256 .init_tick = stick_init_tick,
257 .disable_irq = stick_disable_irq,
258 .get_tick = stick_get_tick,
259 .add_tick = stick_add_tick,
260 .add_compare = stick_add_compare,
261 .softint_mask = 1UL << 16,
262 };
263
264 /* On Hummingbird the STICK/STICK_CMPR register is implemented
265 * in I/O space. There are two 64-bit registers each, the
266 * first holds the low 32-bits of the value and the second holds
267 * the high 32-bits.
268 *
269 * Since STICK is constantly updating, we have to access it carefully.
270 *
271 * The sequence we use to read is:
272 * 1) read high
273 * 2) read low
274 * 3) read high again, if it rolled re-read both low and high again.
275 *
276 * Writing STICK safely is also tricky:
277 * 1) write low to zero
278 * 2) write high
279 * 3) write low
280 */
281 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
282 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
283
284 static unsigned long __hbird_read_stick(void)
285 {
286 unsigned long ret, tmp1, tmp2, tmp3;
287 unsigned long addr = HBIRD_STICK_ADDR+8;
288
289 __asm__ __volatile__("ldxa [%1] %5, %2\n"
290 "1:\n\t"
291 "sub %1, 0x8, %1\n\t"
292 "ldxa [%1] %5, %3\n\t"
293 "add %1, 0x8, %1\n\t"
294 "ldxa [%1] %5, %4\n\t"
295 "cmp %4, %2\n\t"
296 "bne,a,pn %%xcc, 1b\n\t"
297 " mov %4, %2\n\t"
298 "sllx %4, 32, %4\n\t"
299 "or %3, %4, %0\n\t"
300 : "=&r" (ret), "=&r" (addr),
301 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
302 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
303
304 return ret;
305 }
306
307 static void __hbird_write_stick(unsigned long val)
308 {
309 unsigned long low = (val & 0xffffffffUL);
310 unsigned long high = (val >> 32UL);
311 unsigned long addr = HBIRD_STICK_ADDR;
312
313 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
314 "add %0, 0x8, %0\n\t"
315 "stxa %3, [%0] %4\n\t"
316 "sub %0, 0x8, %0\n\t"
317 "stxa %2, [%0] %4"
318 : "=&r" (addr)
319 : "0" (addr), "r" (low), "r" (high),
320 "i" (ASI_PHYS_BYPASS_EC_E));
321 }
322
323 static void __hbird_write_compare(unsigned long val)
324 {
325 unsigned long low = (val & 0xffffffffUL);
326 unsigned long high = (val >> 32UL);
327 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
328
329 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
330 "sub %0, 0x8, %0\n\t"
331 "stxa %2, [%0] %4"
332 : "=&r" (addr)
333 : "0" (addr), "r" (low), "r" (high),
334 "i" (ASI_PHYS_BYPASS_EC_E));
335 }
336
337 static void hbtick_disable_irq(void)
338 {
339 __hbird_write_compare(TICKCMP_IRQ_BIT);
340 }
341
342 static void hbtick_init_tick(void)
343 {
344 tick_disable_protection();
345
346 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
347 * XXX into actually sending STICK interrupts. I think because
348 * XXX of how we store %tick_cmpr in head.S this somehow resets the
349 * XXX {TICK + STICK} interrupt mux. -DaveM
350 */
351 __hbird_write_stick(__hbird_read_stick());
352
353 hbtick_disable_irq();
354 }
355
356 static unsigned long long hbtick_get_tick(void)
357 {
358 return __hbird_read_stick() & ~TICK_PRIV_BIT;
359 }
360
361 static unsigned long hbtick_add_tick(unsigned long adj)
362 {
363 unsigned long val;
364
365 val = __hbird_read_stick() + adj;
366 __hbird_write_stick(val);
367
368 return val;
369 }
370
371 static int hbtick_add_compare(unsigned long adj)
372 {
373 unsigned long val = __hbird_read_stick();
374 unsigned long val2;
375
376 val &= ~TICKCMP_IRQ_BIT;
377 val += adj;
378 __hbird_write_compare(val);
379
380 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
381
382 return ((long)(val2 - val)) > 0L;
383 }
384
385 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
386 .name = "hbtick",
387 .init_tick = hbtick_init_tick,
388 .disable_irq = hbtick_disable_irq,
389 .get_tick = hbtick_get_tick,
390 .add_tick = hbtick_add_tick,
391 .add_compare = hbtick_add_compare,
392 .softint_mask = 1UL << 0,
393 };
394
395 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
396
397 int update_persistent_clock(struct timespec now)
398 {
399 struct rtc_device *rtc = rtc_class_open("rtc0");
400 int err = -1;
401
402 if (rtc) {
403 err = rtc_set_mmss(rtc, now.tv_sec);
404 rtc_class_close(rtc);
405 }
406
407 return err;
408 }
409
410 unsigned long cmos_regs;
411 EXPORT_SYMBOL(cmos_regs);
412
413 static struct resource rtc_cmos_resource;
414
415 static struct platform_device rtc_cmos_device = {
416 .name = "rtc_cmos",
417 .id = -1,
418 .resource = &rtc_cmos_resource,
419 .num_resources = 1,
420 };
421
422 static int rtc_probe(struct platform_device *op)
423 {
424 struct resource *r;
425
426 printk(KERN_INFO "%s: RTC regs at 0x%llx\n",
427 op->dev.of_node->full_name, op->resource[0].start);
428
429 /* The CMOS RTC driver only accepts IORESOURCE_IO, so cons
430 * up a fake resource so that the probe works for all cases.
431 * When the RTC is behind an ISA bus it will have IORESOURCE_IO
432 * already, whereas when it's behind EBUS is will be IORESOURCE_MEM.
433 */
434
435 r = &rtc_cmos_resource;
436 r->flags = IORESOURCE_IO;
437 r->name = op->resource[0].name;
438 r->start = op->resource[0].start;
439 r->end = op->resource[0].end;
440
441 cmos_regs = op->resource[0].start;
442 return platform_device_register(&rtc_cmos_device);
443 }
444
445 static const struct of_device_id rtc_match[] = {
446 {
447 .name = "rtc",
448 .compatible = "m5819",
449 },
450 {
451 .name = "rtc",
452 .compatible = "isa-m5819p",
453 },
454 {
455 .name = "rtc",
456 .compatible = "isa-m5823p",
457 },
458 {
459 .name = "rtc",
460 .compatible = "ds1287",
461 },
462 {},
463 };
464
465 static struct platform_driver rtc_driver = {
466 .probe = rtc_probe,
467 .driver = {
468 .name = "rtc",
469 .owner = THIS_MODULE,
470 .of_match_table = rtc_match,
471 },
472 };
473
474 static struct platform_device rtc_bq4802_device = {
475 .name = "rtc-bq4802",
476 .id = -1,
477 .num_resources = 1,
478 };
479
480 static int bq4802_probe(struct platform_device *op)
481 {
482
483 printk(KERN_INFO "%s: BQ4802 regs at 0x%llx\n",
484 op->dev.of_node->full_name, op->resource[0].start);
485
486 rtc_bq4802_device.resource = &op->resource[0];
487 return platform_device_register(&rtc_bq4802_device);
488 }
489
490 static const struct of_device_id bq4802_match[] = {
491 {
492 .name = "rtc",
493 .compatible = "bq4802",
494 },
495 {},
496 };
497
498 static struct platform_driver bq4802_driver = {
499 .probe = bq4802_probe,
500 .driver = {
501 .name = "bq4802",
502 .owner = THIS_MODULE,
503 .of_match_table = bq4802_match,
504 },
505 };
506
507 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
508 {
509 struct platform_device *pdev = to_platform_device(dev);
510 void __iomem *regs = (void __iomem *) pdev->resource[0].start;
511
512 return readb(regs + ofs);
513 }
514
515 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
516 {
517 struct platform_device *pdev = to_platform_device(dev);
518 void __iomem *regs = (void __iomem *) pdev->resource[0].start;
519
520 writeb(val, regs + ofs);
521 }
522
523 static struct m48t59_plat_data m48t59_data = {
524 .read_byte = mostek_read_byte,
525 .write_byte = mostek_write_byte,
526 };
527
528 static struct platform_device m48t59_rtc = {
529 .name = "rtc-m48t59",
530 .id = 0,
531 .num_resources = 1,
532 .dev = {
533 .platform_data = &m48t59_data,
534 },
535 };
536
537 static int mostek_probe(struct platform_device *op)
538 {
539 struct device_node *dp = op->dev.of_node;
540
541 /* On an Enterprise system there can be multiple mostek clocks.
542 * We should only match the one that is on the central FHC bus.
543 */
544 if (!strcmp(dp->parent->name, "fhc") &&
545 strcmp(dp->parent->parent->name, "central") != 0)
546 return -ENODEV;
547
548 printk(KERN_INFO "%s: Mostek regs at 0x%llx\n",
549 dp->full_name, op->resource[0].start);
550
551 m48t59_rtc.resource = &op->resource[0];
552 return platform_device_register(&m48t59_rtc);
553 }
554
555 static const struct of_device_id mostek_match[] = {
556 {
557 .name = "eeprom",
558 },
559 {},
560 };
561
562 static struct platform_driver mostek_driver = {
563 .probe = mostek_probe,
564 .driver = {
565 .name = "mostek",
566 .owner = THIS_MODULE,
567 .of_match_table = mostek_match,
568 },
569 };
570
571 static struct platform_device rtc_sun4v_device = {
572 .name = "rtc-sun4v",
573 .id = -1,
574 };
575
576 static struct platform_device rtc_starfire_device = {
577 .name = "rtc-starfire",
578 .id = -1,
579 };
580
581 static int __init clock_init(void)
582 {
583 if (this_is_starfire)
584 return platform_device_register(&rtc_starfire_device);
585
586 if (tlb_type == hypervisor)
587 return platform_device_register(&rtc_sun4v_device);
588
589 (void) platform_driver_register(&rtc_driver);
590 (void) platform_driver_register(&mostek_driver);
591 (void) platform_driver_register(&bq4802_driver);
592
593 return 0;
594 }
595
596 /* Must be after subsys_initcall() so that busses are probed. Must
597 * be before device_initcall() because things like the RTC driver
598 * need to see the clock registers.
599 */
600 fs_initcall(clock_init);
601
602 /* This is gets the master TICK_INT timer going. */
603 static unsigned long sparc64_init_timers(void)
604 {
605 struct device_node *dp;
606 unsigned long freq;
607
608 dp = of_find_node_by_path("/");
609 if (tlb_type == spitfire) {
610 unsigned long ver, manuf, impl;
611
612 __asm__ __volatile__ ("rdpr %%ver, %0"
613 : "=&r" (ver));
614 manuf = ((ver >> 48) & 0xffff);
615 impl = ((ver >> 32) & 0xffff);
616 if (manuf == 0x17 && impl == 0x13) {
617 /* Hummingbird, aka Ultra-IIe */
618 tick_ops = &hbtick_operations;
619 freq = of_getintprop_default(dp, "stick-frequency", 0);
620 } else {
621 tick_ops = &tick_operations;
622 freq = local_cpu_data().clock_tick;
623 }
624 } else {
625 tick_ops = &stick_operations;
626 freq = of_getintprop_default(dp, "stick-frequency", 0);
627 }
628
629 return freq;
630 }
631
632 struct freq_table {
633 unsigned long clock_tick_ref;
634 unsigned int ref_freq;
635 };
636 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
637
638 unsigned long sparc64_get_clock_tick(unsigned int cpu)
639 {
640 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
641
642 if (ft->clock_tick_ref)
643 return ft->clock_tick_ref;
644 return cpu_data(cpu).clock_tick;
645 }
646 EXPORT_SYMBOL(sparc64_get_clock_tick);
647
648 #ifdef CONFIG_CPU_FREQ
649
650 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
651 void *data)
652 {
653 struct cpufreq_freqs *freq = data;
654 unsigned int cpu = freq->cpu;
655 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
656
657 if (!ft->ref_freq) {
658 ft->ref_freq = freq->old;
659 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
660 }
661 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
662 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
663 (val == CPUFREQ_RESUMECHANGE)) {
664 cpu_data(cpu).clock_tick =
665 cpufreq_scale(ft->clock_tick_ref,
666 ft->ref_freq,
667 freq->new);
668 }
669
670 return 0;
671 }
672
673 static struct notifier_block sparc64_cpufreq_notifier_block = {
674 .notifier_call = sparc64_cpufreq_notifier
675 };
676
677 static int __init register_sparc64_cpufreq_notifier(void)
678 {
679
680 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
681 CPUFREQ_TRANSITION_NOTIFIER);
682 return 0;
683 }
684
685 core_initcall(register_sparc64_cpufreq_notifier);
686
687 #endif /* CONFIG_CPU_FREQ */
688
689 static int sparc64_next_event(unsigned long delta,
690 struct clock_event_device *evt)
691 {
692 return tick_ops->add_compare(delta) ? -ETIME : 0;
693 }
694
695 static void sparc64_timer_setup(enum clock_event_mode mode,
696 struct clock_event_device *evt)
697 {
698 switch (mode) {
699 case CLOCK_EVT_MODE_ONESHOT:
700 case CLOCK_EVT_MODE_RESUME:
701 break;
702
703 case CLOCK_EVT_MODE_SHUTDOWN:
704 tick_ops->disable_irq();
705 break;
706
707 case CLOCK_EVT_MODE_PERIODIC:
708 case CLOCK_EVT_MODE_UNUSED:
709 WARN_ON(1);
710 break;
711 }
712 }
713
714 static struct clock_event_device sparc64_clockevent = {
715 .features = CLOCK_EVT_FEAT_ONESHOT,
716 .set_mode = sparc64_timer_setup,
717 .set_next_event = sparc64_next_event,
718 .rating = 100,
719 .shift = 30,
720 .irq = -1,
721 };
722 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
723
724 void __irq_entry timer_interrupt(int irq, struct pt_regs *regs)
725 {
726 struct pt_regs *old_regs = set_irq_regs(regs);
727 unsigned long tick_mask = tick_ops->softint_mask;
728 int cpu = smp_processor_id();
729 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
730
731 clear_softint(tick_mask);
732
733 irq_enter();
734
735 local_cpu_data().irq0_irqs++;
736 kstat_incr_irqs_this_cpu(0, irq_to_desc(0));
737
738 if (unlikely(!evt->event_handler)) {
739 printk(KERN_WARNING
740 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
741 } else
742 evt->event_handler(evt);
743
744 irq_exit();
745
746 set_irq_regs(old_regs);
747 }
748
749 void setup_sparc64_timer(void)
750 {
751 struct clock_event_device *sevt;
752 unsigned long pstate;
753
754 /* Guarantee that the following sequences execute
755 * uninterrupted.
756 */
757 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
758 "wrpr %0, %1, %%pstate"
759 : "=r" (pstate)
760 : "i" (PSTATE_IE));
761
762 tick_ops->init_tick();
763
764 /* Restore PSTATE_IE. */
765 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
766 : /* no outputs */
767 : "r" (pstate));
768
769 sevt = &__get_cpu_var(sparc64_events);
770
771 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
772 sevt->cpumask = cpumask_of(smp_processor_id());
773
774 clockevents_register_device(sevt);
775 }
776
777 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
778
779 static struct clocksource clocksource_tick = {
780 .rating = 100,
781 .mask = CLOCKSOURCE_MASK(64),
782 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
783 };
784
785 static unsigned long tb_ticks_per_usec __read_mostly;
786
787 void __delay(unsigned long loops)
788 {
789 unsigned long bclock, now;
790
791 bclock = tick_ops->get_tick();
792 do {
793 now = tick_ops->get_tick();
794 } while ((now-bclock) < loops);
795 }
796 EXPORT_SYMBOL(__delay);
797
798 void udelay(unsigned long usecs)
799 {
800 __delay(tb_ticks_per_usec * usecs);
801 }
802 EXPORT_SYMBOL(udelay);
803
804 static cycle_t clocksource_tick_read(struct clocksource *cs)
805 {
806 return tick_ops->get_tick();
807 }
808
809 void __init time_init(void)
810 {
811 unsigned long freq = sparc64_init_timers();
812
813 tb_ticks_per_usec = freq / USEC_PER_SEC;
814
815 timer_ticks_per_nsec_quotient =
816 clocksource_hz2mult(freq, SPARC64_NSEC_PER_CYC_SHIFT);
817
818 clocksource_tick.name = tick_ops->name;
819 clocksource_tick.read = clocksource_tick_read;
820
821 clocksource_register_hz(&clocksource_tick, freq);
822 printk("clocksource: mult[%x] shift[%d]\n",
823 clocksource_tick.mult, clocksource_tick.shift);
824
825 sparc64_clockevent.name = tick_ops->name;
826 clockevents_calc_mult_shift(&sparc64_clockevent, freq, 4);
827
828 sparc64_clockevent.max_delta_ns =
829 clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent);
830 sparc64_clockevent.min_delta_ns =
831 clockevent_delta2ns(0xF, &sparc64_clockevent);
832
833 printk("clockevent: mult[%x] shift[%d]\n",
834 sparc64_clockevent.mult, sparc64_clockevent.shift);
835
836 setup_sparc64_timer();
837 }
838
839 unsigned long long sched_clock(void)
840 {
841 unsigned long ticks = tick_ops->get_tick();
842
843 return (ticks * timer_ticks_per_nsec_quotient)
844 >> SPARC64_NSEC_PER_CYC_SHIFT;
845 }
846
847 int read_current_timer(unsigned long *timer_val)
848 {
849 *timer_val = tick_ops->get_tick();
850 return 0;
851 }