Merge branch 'x86/ptrace' into x86/tsc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / sparc / kernel / smp.c
1 /* smp.c: Sparc SMP support.
2 *
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
7
8 #include <asm/head.h>
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35
36 #include "irq.h"
37
38 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
39 unsigned char boot_cpu_id = 0;
40 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
41
42 cpumask_t cpu_online_map = CPU_MASK_NONE;
43 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
44 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
45
46 /* The only guaranteed locking primitive available on all Sparc
47 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
48 * places the current byte at the effective address into dest_reg and
49 * places 0xff there afterwards. Pretty lame locking primitive
50 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
51 * instruction which is much better...
52 */
53
54 void __cpuinit smp_store_cpu_info(int id)
55 {
56 int cpu_node;
57
58 cpu_data(id).udelay_val = loops_per_jiffy;
59
60 cpu_find_by_mid(id, &cpu_node);
61 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
62 "clock-frequency", 0);
63 cpu_data(id).prom_node = cpu_node;
64 cpu_data(id).mid = cpu_get_hwmid(cpu_node);
65
66 if (cpu_data(id).mid < 0)
67 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
68 }
69
70 void __init smp_cpus_done(unsigned int max_cpus)
71 {
72 extern void smp4m_smp_done(void);
73 extern void smp4d_smp_done(void);
74 unsigned long bogosum = 0;
75 int cpu, num;
76
77 for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
78 if (cpu_online(cpu)) {
79 num++;
80 bogosum += cpu_data(cpu).udelay_val;
81 }
82
83 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
84 num, bogosum/(500000/HZ),
85 (bogosum/(5000/HZ))%100);
86
87 switch(sparc_cpu_model) {
88 case sun4:
89 printk("SUN4\n");
90 BUG();
91 break;
92 case sun4c:
93 printk("SUN4C\n");
94 BUG();
95 break;
96 case sun4m:
97 smp4m_smp_done();
98 break;
99 case sun4d:
100 smp4d_smp_done();
101 break;
102 case sun4e:
103 printk("SUN4E\n");
104 BUG();
105 break;
106 case sun4u:
107 printk("SUN4U\n");
108 BUG();
109 break;
110 default:
111 printk("UNKNOWN!\n");
112 BUG();
113 break;
114 };
115 }
116
117 void cpu_panic(void)
118 {
119 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
120 panic("SMP bolixed\n");
121 }
122
123 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
124
125 void smp_send_reschedule(int cpu)
126 {
127 /* See sparc64 */
128 }
129
130 void smp_send_stop(void)
131 {
132 }
133
134 void smp_flush_cache_all(void)
135 {
136 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
137 local_flush_cache_all();
138 }
139
140 void smp_flush_tlb_all(void)
141 {
142 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
143 local_flush_tlb_all();
144 }
145
146 void smp_flush_cache_mm(struct mm_struct *mm)
147 {
148 if(mm->context != NO_CONTEXT) {
149 cpumask_t cpu_mask = mm->cpu_vm_mask;
150 cpu_clear(smp_processor_id(), cpu_mask);
151 if (!cpus_empty(cpu_mask))
152 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
153 local_flush_cache_mm(mm);
154 }
155 }
156
157 void smp_flush_tlb_mm(struct mm_struct *mm)
158 {
159 if(mm->context != NO_CONTEXT) {
160 cpumask_t cpu_mask = mm->cpu_vm_mask;
161 cpu_clear(smp_processor_id(), cpu_mask);
162 if (!cpus_empty(cpu_mask)) {
163 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
164 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
165 mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
166 }
167 local_flush_tlb_mm(mm);
168 }
169 }
170
171 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
172 unsigned long end)
173 {
174 struct mm_struct *mm = vma->vm_mm;
175
176 if (mm->context != NO_CONTEXT) {
177 cpumask_t cpu_mask = mm->cpu_vm_mask;
178 cpu_clear(smp_processor_id(), cpu_mask);
179 if (!cpus_empty(cpu_mask))
180 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
181 local_flush_cache_range(vma, start, end);
182 }
183 }
184
185 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
186 unsigned long end)
187 {
188 struct mm_struct *mm = vma->vm_mm;
189
190 if (mm->context != NO_CONTEXT) {
191 cpumask_t cpu_mask = mm->cpu_vm_mask;
192 cpu_clear(smp_processor_id(), cpu_mask);
193 if (!cpus_empty(cpu_mask))
194 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
195 local_flush_tlb_range(vma, start, end);
196 }
197 }
198
199 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
200 {
201 struct mm_struct *mm = vma->vm_mm;
202
203 if(mm->context != NO_CONTEXT) {
204 cpumask_t cpu_mask = mm->cpu_vm_mask;
205 cpu_clear(smp_processor_id(), cpu_mask);
206 if (!cpus_empty(cpu_mask))
207 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
208 local_flush_cache_page(vma, page);
209 }
210 }
211
212 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
213 {
214 struct mm_struct *mm = vma->vm_mm;
215
216 if(mm->context != NO_CONTEXT) {
217 cpumask_t cpu_mask = mm->cpu_vm_mask;
218 cpu_clear(smp_processor_id(), cpu_mask);
219 if (!cpus_empty(cpu_mask))
220 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
221 local_flush_tlb_page(vma, page);
222 }
223 }
224
225 void smp_reschedule_irq(void)
226 {
227 set_need_resched();
228 }
229
230 void smp_flush_page_to_ram(unsigned long page)
231 {
232 /* Current theory is that those who call this are the one's
233 * who have just dirtied their cache with the pages contents
234 * in kernel space, therefore we only run this on local cpu.
235 *
236 * XXX This experiment failed, research further... -DaveM
237 */
238 #if 1
239 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
240 #endif
241 local_flush_page_to_ram(page);
242 }
243
244 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
245 {
246 cpumask_t cpu_mask = mm->cpu_vm_mask;
247 cpu_clear(smp_processor_id(), cpu_mask);
248 if (!cpus_empty(cpu_mask))
249 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
250 local_flush_sig_insns(mm, insn_addr);
251 }
252
253 extern unsigned int lvl14_resolution;
254
255 /* /proc/profile writes can call this, don't __init it please. */
256 static DEFINE_SPINLOCK(prof_setup_lock);
257
258 int setup_profiling_timer(unsigned int multiplier)
259 {
260 int i;
261 unsigned long flags;
262
263 /* Prevent level14 ticker IRQ flooding. */
264 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
265 return -EINVAL;
266
267 spin_lock_irqsave(&prof_setup_lock, flags);
268 for_each_possible_cpu(i) {
269 load_profile_irq(i, lvl14_resolution / multiplier);
270 prof_multiplier(i) = multiplier;
271 }
272 spin_unlock_irqrestore(&prof_setup_lock, flags);
273
274 return 0;
275 }
276
277 void __init smp_prepare_cpus(unsigned int max_cpus)
278 {
279 extern void __init smp4m_boot_cpus(void);
280 extern void __init smp4d_boot_cpus(void);
281 int i, cpuid, extra;
282
283 printk("Entering SMP Mode...\n");
284
285 extra = 0;
286 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
287 if (cpuid >= NR_CPUS)
288 extra++;
289 }
290 /* i = number of cpus */
291 if (extra && max_cpus > i - extra)
292 printk("Warning: NR_CPUS is too low to start all cpus\n");
293
294 smp_store_cpu_info(boot_cpu_id);
295
296 switch(sparc_cpu_model) {
297 case sun4:
298 printk("SUN4\n");
299 BUG();
300 break;
301 case sun4c:
302 printk("SUN4C\n");
303 BUG();
304 break;
305 case sun4m:
306 smp4m_boot_cpus();
307 break;
308 case sun4d:
309 smp4d_boot_cpus();
310 break;
311 case sun4e:
312 printk("SUN4E\n");
313 BUG();
314 break;
315 case sun4u:
316 printk("SUN4U\n");
317 BUG();
318 break;
319 default:
320 printk("UNKNOWN!\n");
321 BUG();
322 break;
323 };
324 }
325
326 /* Set this up early so that things like the scheduler can init
327 * properly. We use the same cpu mask for both the present and
328 * possible cpu map.
329 */
330 void __init smp_setup_cpu_possible_map(void)
331 {
332 int instance, mid;
333
334 instance = 0;
335 while (!cpu_find_by_instance(instance, NULL, &mid)) {
336 if (mid < NR_CPUS) {
337 cpu_set(mid, phys_cpu_present_map);
338 cpu_set(mid, cpu_present_map);
339 }
340 instance++;
341 }
342 }
343
344 void __init smp_prepare_boot_cpu(void)
345 {
346 int cpuid = hard_smp_processor_id();
347
348 if (cpuid >= NR_CPUS) {
349 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
350 prom_halt();
351 }
352 if (cpuid != 0)
353 printk("boot cpu id != 0, this could work but is untested\n");
354
355 current_thread_info()->cpu = cpuid;
356 cpu_set(cpuid, cpu_online_map);
357 cpu_set(cpuid, phys_cpu_present_map);
358 }
359
360 int __cpuinit __cpu_up(unsigned int cpu)
361 {
362 extern int __cpuinit smp4m_boot_one_cpu(int);
363 extern int __cpuinit smp4d_boot_one_cpu(int);
364 int ret=0;
365
366 switch(sparc_cpu_model) {
367 case sun4:
368 printk("SUN4\n");
369 BUG();
370 break;
371 case sun4c:
372 printk("SUN4C\n");
373 BUG();
374 break;
375 case sun4m:
376 ret = smp4m_boot_one_cpu(cpu);
377 break;
378 case sun4d:
379 ret = smp4d_boot_one_cpu(cpu);
380 break;
381 case sun4e:
382 printk("SUN4E\n");
383 BUG();
384 break;
385 case sun4u:
386 printk("SUN4U\n");
387 BUG();
388 break;
389 default:
390 printk("UNKNOWN!\n");
391 BUG();
392 break;
393 };
394
395 if (!ret) {
396 cpu_set(cpu, smp_commenced_mask);
397 while (!cpu_online(cpu))
398 mb();
399 }
400 return ret;
401 }
402
403 void smp_bogo(struct seq_file *m)
404 {
405 int i;
406
407 for_each_online_cpu(i) {
408 seq_printf(m,
409 "Cpu%dBogo\t: %lu.%02lu\n",
410 i,
411 cpu_data(i).udelay_val/(500000/HZ),
412 (cpu_data(i).udelay_val/(5000/HZ))%100);
413 }
414 }
415
416 void smp_info(struct seq_file *m)
417 {
418 int i;
419
420 seq_printf(m, "State:\n");
421 for_each_online_cpu(i)
422 seq_printf(m, "CPU%d\t\t: online\n", i);
423 }