Input: sur40 - skip all blobs that are not touches
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / sparc / kernel / irq_64.c
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
6 */
7
8 #include <linux/sched.h>
9 #include <linux/linkage.h>
10 #include <linux/ptrace.h>
11 #include <linux/errno.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/ftrace.h>
23 #include <linux/irq.h>
24 #include <linux/kmemleak.h>
25
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <linux/atomic.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/prom.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <linux/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43 #include <asm/hypervisor.h>
44 #include <asm/cacheflush.h>
45
46 #include "entry.h"
47 #include "cpumap.h"
48 #include "kstack.h"
49
50 struct ino_bucket *ivector_table;
51 unsigned long ivector_table_pa;
52
53 /* On several sun4u processors, it is illegal to mix bypass and
54 * non-bypass accesses. Therefore we access all INO buckets
55 * using bypass accesses only.
56 */
57 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
58 {
59 unsigned long ret;
60
61 __asm__ __volatile__("ldxa [%1] %2, %0"
62 : "=&r" (ret)
63 : "r" (bucket_pa +
64 offsetof(struct ino_bucket,
65 __irq_chain_pa)),
66 "i" (ASI_PHYS_USE_EC));
67
68 return ret;
69 }
70
71 static void bucket_clear_chain_pa(unsigned long bucket_pa)
72 {
73 __asm__ __volatile__("stxa %%g0, [%0] %1"
74 : /* no outputs */
75 : "r" (bucket_pa +
76 offsetof(struct ino_bucket,
77 __irq_chain_pa)),
78 "i" (ASI_PHYS_USE_EC));
79 }
80
81 static unsigned int bucket_get_irq(unsigned long bucket_pa)
82 {
83 unsigned int ret;
84
85 __asm__ __volatile__("lduwa [%1] %2, %0"
86 : "=&r" (ret)
87 : "r" (bucket_pa +
88 offsetof(struct ino_bucket,
89 __irq)),
90 "i" (ASI_PHYS_USE_EC));
91
92 return ret;
93 }
94
95 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
96 {
97 __asm__ __volatile__("stwa %0, [%1] %2"
98 : /* no outputs */
99 : "r" (irq),
100 "r" (bucket_pa +
101 offsetof(struct ino_bucket,
102 __irq)),
103 "i" (ASI_PHYS_USE_EC));
104 }
105
106 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
107
108 static unsigned long hvirq_major __initdata;
109 static int __init early_hvirq_major(char *p)
110 {
111 int rc = kstrtoul(p, 10, &hvirq_major);
112
113 return rc;
114 }
115 early_param("hvirq", early_hvirq_major);
116
117 static int hv_irq_version;
118
119 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
120 * based interfaces, but:
121 *
122 * 1) Several OSs, Solaris and Linux included, use them even when only
123 * negotiating version 1.0 (or failing to negotiate at all). So the
124 * hypervisor has a workaround that provides the VIRQ interfaces even
125 * when only verion 1.0 of the API is in use.
126 *
127 * 2) Second, and more importantly, with major version 2.0 these VIRQ
128 * interfaces only were actually hooked up for LDC interrupts, even
129 * though the Hypervisor specification clearly stated:
130 *
131 * The new interrupt API functions will be available to a guest
132 * when it negotiates version 2.0 in the interrupt API group 0x2. When
133 * a guest negotiates version 2.0, all interrupt sources will only
134 * support using the cookie interface, and any attempt to use the
135 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
136 * ENOTSUPPORTED error being returned.
137 *
138 * with an emphasis on "all interrupt sources".
139 *
140 * To correct this, major version 3.0 was created which does actually
141 * support VIRQs for all interrupt sources (not just LDC devices). So
142 * if we want to move completely over the cookie based VIRQs we must
143 * negotiate major version 3.0 or later of HV_GRP_INTR.
144 */
145 static bool sun4v_cookie_only_virqs(void)
146 {
147 if (hv_irq_version >= 3)
148 return true;
149 return false;
150 }
151
152 static void __init irq_init_hv(void)
153 {
154 unsigned long hv_error, major, minor = 0;
155
156 if (tlb_type != hypervisor)
157 return;
158
159 if (hvirq_major)
160 major = hvirq_major;
161 else
162 major = 3;
163
164 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
165 if (!hv_error)
166 hv_irq_version = major;
167 else
168 hv_irq_version = 1;
169
170 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
171 hv_irq_version,
172 sun4v_cookie_only_virqs() ? "enabled" : "disabled");
173 }
174
175 /* This function is for the timer interrupt.*/
176 int __init arch_probe_nr_irqs(void)
177 {
178 return 1;
179 }
180
181 #define DEFAULT_NUM_IVECS (0xfffU)
182 static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
183 #define NUM_IVECS (nr_ivec)
184
185 static unsigned int __init size_nr_ivec(void)
186 {
187 if (tlb_type == hypervisor) {
188 switch (sun4v_chip_type) {
189 /* Athena's devhandle|devino is large.*/
190 case SUN4V_CHIP_SPARC64X:
191 nr_ivec = 0xffff;
192 break;
193 }
194 }
195 return nr_ivec;
196 }
197
198 struct irq_handler_data {
199 union {
200 struct {
201 unsigned int dev_handle;
202 unsigned int dev_ino;
203 };
204 unsigned long sysino;
205 };
206 struct ino_bucket bucket;
207 unsigned long iclr;
208 unsigned long imap;
209 };
210
211 static inline unsigned int irq_data_to_handle(struct irq_data *data)
212 {
213 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
214
215 return ihd->dev_handle;
216 }
217
218 static inline unsigned int irq_data_to_ino(struct irq_data *data)
219 {
220 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
221
222 return ihd->dev_ino;
223 }
224
225 static inline unsigned long irq_data_to_sysino(struct irq_data *data)
226 {
227 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
228
229 return ihd->sysino;
230 }
231
232 void irq_free(unsigned int irq)
233 {
234 void *data = irq_get_handler_data(irq);
235
236 kfree(data);
237 irq_set_handler_data(irq, NULL);
238 irq_free_descs(irq, 1);
239 }
240
241 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
242 {
243 int irq;
244
245 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
246 if (irq <= 0)
247 goto out;
248
249 return irq;
250 out:
251 return 0;
252 }
253
254 static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
255 {
256 unsigned long hv_err, cookie;
257 struct ino_bucket *bucket;
258 unsigned int irq = 0U;
259
260 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
261 if (hv_err) {
262 pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
263 goto out;
264 }
265
266 if (cookie & ((1UL << 63UL))) {
267 cookie = ~cookie;
268 bucket = (struct ino_bucket *) __va(cookie);
269 irq = bucket->__irq;
270 }
271 out:
272 return irq;
273 }
274
275 static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
276 {
277 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
278 struct ino_bucket *bucket;
279 unsigned int irq;
280
281 bucket = &ivector_table[sysino];
282 irq = bucket_get_irq(__pa(bucket));
283
284 return irq;
285 }
286
287 void ack_bad_irq(unsigned int irq)
288 {
289 pr_crit("BAD IRQ ack %d\n", irq);
290 }
291
292 void irq_install_pre_handler(int irq,
293 void (*func)(unsigned int, void *, void *),
294 void *arg1, void *arg2)
295 {
296 pr_warn("IRQ pre handler NOT supported.\n");
297 }
298
299 /*
300 * /proc/interrupts printing:
301 */
302 int arch_show_interrupts(struct seq_file *p, int prec)
303 {
304 int j;
305
306 seq_printf(p, "NMI: ");
307 for_each_online_cpu(j)
308 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
309 seq_printf(p, " Non-maskable interrupts\n");
310 return 0;
311 }
312
313 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
314 {
315 unsigned int tid;
316
317 if (this_is_starfire) {
318 tid = starfire_translate(imap, cpuid);
319 tid <<= IMAP_TID_SHIFT;
320 tid &= IMAP_TID_UPA;
321 } else {
322 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
323 unsigned long ver;
324
325 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
326 if ((ver >> 32UL) == __JALAPENO_ID ||
327 (ver >> 32UL) == __SERRANO_ID) {
328 tid = cpuid << IMAP_TID_SHIFT;
329 tid &= IMAP_TID_JBUS;
330 } else {
331 unsigned int a = cpuid & 0x1f;
332 unsigned int n = (cpuid >> 5) & 0x1f;
333
334 tid = ((a << IMAP_AID_SHIFT) |
335 (n << IMAP_NID_SHIFT));
336 tid &= (IMAP_AID_SAFARI |
337 IMAP_NID_SAFARI);
338 }
339 } else {
340 tid = cpuid << IMAP_TID_SHIFT;
341 tid &= IMAP_TID_UPA;
342 }
343 }
344
345 return tid;
346 }
347
348 #ifdef CONFIG_SMP
349 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
350 {
351 cpumask_t mask;
352 int cpuid;
353
354 cpumask_copy(&mask, affinity);
355 if (cpumask_equal(&mask, cpu_online_mask)) {
356 cpuid = map_to_cpu(irq);
357 } else {
358 cpumask_t tmp;
359
360 cpumask_and(&tmp, cpu_online_mask, &mask);
361 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
362 }
363
364 return cpuid;
365 }
366 #else
367 #define irq_choose_cpu(irq, affinity) \
368 real_hard_smp_processor_id()
369 #endif
370
371 static void sun4u_irq_enable(struct irq_data *data)
372 {
373 struct irq_handler_data *handler_data;
374
375 handler_data = irq_data_get_irq_handler_data(data);
376 if (likely(handler_data)) {
377 unsigned long cpuid, imap, val;
378 unsigned int tid;
379
380 cpuid = irq_choose_cpu(data->irq,
381 irq_data_get_affinity_mask(data));
382 imap = handler_data->imap;
383
384 tid = sun4u_compute_tid(imap, cpuid);
385
386 val = upa_readq(imap);
387 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
388 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
389 val |= tid | IMAP_VALID;
390 upa_writeq(val, imap);
391 upa_writeq(ICLR_IDLE, handler_data->iclr);
392 }
393 }
394
395 static int sun4u_set_affinity(struct irq_data *data,
396 const struct cpumask *mask, bool force)
397 {
398 struct irq_handler_data *handler_data;
399
400 handler_data = irq_data_get_irq_handler_data(data);
401 if (likely(handler_data)) {
402 unsigned long cpuid, imap, val;
403 unsigned int tid;
404
405 cpuid = irq_choose_cpu(data->irq, mask);
406 imap = handler_data->imap;
407
408 tid = sun4u_compute_tid(imap, cpuid);
409
410 val = upa_readq(imap);
411 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
412 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
413 val |= tid | IMAP_VALID;
414 upa_writeq(val, imap);
415 upa_writeq(ICLR_IDLE, handler_data->iclr);
416 }
417
418 return 0;
419 }
420
421 /* Don't do anything. The desc->status check for IRQ_DISABLED in
422 * handler_irq() will skip the handler call and that will leave the
423 * interrupt in the sent state. The next ->enable() call will hit the
424 * ICLR register to reset the state machine.
425 *
426 * This scheme is necessary, instead of clearing the Valid bit in the
427 * IMAP register, to handle the case of IMAP registers being shared by
428 * multiple INOs (and thus ICLR registers). Since we use a different
429 * virtual IRQ for each shared IMAP instance, the generic code thinks
430 * there is only one user so it prematurely calls ->disable() on
431 * free_irq().
432 *
433 * We have to provide an explicit ->disable() method instead of using
434 * NULL to get the default. The reason is that if the generic code
435 * sees that, it also hooks up a default ->shutdown method which
436 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
437 */
438 static void sun4u_irq_disable(struct irq_data *data)
439 {
440 }
441
442 static void sun4u_irq_eoi(struct irq_data *data)
443 {
444 struct irq_handler_data *handler_data;
445
446 handler_data = irq_data_get_irq_handler_data(data);
447 if (likely(handler_data))
448 upa_writeq(ICLR_IDLE, handler_data->iclr);
449 }
450
451 static void sun4v_irq_enable(struct irq_data *data)
452 {
453 unsigned long cpuid = irq_choose_cpu(data->irq,
454 irq_data_get_affinity_mask(data));
455 unsigned int ino = irq_data_to_sysino(data);
456 int err;
457
458 err = sun4v_intr_settarget(ino, cpuid);
459 if (err != HV_EOK)
460 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
461 "err(%d)\n", ino, cpuid, err);
462 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
463 if (err != HV_EOK)
464 printk(KERN_ERR "sun4v_intr_setstate(%x): "
465 "err(%d)\n", ino, err);
466 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
467 if (err != HV_EOK)
468 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
469 ino, err);
470 }
471
472 static int sun4v_set_affinity(struct irq_data *data,
473 const struct cpumask *mask, bool force)
474 {
475 unsigned long cpuid = irq_choose_cpu(data->irq, mask);
476 unsigned int ino = irq_data_to_sysino(data);
477 int err;
478
479 err = sun4v_intr_settarget(ino, cpuid);
480 if (err != HV_EOK)
481 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
482 "err(%d)\n", ino, cpuid, err);
483
484 return 0;
485 }
486
487 static void sun4v_irq_disable(struct irq_data *data)
488 {
489 unsigned int ino = irq_data_to_sysino(data);
490 int err;
491
492 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
493 if (err != HV_EOK)
494 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
495 "err(%d)\n", ino, err);
496 }
497
498 static void sun4v_irq_eoi(struct irq_data *data)
499 {
500 unsigned int ino = irq_data_to_sysino(data);
501 int err;
502
503 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
504 if (err != HV_EOK)
505 printk(KERN_ERR "sun4v_intr_setstate(%x): "
506 "err(%d)\n", ino, err);
507 }
508
509 static void sun4v_virq_enable(struct irq_data *data)
510 {
511 unsigned long dev_handle = irq_data_to_handle(data);
512 unsigned long dev_ino = irq_data_to_ino(data);
513 unsigned long cpuid;
514 int err;
515
516 cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
517
518 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
519 if (err != HV_EOK)
520 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
521 "err(%d)\n",
522 dev_handle, dev_ino, cpuid, err);
523 err = sun4v_vintr_set_state(dev_handle, dev_ino,
524 HV_INTR_STATE_IDLE);
525 if (err != HV_EOK)
526 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
527 "HV_INTR_STATE_IDLE): err(%d)\n",
528 dev_handle, dev_ino, err);
529 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
530 HV_INTR_ENABLED);
531 if (err != HV_EOK)
532 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
533 "HV_INTR_ENABLED): err(%d)\n",
534 dev_handle, dev_ino, err);
535 }
536
537 static int sun4v_virt_set_affinity(struct irq_data *data,
538 const struct cpumask *mask, bool force)
539 {
540 unsigned long dev_handle = irq_data_to_handle(data);
541 unsigned long dev_ino = irq_data_to_ino(data);
542 unsigned long cpuid;
543 int err;
544
545 cpuid = irq_choose_cpu(data->irq, mask);
546
547 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
548 if (err != HV_EOK)
549 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
550 "err(%d)\n",
551 dev_handle, dev_ino, cpuid, err);
552
553 return 0;
554 }
555
556 static void sun4v_virq_disable(struct irq_data *data)
557 {
558 unsigned long dev_handle = irq_data_to_handle(data);
559 unsigned long dev_ino = irq_data_to_ino(data);
560 int err;
561
562
563 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
564 HV_INTR_DISABLED);
565 if (err != HV_EOK)
566 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
567 "HV_INTR_DISABLED): err(%d)\n",
568 dev_handle, dev_ino, err);
569 }
570
571 static void sun4v_virq_eoi(struct irq_data *data)
572 {
573 unsigned long dev_handle = irq_data_to_handle(data);
574 unsigned long dev_ino = irq_data_to_ino(data);
575 int err;
576
577 err = sun4v_vintr_set_state(dev_handle, dev_ino,
578 HV_INTR_STATE_IDLE);
579 if (err != HV_EOK)
580 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
581 "HV_INTR_STATE_IDLE): err(%d)\n",
582 dev_handle, dev_ino, err);
583 }
584
585 static struct irq_chip sun4u_irq = {
586 .name = "sun4u",
587 .irq_enable = sun4u_irq_enable,
588 .irq_disable = sun4u_irq_disable,
589 .irq_eoi = sun4u_irq_eoi,
590 .irq_set_affinity = sun4u_set_affinity,
591 .flags = IRQCHIP_EOI_IF_HANDLED,
592 };
593
594 static struct irq_chip sun4v_irq = {
595 .name = "sun4v",
596 .irq_enable = sun4v_irq_enable,
597 .irq_disable = sun4v_irq_disable,
598 .irq_eoi = sun4v_irq_eoi,
599 .irq_set_affinity = sun4v_set_affinity,
600 .flags = IRQCHIP_EOI_IF_HANDLED,
601 };
602
603 static struct irq_chip sun4v_virq = {
604 .name = "vsun4v",
605 .irq_enable = sun4v_virq_enable,
606 .irq_disable = sun4v_virq_disable,
607 .irq_eoi = sun4v_virq_eoi,
608 .irq_set_affinity = sun4v_virt_set_affinity,
609 .flags = IRQCHIP_EOI_IF_HANDLED,
610 };
611
612 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
613 {
614 struct irq_handler_data *handler_data;
615 struct ino_bucket *bucket;
616 unsigned int irq;
617 int ino;
618
619 BUG_ON(tlb_type == hypervisor);
620
621 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
622 bucket = &ivector_table[ino];
623 irq = bucket_get_irq(__pa(bucket));
624 if (!irq) {
625 irq = irq_alloc(0, ino);
626 bucket_set_irq(__pa(bucket), irq);
627 irq_set_chip_and_handler_name(irq, &sun4u_irq,
628 handle_fasteoi_irq, "IVEC");
629 }
630
631 handler_data = irq_get_handler_data(irq);
632 if (unlikely(handler_data))
633 goto out;
634
635 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
636 if (unlikely(!handler_data)) {
637 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
638 prom_halt();
639 }
640 irq_set_handler_data(irq, handler_data);
641
642 handler_data->imap = imap;
643 handler_data->iclr = iclr;
644
645 out:
646 return irq;
647 }
648
649 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
650 void (*handler_data_init)(struct irq_handler_data *data,
651 u32 devhandle, unsigned int devino),
652 struct irq_chip *chip)
653 {
654 struct irq_handler_data *data;
655 unsigned int irq;
656
657 irq = irq_alloc(devhandle, devino);
658 if (!irq)
659 goto out;
660
661 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
662 if (unlikely(!data)) {
663 pr_err("IRQ handler data allocation failed.\n");
664 irq_free(irq);
665 irq = 0;
666 goto out;
667 }
668
669 irq_set_handler_data(irq, data);
670 handler_data_init(data, devhandle, devino);
671 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
672 data->imap = ~0UL;
673 data->iclr = ~0UL;
674 out:
675 return irq;
676 }
677
678 static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
679 unsigned int devino)
680 {
681 struct irq_handler_data *ihd = irq_get_handler_data(irq);
682 unsigned long hv_error, cookie;
683
684 /* handler_irq needs to find the irq. cookie is seen signed in
685 * sun4v_dev_mondo and treated as a non ivector_table delivery.
686 */
687 ihd->bucket.__irq = irq;
688 cookie = ~__pa(&ihd->bucket);
689
690 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
691 if (hv_error)
692 pr_err("HV vintr set cookie failed = %ld\n", hv_error);
693
694 return hv_error;
695 }
696
697 static void cookie_handler_data(struct irq_handler_data *data,
698 u32 devhandle, unsigned int devino)
699 {
700 data->dev_handle = devhandle;
701 data->dev_ino = devino;
702 }
703
704 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
705 struct irq_chip *chip)
706 {
707 unsigned long hv_error;
708 unsigned int irq;
709
710 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
711
712 hv_error = cookie_assign(irq, devhandle, devino);
713 if (hv_error) {
714 irq_free(irq);
715 irq = 0;
716 }
717
718 return irq;
719 }
720
721 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
722 {
723 unsigned int irq;
724
725 irq = cookie_exists(devhandle, devino);
726 if (irq)
727 goto out;
728
729 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
730
731 out:
732 return irq;
733 }
734
735 static void sysino_set_bucket(unsigned int irq)
736 {
737 struct irq_handler_data *ihd = irq_get_handler_data(irq);
738 struct ino_bucket *bucket;
739 unsigned long sysino;
740
741 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
742 BUG_ON(sysino >= nr_ivec);
743 bucket = &ivector_table[sysino];
744 bucket_set_irq(__pa(bucket), irq);
745 }
746
747 static void sysino_handler_data(struct irq_handler_data *data,
748 u32 devhandle, unsigned int devino)
749 {
750 unsigned long sysino;
751
752 sysino = sun4v_devino_to_sysino(devhandle, devino);
753 data->sysino = sysino;
754 }
755
756 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
757 struct irq_chip *chip)
758 {
759 unsigned int irq;
760
761 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
762 if (!irq)
763 goto out;
764
765 sysino_set_bucket(irq);
766 out:
767 return irq;
768 }
769
770 static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
771 {
772 int irq;
773
774 irq = sysino_exists(devhandle, devino);
775 if (irq)
776 goto out;
777
778 irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
779 out:
780 return irq;
781 }
782
783 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
784 {
785 unsigned int irq;
786
787 if (sun4v_cookie_only_virqs())
788 irq = sun4v_build_cookie(devhandle, devino);
789 else
790 irq = sun4v_build_sysino(devhandle, devino);
791
792 return irq;
793 }
794
795 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
796 {
797 int irq;
798
799 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
800 if (!irq)
801 goto out;
802
803 /* This is borrowed from the original function.
804 */
805 irq_set_status_flags(irq, IRQ_NOAUTOEN);
806
807 out:
808 return irq;
809 }
810
811 void *hardirq_stack[NR_CPUS];
812 void *softirq_stack[NR_CPUS];
813
814 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
815 {
816 unsigned long pstate, bucket_pa;
817 struct pt_regs *old_regs;
818 void *orig_sp;
819
820 clear_softint(1 << pil);
821
822 old_regs = set_irq_regs(regs);
823 irq_enter();
824
825 /* Grab an atomic snapshot of the pending IVECs. */
826 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
827 "wrpr %0, %3, %%pstate\n\t"
828 "ldx [%2], %1\n\t"
829 "stx %%g0, [%2]\n\t"
830 "wrpr %0, 0x0, %%pstate\n\t"
831 : "=&r" (pstate), "=&r" (bucket_pa)
832 : "r" (irq_work_pa(smp_processor_id())),
833 "i" (PSTATE_IE)
834 : "memory");
835
836 orig_sp = set_hardirq_stack();
837
838 while (bucket_pa) {
839 unsigned long next_pa;
840 unsigned int irq;
841
842 next_pa = bucket_get_chain_pa(bucket_pa);
843 irq = bucket_get_irq(bucket_pa);
844 bucket_clear_chain_pa(bucket_pa);
845
846 generic_handle_irq(irq);
847
848 bucket_pa = next_pa;
849 }
850
851 restore_hardirq_stack(orig_sp);
852
853 irq_exit();
854 set_irq_regs(old_regs);
855 }
856
857 void do_softirq_own_stack(void)
858 {
859 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
860
861 sp += THREAD_SIZE - 192 - STACK_BIAS;
862
863 __asm__ __volatile__("mov %%sp, %0\n\t"
864 "mov %1, %%sp"
865 : "=&r" (orig_sp)
866 : "r" (sp));
867 __do_softirq();
868 __asm__ __volatile__("mov %0, %%sp"
869 : : "r" (orig_sp));
870 }
871
872 #ifdef CONFIG_HOTPLUG_CPU
873 void fixup_irqs(void)
874 {
875 unsigned int irq;
876
877 for (irq = 0; irq < NR_IRQS; irq++) {
878 struct irq_desc *desc = irq_to_desc(irq);
879 struct irq_data *data;
880 unsigned long flags;
881
882 if (!desc)
883 continue;
884 data = irq_desc_get_irq_data(desc);
885 raw_spin_lock_irqsave(&desc->lock, flags);
886 if (desc->action && !irqd_is_per_cpu(data)) {
887 if (data->chip->irq_set_affinity)
888 data->chip->irq_set_affinity(data,
889 irq_data_get_affinity_mask(data),
890 false);
891 }
892 raw_spin_unlock_irqrestore(&desc->lock, flags);
893 }
894
895 tick_ops->disable_irq();
896 }
897 #endif
898
899 struct sun5_timer {
900 u64 count0;
901 u64 limit0;
902 u64 count1;
903 u64 limit1;
904 };
905
906 static struct sun5_timer *prom_timers;
907 static u64 prom_limit0, prom_limit1;
908
909 static void map_prom_timers(void)
910 {
911 struct device_node *dp;
912 const unsigned int *addr;
913
914 /* PROM timer node hangs out in the top level of device siblings... */
915 dp = of_find_node_by_path("/");
916 dp = dp->child;
917 while (dp) {
918 if (!strcmp(dp->name, "counter-timer"))
919 break;
920 dp = dp->sibling;
921 }
922
923 /* Assume if node is not present, PROM uses different tick mechanism
924 * which we should not care about.
925 */
926 if (!dp) {
927 prom_timers = (struct sun5_timer *) 0;
928 return;
929 }
930
931 /* If PROM is really using this, it must be mapped by him. */
932 addr = of_get_property(dp, "address", NULL);
933 if (!addr) {
934 prom_printf("PROM does not have timer mapped, trying to continue.\n");
935 prom_timers = (struct sun5_timer *) 0;
936 return;
937 }
938 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
939 }
940
941 static void kill_prom_timer(void)
942 {
943 if (!prom_timers)
944 return;
945
946 /* Save them away for later. */
947 prom_limit0 = prom_timers->limit0;
948 prom_limit1 = prom_timers->limit1;
949
950 /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
951 * We turn both off here just to be paranoid.
952 */
953 prom_timers->limit0 = 0;
954 prom_timers->limit1 = 0;
955
956 /* Wheee, eat the interrupt packet too... */
957 __asm__ __volatile__(
958 " mov 0x40, %%g2\n"
959 " ldxa [%%g0] %0, %%g1\n"
960 " ldxa [%%g2] %1, %%g1\n"
961 " stxa %%g0, [%%g0] %0\n"
962 " membar #Sync\n"
963 : /* no outputs */
964 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
965 : "g1", "g2");
966 }
967
968 void notrace init_irqwork_curcpu(void)
969 {
970 int cpu = hard_smp_processor_id();
971
972 trap_block[cpu].irq_worklist_pa = 0UL;
973 }
974
975 /* Please be very careful with register_one_mondo() and
976 * sun4v_register_mondo_queues().
977 *
978 * On SMP this gets invoked from the CPU trampoline before
979 * the cpu has fully taken over the trap table from OBP,
980 * and it's kernel stack + %g6 thread register state is
981 * not fully cooked yet.
982 *
983 * Therefore you cannot make any OBP calls, not even prom_printf,
984 * from these two routines.
985 */
986 static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
987 unsigned long qmask)
988 {
989 unsigned long num_entries = (qmask + 1) / 64;
990 unsigned long status;
991
992 status = sun4v_cpu_qconf(type, paddr, num_entries);
993 if (status != HV_EOK) {
994 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
995 "err %lu\n", type, paddr, num_entries, status);
996 prom_halt();
997 }
998 }
999
1000 void notrace sun4v_register_mondo_queues(int this_cpu)
1001 {
1002 struct trap_per_cpu *tb = &trap_block[this_cpu];
1003
1004 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1005 tb->cpu_mondo_qmask);
1006 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1007 tb->dev_mondo_qmask);
1008 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1009 tb->resum_qmask);
1010 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1011 tb->nonresum_qmask);
1012 }
1013
1014 /* Each queue region must be a power of 2 multiple of 64 bytes in
1015 * size. The base real address must be aligned to the size of the
1016 * region. Thus, an 8KB queue must be 8KB aligned, for example.
1017 */
1018 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1019 {
1020 unsigned long size = PAGE_ALIGN(qmask + 1);
1021 unsigned long order = get_order(size);
1022 unsigned long p;
1023
1024 p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1025 if (!p) {
1026 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1027 prom_halt();
1028 }
1029
1030 *pa_ptr = __pa(p);
1031 }
1032
1033 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1034 {
1035 #ifdef CONFIG_SMP
1036 unsigned long page;
1037
1038 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
1039
1040 page = get_zeroed_page(GFP_KERNEL);
1041 if (!page) {
1042 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
1043 prom_halt();
1044 }
1045
1046 tb->cpu_mondo_block_pa = __pa(page);
1047 tb->cpu_list_pa = __pa(page + 64);
1048 #endif
1049 }
1050
1051 /* Allocate mondo and error queues for all possible cpus. */
1052 static void __init sun4v_init_mondo_queues(void)
1053 {
1054 int cpu;
1055
1056 for_each_possible_cpu(cpu) {
1057 struct trap_per_cpu *tb = &trap_block[cpu];
1058
1059 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1060 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1061 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1062 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1063 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1064 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1065 tb->nonresum_qmask);
1066 }
1067 }
1068
1069 static void __init init_send_mondo_info(void)
1070 {
1071 int cpu;
1072
1073 for_each_possible_cpu(cpu) {
1074 struct trap_per_cpu *tb = &trap_block[cpu];
1075
1076 init_cpu_send_mondo_info(tb);
1077 }
1078 }
1079
1080 static struct irqaction timer_irq_action = {
1081 .name = "timer",
1082 };
1083
1084 static void __init irq_ivector_init(void)
1085 {
1086 unsigned long size, order;
1087 unsigned int ivecs;
1088
1089 /* If we are doing cookie only VIRQs then we do not need the ivector
1090 * table to process interrupts.
1091 */
1092 if (sun4v_cookie_only_virqs())
1093 return;
1094
1095 ivecs = size_nr_ivec();
1096 size = sizeof(struct ino_bucket) * ivecs;
1097 order = get_order(size);
1098 ivector_table = (struct ino_bucket *)
1099 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1100 if (!ivector_table) {
1101 prom_printf("Fatal error, cannot allocate ivector_table\n");
1102 prom_halt();
1103 }
1104 __flush_dcache_range((unsigned long) ivector_table,
1105 ((unsigned long) ivector_table) + size);
1106
1107 ivector_table_pa = __pa(ivector_table);
1108 }
1109
1110 /* Only invoked on boot processor.*/
1111 void __init init_IRQ(void)
1112 {
1113 irq_init_hv();
1114 irq_ivector_init();
1115 map_prom_timers();
1116 kill_prom_timer();
1117
1118 if (tlb_type == hypervisor)
1119 sun4v_init_mondo_queues();
1120
1121 init_send_mondo_info();
1122
1123 if (tlb_type == hypervisor) {
1124 /* Load up the boot cpu's entries. */
1125 sun4v_register_mondo_queues(hard_smp_processor_id());
1126 }
1127
1128 /* We need to clear any IRQ's pending in the soft interrupt
1129 * registers, a spurious one could be left around from the
1130 * PROM timer which we just disabled.
1131 */
1132 clear_softint(get_softint());
1133
1134 /* Now that ivector table is initialized, it is safe
1135 * to receive IRQ vector traps. We will normally take
1136 * one or two right now, in case some device PROM used
1137 * to boot us wants to speak to us. We just ignore them.
1138 */
1139 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1140 "or %%g1, %0, %%g1\n\t"
1141 "wrpr %%g1, 0x0, %%pstate"
1142 : /* No outputs */
1143 : "i" (PSTATE_IE)
1144 : "g1");
1145
1146 irq_to_desc(0)->action = &timer_irq_action;
1147 }