sysdev: Pass the attribute to the low level sysdev show/store function
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / arch / s390 / kernel / smp.c
1 /*
2 * arch/s390/kernel/smp.c
3 *
4 * Copyright IBM Corp. 1999,2007
5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 * Heiko Carstens (heiko.carstens@de.ibm.com)
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * We work with logical cpu numbering everywhere we can. The only
14 * functions using the real cpu address (got from STAP) are the sigp
15 * functions. For all other functions we use the identity mapping.
16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17 * used e.g. to find the idle task belonging to a logical cpu. Every array
18 * in the kernel is sorted by the logical cpu number and not by the physical
19 * one which is causing all the confusion with __cpu_logical_map and
20 * cpu_number_map in other architectures.
21 */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/cache.h>
31 #include <linux/interrupt.h>
32 #include <linux/cpu.h>
33 #include <linux/timex.h>
34 #include <linux/bootmem.h>
35 #include <asm/ipl.h>
36 #include <asm/setup.h>
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 #include <asm/timer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/cpu.h>
47 #include "entry.h"
48
49 /*
50 * An array with a pointer the lowcore of every CPU.
51 */
52 struct _lowcore *lowcore_ptr[NR_CPUS];
53 EXPORT_SYMBOL(lowcore_ptr);
54
55 cpumask_t cpu_online_map = CPU_MASK_NONE;
56 EXPORT_SYMBOL(cpu_online_map);
57
58 cpumask_t cpu_possible_map = CPU_MASK_ALL;
59 EXPORT_SYMBOL(cpu_possible_map);
60
61 static struct task_struct *current_set[NR_CPUS];
62
63 static u8 smp_cpu_type;
64 static int smp_use_sigp_detection;
65
66 enum s390_cpu_state {
67 CPU_STATE_STANDBY,
68 CPU_STATE_CONFIGURED,
69 };
70
71 DEFINE_MUTEX(smp_cpu_state_mutex);
72 int smp_cpu_polarization[NR_CPUS];
73 static int smp_cpu_state[NR_CPUS];
74 static int cpu_management;
75
76 static DEFINE_PER_CPU(struct cpu, cpu_devices);
77
78 static void smp_ext_bitcall(int, ec_bit_sig);
79
80 /*
81 * Structure and data for __smp_call_function_map(). This is designed to
82 * minimise static memory requirements. It also looks cleaner.
83 */
84 static DEFINE_SPINLOCK(call_lock);
85
86 struct call_data_struct {
87 void (*func) (void *info);
88 void *info;
89 cpumask_t started;
90 cpumask_t finished;
91 int wait;
92 };
93
94 static struct call_data_struct *call_data;
95
96 /*
97 * 'Call function' interrupt callback
98 */
99 static void do_call_function(void)
100 {
101 void (*func) (void *info) = call_data->func;
102 void *info = call_data->info;
103 int wait = call_data->wait;
104
105 cpu_set(smp_processor_id(), call_data->started);
106 (*func)(info);
107 if (wait)
108 cpu_set(smp_processor_id(), call_data->finished);;
109 }
110
111 static void __smp_call_function_map(void (*func) (void *info), void *info,
112 int wait, cpumask_t map)
113 {
114 struct call_data_struct data;
115 int cpu, local = 0;
116
117 /*
118 * Can deadlock when interrupts are disabled or if in wrong context.
119 */
120 WARN_ON(irqs_disabled() || in_irq());
121
122 /*
123 * Check for local function call. We have to have the same call order
124 * as in on_each_cpu() because of machine_restart_smp().
125 */
126 if (cpu_isset(smp_processor_id(), map)) {
127 local = 1;
128 cpu_clear(smp_processor_id(), map);
129 }
130
131 cpus_and(map, map, cpu_online_map);
132 if (cpus_empty(map))
133 goto out;
134
135 data.func = func;
136 data.info = info;
137 data.started = CPU_MASK_NONE;
138 data.wait = wait;
139 if (wait)
140 data.finished = CPU_MASK_NONE;
141
142 call_data = &data;
143
144 for_each_cpu_mask(cpu, map)
145 smp_ext_bitcall(cpu, ec_call_function);
146
147 /* Wait for response */
148 while (!cpus_equal(map, data.started))
149 cpu_relax();
150 if (wait)
151 while (!cpus_equal(map, data.finished))
152 cpu_relax();
153 out:
154 if (local) {
155 local_irq_disable();
156 func(info);
157 local_irq_enable();
158 }
159 }
160
161 /*
162 * smp_call_function:
163 * @func: the function to run; this must be fast and non-blocking
164 * @info: an arbitrary pointer to pass to the function
165 * @wait: if true, wait (atomically) until function has completed on other CPUs
166 *
167 * Run a function on all other CPUs.
168 *
169 * You must not call this function with disabled interrupts, from a
170 * hardware interrupt handler or from a bottom half.
171 */
172 int smp_call_function(void (*func) (void *info), void *info, int wait)
173 {
174 cpumask_t map;
175
176 spin_lock(&call_lock);
177 map = cpu_online_map;
178 cpu_clear(smp_processor_id(), map);
179 __smp_call_function_map(func, info, wait, map);
180 spin_unlock(&call_lock);
181 return 0;
182 }
183 EXPORT_SYMBOL(smp_call_function);
184
185 /*
186 * smp_call_function_single:
187 * @cpu: the CPU where func should run
188 * @func: the function to run; this must be fast and non-blocking
189 * @info: an arbitrary pointer to pass to the function
190 * @wait: if true, wait (atomically) until function has completed on other CPUs
191 *
192 * Run a function on one processor.
193 *
194 * You must not call this function with disabled interrupts, from a
195 * hardware interrupt handler or from a bottom half.
196 */
197 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
198 int wait)
199 {
200 spin_lock(&call_lock);
201 __smp_call_function_map(func, info, wait, cpumask_of_cpu(cpu));
202 spin_unlock(&call_lock);
203 return 0;
204 }
205 EXPORT_SYMBOL(smp_call_function_single);
206
207 /**
208 * smp_call_function_mask(): Run a function on a set of other CPUs.
209 * @mask: The set of cpus to run on. Must not include the current cpu.
210 * @func: The function to run. This must be fast and non-blocking.
211 * @info: An arbitrary pointer to pass to the function.
212 * @wait: If true, wait (atomically) until function has completed on other CPUs.
213 *
214 * Returns 0 on success, else a negative status code.
215 *
216 * If @wait is true, then returns once @func has returned; otherwise
217 * it returns just before the target cpu calls @func.
218 *
219 * You must not call this function with disabled interrupts or from a
220 * hardware interrupt handler or from a bottom half handler.
221 */
222 int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
223 int wait)
224 {
225 spin_lock(&call_lock);
226 cpu_clear(smp_processor_id(), mask);
227 __smp_call_function_map(func, info, wait, mask);
228 spin_unlock(&call_lock);
229 return 0;
230 }
231 EXPORT_SYMBOL(smp_call_function_mask);
232
233 void smp_send_stop(void)
234 {
235 int cpu, rc;
236
237 /* Disable all interrupts/machine checks */
238 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
239
240 /* write magic number to zero page (absolute 0) */
241 lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
242
243 /* stop all processors */
244 for_each_online_cpu(cpu) {
245 if (cpu == smp_processor_id())
246 continue;
247 do {
248 rc = signal_processor(cpu, sigp_stop);
249 } while (rc == sigp_busy);
250
251 while (!smp_cpu_not_running(cpu))
252 cpu_relax();
253 }
254 }
255
256 /*
257 * This is the main routine where commands issued by other
258 * cpus are handled.
259 */
260
261 static void do_ext_call_interrupt(__u16 code)
262 {
263 unsigned long bits;
264
265 /*
266 * handle bit signal external calls
267 *
268 * For the ec_schedule signal we have to do nothing. All the work
269 * is done automatically when we return from the interrupt.
270 */
271 bits = xchg(&S390_lowcore.ext_call_fast, 0);
272
273 if (test_bit(ec_call_function, &bits))
274 do_call_function();
275 }
276
277 /*
278 * Send an external call sigp to another cpu and return without waiting
279 * for its completion.
280 */
281 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
282 {
283 /*
284 * Set signaling bit in lowcore of target cpu and kick it
285 */
286 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
287 while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
288 udelay(10);
289 }
290
291 #ifndef CONFIG_64BIT
292 /*
293 * this function sends a 'purge tlb' signal to another CPU.
294 */
295 static void smp_ptlb_callback(void *info)
296 {
297 __tlb_flush_local();
298 }
299
300 void smp_ptlb_all(void)
301 {
302 on_each_cpu(smp_ptlb_callback, NULL, 1);
303 }
304 EXPORT_SYMBOL(smp_ptlb_all);
305 #endif /* ! CONFIG_64BIT */
306
307 /*
308 * this function sends a 'reschedule' IPI to another CPU.
309 * it goes straight through and wastes no time serializing
310 * anything. Worst case is that we lose a reschedule ...
311 */
312 void smp_send_reschedule(int cpu)
313 {
314 smp_ext_bitcall(cpu, ec_schedule);
315 }
316
317 /*
318 * parameter area for the set/clear control bit callbacks
319 */
320 struct ec_creg_mask_parms {
321 unsigned long orvals[16];
322 unsigned long andvals[16];
323 };
324
325 /*
326 * callback for setting/clearing control bits
327 */
328 static void smp_ctl_bit_callback(void *info)
329 {
330 struct ec_creg_mask_parms *pp = info;
331 unsigned long cregs[16];
332 int i;
333
334 __ctl_store(cregs, 0, 15);
335 for (i = 0; i <= 15; i++)
336 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
337 __ctl_load(cregs, 0, 15);
338 }
339
340 /*
341 * Set a bit in a control register of all cpus
342 */
343 void smp_ctl_set_bit(int cr, int bit)
344 {
345 struct ec_creg_mask_parms parms;
346
347 memset(&parms.orvals, 0, sizeof(parms.orvals));
348 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
349 parms.orvals[cr] = 1 << bit;
350 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
351 }
352 EXPORT_SYMBOL(smp_ctl_set_bit);
353
354 /*
355 * Clear a bit in a control register of all cpus
356 */
357 void smp_ctl_clear_bit(int cr, int bit)
358 {
359 struct ec_creg_mask_parms parms;
360
361 memset(&parms.orvals, 0, sizeof(parms.orvals));
362 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
363 parms.andvals[cr] = ~(1L << bit);
364 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
365 }
366 EXPORT_SYMBOL(smp_ctl_clear_bit);
367
368 /*
369 * In early ipl state a temp. logically cpu number is needed, so the sigp
370 * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
371 * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
372 */
373 #define CPU_INIT_NO 1
374
375 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
376
377 /*
378 * zfcpdump_prefix_array holds prefix registers for the following scenario:
379 * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
380 * save its prefix registers, since they get lost, when switching from 31 bit
381 * to 64 bit.
382 */
383 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
384 __attribute__((__section__(".data")));
385
386 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
387 {
388 if (ipl_info.type != IPL_TYPE_FCP_DUMP)
389 return;
390 if (cpu >= NR_CPUS) {
391 printk(KERN_WARNING "Registers for cpu %i not saved since dump "
392 "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
393 return;
394 }
395 zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
396 __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
397 while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
398 sigp_busy)
399 cpu_relax();
400 memcpy(zfcpdump_save_areas[cpu],
401 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
402 SAVE_AREA_SIZE);
403 #ifdef CONFIG_64BIT
404 /* copy original prefix register */
405 zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
406 #endif
407 }
408
409 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
410 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
411
412 #else
413
414 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
415
416 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
417
418 static int cpu_stopped(int cpu)
419 {
420 __u32 status;
421
422 /* Check for stopped state */
423 if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
424 sigp_status_stored) {
425 if (status & 0x40)
426 return 1;
427 }
428 return 0;
429 }
430
431 static int cpu_known(int cpu_id)
432 {
433 int cpu;
434
435 for_each_present_cpu(cpu) {
436 if (__cpu_logical_map[cpu] == cpu_id)
437 return 1;
438 }
439 return 0;
440 }
441
442 static int smp_rescan_cpus_sigp(cpumask_t avail)
443 {
444 int cpu_id, logical_cpu;
445
446 logical_cpu = first_cpu(avail);
447 if (logical_cpu == NR_CPUS)
448 return 0;
449 for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
450 if (cpu_known(cpu_id))
451 continue;
452 __cpu_logical_map[logical_cpu] = cpu_id;
453 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
454 if (!cpu_stopped(logical_cpu))
455 continue;
456 cpu_set(logical_cpu, cpu_present_map);
457 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
458 logical_cpu = next_cpu(logical_cpu, avail);
459 if (logical_cpu == NR_CPUS)
460 break;
461 }
462 return 0;
463 }
464
465 static int smp_rescan_cpus_sclp(cpumask_t avail)
466 {
467 struct sclp_cpu_info *info;
468 int cpu_id, logical_cpu, cpu;
469 int rc;
470
471 logical_cpu = first_cpu(avail);
472 if (logical_cpu == NR_CPUS)
473 return 0;
474 info = kmalloc(sizeof(*info), GFP_KERNEL);
475 if (!info)
476 return -ENOMEM;
477 rc = sclp_get_cpu_info(info);
478 if (rc)
479 goto out;
480 for (cpu = 0; cpu < info->combined; cpu++) {
481 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
482 continue;
483 cpu_id = info->cpu[cpu].address;
484 if (cpu_known(cpu_id))
485 continue;
486 __cpu_logical_map[logical_cpu] = cpu_id;
487 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
488 cpu_set(logical_cpu, cpu_present_map);
489 if (cpu >= info->configured)
490 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
491 else
492 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
493 logical_cpu = next_cpu(logical_cpu, avail);
494 if (logical_cpu == NR_CPUS)
495 break;
496 }
497 out:
498 kfree(info);
499 return rc;
500 }
501
502 static int __smp_rescan_cpus(void)
503 {
504 cpumask_t avail;
505
506 cpus_xor(avail, cpu_possible_map, cpu_present_map);
507 if (smp_use_sigp_detection)
508 return smp_rescan_cpus_sigp(avail);
509 else
510 return smp_rescan_cpus_sclp(avail);
511 }
512
513 static void __init smp_detect_cpus(void)
514 {
515 unsigned int cpu, c_cpus, s_cpus;
516 struct sclp_cpu_info *info;
517 u16 boot_cpu_addr, cpu_addr;
518
519 c_cpus = 1;
520 s_cpus = 0;
521 boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
522 info = kmalloc(sizeof(*info), GFP_KERNEL);
523 if (!info)
524 panic("smp_detect_cpus failed to allocate memory\n");
525 /* Use sigp detection algorithm if sclp doesn't work. */
526 if (sclp_get_cpu_info(info)) {
527 smp_use_sigp_detection = 1;
528 for (cpu = 0; cpu <= 65535; cpu++) {
529 if (cpu == boot_cpu_addr)
530 continue;
531 __cpu_logical_map[CPU_INIT_NO] = cpu;
532 if (!cpu_stopped(CPU_INIT_NO))
533 continue;
534 smp_get_save_area(c_cpus, cpu);
535 c_cpus++;
536 }
537 goto out;
538 }
539
540 if (info->has_cpu_type) {
541 for (cpu = 0; cpu < info->combined; cpu++) {
542 if (info->cpu[cpu].address == boot_cpu_addr) {
543 smp_cpu_type = info->cpu[cpu].type;
544 break;
545 }
546 }
547 }
548
549 for (cpu = 0; cpu < info->combined; cpu++) {
550 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
551 continue;
552 cpu_addr = info->cpu[cpu].address;
553 if (cpu_addr == boot_cpu_addr)
554 continue;
555 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
556 if (!cpu_stopped(CPU_INIT_NO)) {
557 s_cpus++;
558 continue;
559 }
560 smp_get_save_area(c_cpus, cpu_addr);
561 c_cpus++;
562 }
563 out:
564 kfree(info);
565 printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus);
566 get_online_cpus();
567 __smp_rescan_cpus();
568 put_online_cpus();
569 }
570
571 /*
572 * Activate a secondary processor.
573 */
574 int __cpuinit start_secondary(void *cpuvoid)
575 {
576 /* Setup the cpu */
577 cpu_init();
578 preempt_disable();
579 /* Enable TOD clock interrupts on the secondary cpu. */
580 init_cpu_timer();
581 #ifdef CONFIG_VIRT_TIMER
582 /* Enable cpu timer interrupts on the secondary cpu. */
583 init_cpu_vtimer();
584 #endif
585 /* Enable pfault pseudo page faults on this cpu. */
586 pfault_init();
587
588 /* Mark this cpu as online */
589 spin_lock(&call_lock);
590 cpu_set(smp_processor_id(), cpu_online_map);
591 spin_unlock(&call_lock);
592 /* Switch on interrupts */
593 local_irq_enable();
594 /* Print info about this processor */
595 print_cpu_info(&S390_lowcore.cpu_data);
596 /* cpu_idle will call schedule for us */
597 cpu_idle();
598 return 0;
599 }
600
601 static void __init smp_create_idle(unsigned int cpu)
602 {
603 struct task_struct *p;
604
605 /*
606 * don't care about the psw and regs settings since we'll never
607 * reschedule the forked task.
608 */
609 p = fork_idle(cpu);
610 if (IS_ERR(p))
611 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
612 current_set[cpu] = p;
613 spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
614 }
615
616 static int __cpuinit smp_alloc_lowcore(int cpu)
617 {
618 unsigned long async_stack, panic_stack;
619 struct _lowcore *lowcore;
620 int lc_order;
621
622 lc_order = sizeof(long) == 8 ? 1 : 0;
623 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
624 if (!lowcore)
625 return -ENOMEM;
626 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
627 panic_stack = __get_free_page(GFP_KERNEL);
628 if (!panic_stack || !async_stack)
629 goto out;
630 memcpy(lowcore, &S390_lowcore, 512);
631 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
632 lowcore->async_stack = async_stack + ASYNC_SIZE;
633 lowcore->panic_stack = panic_stack + PAGE_SIZE;
634
635 #ifndef CONFIG_64BIT
636 if (MACHINE_HAS_IEEE) {
637 unsigned long save_area;
638
639 save_area = get_zeroed_page(GFP_KERNEL);
640 if (!save_area)
641 goto out_save_area;
642 lowcore->extended_save_area_addr = (u32) save_area;
643 }
644 #endif
645 lowcore_ptr[cpu] = lowcore;
646 return 0;
647
648 #ifndef CONFIG_64BIT
649 out_save_area:
650 free_page(panic_stack);
651 #endif
652 out:
653 free_pages(async_stack, ASYNC_ORDER);
654 free_pages((unsigned long) lowcore, lc_order);
655 return -ENOMEM;
656 }
657
658 #ifdef CONFIG_HOTPLUG_CPU
659 static void smp_free_lowcore(int cpu)
660 {
661 struct _lowcore *lowcore;
662 int lc_order;
663
664 lc_order = sizeof(long) == 8 ? 1 : 0;
665 lowcore = lowcore_ptr[cpu];
666 #ifndef CONFIG_64BIT
667 if (MACHINE_HAS_IEEE)
668 free_page((unsigned long) lowcore->extended_save_area_addr);
669 #endif
670 free_page(lowcore->panic_stack - PAGE_SIZE);
671 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
672 free_pages((unsigned long) lowcore, lc_order);
673 lowcore_ptr[cpu] = NULL;
674 }
675 #endif /* CONFIG_HOTPLUG_CPU */
676
677 /* Upping and downing of CPUs */
678 int __cpuinit __cpu_up(unsigned int cpu)
679 {
680 struct task_struct *idle;
681 struct _lowcore *cpu_lowcore;
682 struct stack_frame *sf;
683 sigp_ccode ccode;
684
685 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
686 return -EIO;
687 if (smp_alloc_lowcore(cpu))
688 return -ENOMEM;
689
690 ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
691 cpu, sigp_set_prefix);
692 if (ccode) {
693 printk("sigp_set_prefix failed for cpu %d "
694 "with condition code %d\n",
695 (int) cpu, (int) ccode);
696 return -EIO;
697 }
698
699 idle = current_set[cpu];
700 cpu_lowcore = lowcore_ptr[cpu];
701 cpu_lowcore->kernel_stack = (unsigned long)
702 task_stack_page(idle) + THREAD_SIZE;
703 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
704 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
705 - sizeof(struct pt_regs)
706 - sizeof(struct stack_frame));
707 memset(sf, 0, sizeof(struct stack_frame));
708 sf->gprs[9] = (unsigned long) sf;
709 cpu_lowcore->save_area[15] = (unsigned long) sf;
710 __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
711 asm volatile(
712 " stam 0,15,0(%0)"
713 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
714 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
715 cpu_lowcore->current_task = (unsigned long) idle;
716 cpu_lowcore->cpu_data.cpu_nr = cpu;
717 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
718 cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
719 eieio();
720
721 while (signal_processor(cpu, sigp_restart) == sigp_busy)
722 udelay(10);
723
724 while (!cpu_online(cpu))
725 cpu_relax();
726 return 0;
727 }
728
729 static int __init setup_possible_cpus(char *s)
730 {
731 int pcpus, cpu;
732
733 pcpus = simple_strtoul(s, NULL, 0);
734 cpu_possible_map = cpumask_of_cpu(0);
735 for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
736 cpu_set(cpu, cpu_possible_map);
737 return 0;
738 }
739 early_param("possible_cpus", setup_possible_cpus);
740
741 #ifdef CONFIG_HOTPLUG_CPU
742
743 int __cpu_disable(void)
744 {
745 struct ec_creg_mask_parms cr_parms;
746 int cpu = smp_processor_id();
747
748 cpu_clear(cpu, cpu_online_map);
749
750 /* Disable pfault pseudo page faults on this cpu. */
751 pfault_fini();
752
753 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
754 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
755
756 /* disable all external interrupts */
757 cr_parms.orvals[0] = 0;
758 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
759 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
760 /* disable all I/O interrupts */
761 cr_parms.orvals[6] = 0;
762 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
763 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
764 /* disable most machine checks */
765 cr_parms.orvals[14] = 0;
766 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
767 1 << 25 | 1 << 24);
768
769 smp_ctl_bit_callback(&cr_parms);
770
771 return 0;
772 }
773
774 void __cpu_die(unsigned int cpu)
775 {
776 /* Wait until target cpu is down */
777 while (!smp_cpu_not_running(cpu))
778 cpu_relax();
779 smp_free_lowcore(cpu);
780 printk(KERN_INFO "Processor %d spun down\n", cpu);
781 }
782
783 void cpu_die(void)
784 {
785 idle_task_exit();
786 signal_processor(smp_processor_id(), sigp_stop);
787 BUG();
788 for (;;);
789 }
790
791 #endif /* CONFIG_HOTPLUG_CPU */
792
793 void __init smp_prepare_cpus(unsigned int max_cpus)
794 {
795 #ifndef CONFIG_64BIT
796 unsigned long save_area = 0;
797 #endif
798 unsigned long async_stack, panic_stack;
799 struct _lowcore *lowcore;
800 unsigned int cpu;
801 int lc_order;
802
803 smp_detect_cpus();
804
805 /* request the 0x1201 emergency signal external interrupt */
806 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
807 panic("Couldn't request external interrupt 0x1201");
808 print_cpu_info(&S390_lowcore.cpu_data);
809
810 /* Reallocate current lowcore, but keep its contents. */
811 lc_order = sizeof(long) == 8 ? 1 : 0;
812 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
813 panic_stack = __get_free_page(GFP_KERNEL);
814 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
815 #ifndef CONFIG_64BIT
816 if (MACHINE_HAS_IEEE)
817 save_area = get_zeroed_page(GFP_KERNEL);
818 #endif
819 local_irq_disable();
820 local_mcck_disable();
821 lowcore_ptr[smp_processor_id()] = lowcore;
822 *lowcore = S390_lowcore;
823 lowcore->panic_stack = panic_stack + PAGE_SIZE;
824 lowcore->async_stack = async_stack + ASYNC_SIZE;
825 #ifndef CONFIG_64BIT
826 if (MACHINE_HAS_IEEE)
827 lowcore->extended_save_area_addr = (u32) save_area;
828 #endif
829 set_prefix((u32)(unsigned long) lowcore);
830 local_mcck_enable();
831 local_irq_enable();
832 for_each_possible_cpu(cpu)
833 if (cpu != smp_processor_id())
834 smp_create_idle(cpu);
835 }
836
837 void __init smp_prepare_boot_cpu(void)
838 {
839 BUG_ON(smp_processor_id() != 0);
840
841 current_thread_info()->cpu = 0;
842 cpu_set(0, cpu_present_map);
843 cpu_set(0, cpu_online_map);
844 S390_lowcore.percpu_offset = __per_cpu_offset[0];
845 current_set[0] = current;
846 smp_cpu_state[0] = CPU_STATE_CONFIGURED;
847 smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
848 spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
849 }
850
851 void __init smp_cpus_done(unsigned int max_cpus)
852 {
853 }
854
855 /*
856 * the frequency of the profiling timer can be changed
857 * by writing a multiplier value into /proc/profile.
858 *
859 * usually you want to run this on all CPUs ;)
860 */
861 int setup_profiling_timer(unsigned int multiplier)
862 {
863 return 0;
864 }
865
866 #ifdef CONFIG_HOTPLUG_CPU
867 static ssize_t cpu_configure_show(struct sys_device *dev,
868 struct sysdev_attribute *attr, char *buf)
869 {
870 ssize_t count;
871
872 mutex_lock(&smp_cpu_state_mutex);
873 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
874 mutex_unlock(&smp_cpu_state_mutex);
875 return count;
876 }
877
878 static ssize_t cpu_configure_store(struct sys_device *dev,
879 struct sysdev_attribute *attr,
880 const char *buf, size_t count)
881 {
882 int cpu = dev->id;
883 int val, rc;
884 char delim;
885
886 if (sscanf(buf, "%d %c", &val, &delim) != 1)
887 return -EINVAL;
888 if (val != 0 && val != 1)
889 return -EINVAL;
890
891 get_online_cpus();
892 mutex_lock(&smp_cpu_state_mutex);
893 rc = -EBUSY;
894 if (cpu_online(cpu))
895 goto out;
896 rc = 0;
897 switch (val) {
898 case 0:
899 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
900 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
901 if (!rc) {
902 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
903 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
904 }
905 }
906 break;
907 case 1:
908 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
909 rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
910 if (!rc) {
911 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
912 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
913 }
914 }
915 break;
916 default:
917 break;
918 }
919 out:
920 mutex_unlock(&smp_cpu_state_mutex);
921 put_online_cpus();
922 return rc ? rc : count;
923 }
924 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
925 #endif /* CONFIG_HOTPLUG_CPU */
926
927 static ssize_t cpu_polarization_show(struct sys_device *dev,
928 struct sysdev_attribute *attr, char *buf)
929 {
930 int cpu = dev->id;
931 ssize_t count;
932
933 mutex_lock(&smp_cpu_state_mutex);
934 switch (smp_cpu_polarization[cpu]) {
935 case POLARIZATION_HRZ:
936 count = sprintf(buf, "horizontal\n");
937 break;
938 case POLARIZATION_VL:
939 count = sprintf(buf, "vertical:low\n");
940 break;
941 case POLARIZATION_VM:
942 count = sprintf(buf, "vertical:medium\n");
943 break;
944 case POLARIZATION_VH:
945 count = sprintf(buf, "vertical:high\n");
946 break;
947 default:
948 count = sprintf(buf, "unknown\n");
949 break;
950 }
951 mutex_unlock(&smp_cpu_state_mutex);
952 return count;
953 }
954 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
955
956 static ssize_t show_cpu_address(struct sys_device *dev,
957 struct sysdev_attribute *attr, char *buf)
958 {
959 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
960 }
961 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
962
963
964 static struct attribute *cpu_common_attrs[] = {
965 #ifdef CONFIG_HOTPLUG_CPU
966 &attr_configure.attr,
967 #endif
968 &attr_address.attr,
969 &attr_polarization.attr,
970 NULL,
971 };
972
973 static struct attribute_group cpu_common_attr_group = {
974 .attrs = cpu_common_attrs,
975 };
976
977 static ssize_t show_capability(struct sys_device *dev,
978 struct sysdev_attribute *attr, char *buf)
979 {
980 unsigned int capability;
981 int rc;
982
983 rc = get_cpu_capability(&capability);
984 if (rc)
985 return rc;
986 return sprintf(buf, "%u\n", capability);
987 }
988 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
989
990 static ssize_t show_idle_count(struct sys_device *dev,
991 struct sysdev_attribute *attr, char *buf)
992 {
993 struct s390_idle_data *idle;
994 unsigned long long idle_count;
995
996 idle = &per_cpu(s390_idle, dev->id);
997 spin_lock_irq(&idle->lock);
998 idle_count = idle->idle_count;
999 spin_unlock_irq(&idle->lock);
1000 return sprintf(buf, "%llu\n", idle_count);
1001 }
1002 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
1003
1004 static ssize_t show_idle_time(struct sys_device *dev,
1005 struct sysdev_attribute *attr, char *buf)
1006 {
1007 struct s390_idle_data *idle;
1008 unsigned long long new_time;
1009
1010 idle = &per_cpu(s390_idle, dev->id);
1011 spin_lock_irq(&idle->lock);
1012 if (idle->in_idle) {
1013 new_time = get_clock();
1014 idle->idle_time += new_time - idle->idle_enter;
1015 idle->idle_enter = new_time;
1016 }
1017 new_time = idle->idle_time;
1018 spin_unlock_irq(&idle->lock);
1019 return sprintf(buf, "%llu\n", new_time >> 12);
1020 }
1021 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
1022
1023 static struct attribute *cpu_online_attrs[] = {
1024 &attr_capability.attr,
1025 &attr_idle_count.attr,
1026 &attr_idle_time_us.attr,
1027 NULL,
1028 };
1029
1030 static struct attribute_group cpu_online_attr_group = {
1031 .attrs = cpu_online_attrs,
1032 };
1033
1034 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1035 unsigned long action, void *hcpu)
1036 {
1037 unsigned int cpu = (unsigned int)(long)hcpu;
1038 struct cpu *c = &per_cpu(cpu_devices, cpu);
1039 struct sys_device *s = &c->sysdev;
1040 struct s390_idle_data *idle;
1041
1042 switch (action) {
1043 case CPU_ONLINE:
1044 case CPU_ONLINE_FROZEN:
1045 idle = &per_cpu(s390_idle, cpu);
1046 spin_lock_irq(&idle->lock);
1047 idle->idle_enter = 0;
1048 idle->idle_time = 0;
1049 idle->idle_count = 0;
1050 spin_unlock_irq(&idle->lock);
1051 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
1052 return NOTIFY_BAD;
1053 break;
1054 case CPU_DEAD:
1055 case CPU_DEAD_FROZEN:
1056 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1057 break;
1058 }
1059 return NOTIFY_OK;
1060 }
1061
1062 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1063 .notifier_call = smp_cpu_notify,
1064 };
1065
1066 static int __devinit smp_add_present_cpu(int cpu)
1067 {
1068 struct cpu *c = &per_cpu(cpu_devices, cpu);
1069 struct sys_device *s = &c->sysdev;
1070 int rc;
1071
1072 c->hotpluggable = 1;
1073 rc = register_cpu(c, cpu);
1074 if (rc)
1075 goto out;
1076 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1077 if (rc)
1078 goto out_cpu;
1079 if (!cpu_online(cpu))
1080 goto out;
1081 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1082 if (!rc)
1083 return 0;
1084 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1085 out_cpu:
1086 #ifdef CONFIG_HOTPLUG_CPU
1087 unregister_cpu(c);
1088 #endif
1089 out:
1090 return rc;
1091 }
1092
1093 #ifdef CONFIG_HOTPLUG_CPU
1094
1095 int __ref smp_rescan_cpus(void)
1096 {
1097 cpumask_t newcpus;
1098 int cpu;
1099 int rc;
1100
1101 get_online_cpus();
1102 mutex_lock(&smp_cpu_state_mutex);
1103 newcpus = cpu_present_map;
1104 rc = __smp_rescan_cpus();
1105 if (rc)
1106 goto out;
1107 cpus_andnot(newcpus, cpu_present_map, newcpus);
1108 for_each_cpu_mask(cpu, newcpus) {
1109 rc = smp_add_present_cpu(cpu);
1110 if (rc)
1111 cpu_clear(cpu, cpu_present_map);
1112 }
1113 rc = 0;
1114 out:
1115 mutex_unlock(&smp_cpu_state_mutex);
1116 put_online_cpus();
1117 if (!cpus_empty(newcpus))
1118 topology_schedule_update();
1119 return rc;
1120 }
1121
1122 static ssize_t __ref rescan_store(struct sys_device *dev,
1123 struct sysdev_attribute *attr,
1124 const char *buf,
1125 size_t count)
1126 {
1127 int rc;
1128
1129 rc = smp_rescan_cpus();
1130 return rc ? rc : count;
1131 }
1132 static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store);
1133 #endif /* CONFIG_HOTPLUG_CPU */
1134
1135 static ssize_t dispatching_show(struct sys_device *dev,
1136 struct sysdev_attribute *attr,
1137 char *buf)
1138 {
1139 ssize_t count;
1140
1141 mutex_lock(&smp_cpu_state_mutex);
1142 count = sprintf(buf, "%d\n", cpu_management);
1143 mutex_unlock(&smp_cpu_state_mutex);
1144 return count;
1145 }
1146
1147 static ssize_t dispatching_store(struct sys_device *dev,
1148 struct sysdev_attribute *attr,
1149 const char *buf, size_t count)
1150 {
1151 int val, rc;
1152 char delim;
1153
1154 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1155 return -EINVAL;
1156 if (val != 0 && val != 1)
1157 return -EINVAL;
1158 rc = 0;
1159 get_online_cpus();
1160 mutex_lock(&smp_cpu_state_mutex);
1161 if (cpu_management == val)
1162 goto out;
1163 rc = topology_set_cpu_management(val);
1164 if (!rc)
1165 cpu_management = val;
1166 out:
1167 mutex_unlock(&smp_cpu_state_mutex);
1168 put_online_cpus();
1169 return rc ? rc : count;
1170 }
1171 static SYSDEV_ATTR(dispatching, 0644, dispatching_show, dispatching_store);
1172
1173 static int __init topology_init(void)
1174 {
1175 int cpu;
1176 int rc;
1177
1178 register_cpu_notifier(&smp_cpu_nb);
1179
1180 #ifdef CONFIG_HOTPLUG_CPU
1181 rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1182 &attr_rescan.attr);
1183 if (rc)
1184 return rc;
1185 #endif
1186 rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1187 &attr_dispatching.attr);
1188 if (rc)
1189 return rc;
1190 for_each_present_cpu(cpu) {
1191 rc = smp_add_present_cpu(cpu);
1192 if (rc)
1193 return rc;
1194 }
1195 return 0;
1196 }
1197 subsys_initcall(topology_init);