cd31ad457a9bdb7890a0ff7eae840a63f5f0f48f
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / s390 / kernel / process.c
1 /*
2 * This file handles the architecture dependent parts of process handling.
3 *
4 * Copyright IBM Corp. 1999, 2009
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 * Hartmut Penner <hp@de.ibm.com>,
7 * Denis Joseph Barrow,
8 */
9
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/elfcore.h>
16 #include <linux/smp.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/tick.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/compat.h>
23 #include <linux/kprobes.h>
24 #include <linux/random.h>
25 #include <linux/module.h>
26 #include <asm/io.h>
27 #include <asm/processor.h>
28 #include <asm/vtimer.h>
29 #include <asm/exec.h>
30 #include <asm/irq.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/switch_to.h>
34 #include <asm/runtime_instr.h>
35 #include "entry.h"
36
37 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
38
39 /*
40 * Return saved PC of a blocked thread. used in kernel/sched.
41 * resume in entry.S does not create a new stack frame, it
42 * just stores the registers %r6-%r15 to the frame given by
43 * schedule. We want to return the address of the caller of
44 * schedule, so we have to walk the backchain one time to
45 * find the frame schedule() store its return address.
46 */
47 unsigned long thread_saved_pc(struct task_struct *tsk)
48 {
49 struct stack_frame *sf, *low, *high;
50
51 if (!tsk || !task_stack_page(tsk))
52 return 0;
53 low = task_stack_page(tsk);
54 high = (struct stack_frame *) task_pt_regs(tsk);
55 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
56 if (sf <= low || sf > high)
57 return 0;
58 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
59 if (sf <= low || sf > high)
60 return 0;
61 return sf->gprs[8];
62 }
63
64 /*
65 * The idle loop on a S390...
66 */
67 static void default_idle(void)
68 {
69 if (cpu_is_offline(smp_processor_id()))
70 cpu_die();
71 local_irq_disable();
72 if (need_resched()) {
73 local_irq_enable();
74 return;
75 }
76 local_mcck_disable();
77 if (test_thread_flag(TIF_MCCK_PENDING)) {
78 local_mcck_enable();
79 local_irq_enable();
80 return;
81 }
82 /* Halt the cpu and keep track of cpu time accounting. */
83 vtime_stop_cpu();
84 }
85
86 void cpu_idle(void)
87 {
88 for (;;) {
89 tick_nohz_idle_enter();
90 rcu_idle_enter();
91 while (!need_resched() && !test_thread_flag(TIF_MCCK_PENDING))
92 default_idle();
93 rcu_idle_exit();
94 tick_nohz_idle_exit();
95 if (test_thread_flag(TIF_MCCK_PENDING))
96 s390_handle_mcck();
97 schedule_preempt_disabled();
98 }
99 }
100
101 extern void __kprobes kernel_thread_starter(void);
102
103 /*
104 * Free current thread data structures etc..
105 */
106 void exit_thread(void)
107 {
108 exit_thread_runtime_instr();
109 }
110
111 void flush_thread(void)
112 {
113 }
114
115 void release_thread(struct task_struct *dead_task)
116 {
117 }
118
119 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
120 unsigned long arg,
121 struct task_struct *p, struct pt_regs *regs)
122 {
123 struct thread_info *ti;
124 struct fake_frame
125 {
126 struct stack_frame sf;
127 struct pt_regs childregs;
128 } *frame;
129
130 frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
131 p->thread.ksp = (unsigned long) frame;
132 /* Save access registers to new thread structure. */
133 save_access_regs(&p->thread.acrs[0]);
134 /* start new process with ar4 pointing to the correct address space */
135 p->thread.mm_segment = get_fs();
136 /* Don't copy debug registers */
137 memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
138 memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
139 clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
140 clear_tsk_thread_flag(p, TIF_PER_TRAP);
141 /* Initialize per thread user and system timer values */
142 ti = task_thread_info(p);
143 ti->user_timer = 0;
144 ti->system_timer = 0;
145
146 frame->sf.back_chain = 0;
147 /* new return point is ret_from_fork */
148 frame->sf.gprs[8] = (unsigned long) ret_from_fork;
149 /* fake return stack for resume(), don't go back to schedule */
150 frame->sf.gprs[9] = (unsigned long) frame;
151
152 /* Store access registers to kernel stack of new process. */
153 if (unlikely(!regs)) {
154 /* kernel thread */
155 memset(&frame->childregs, 0, sizeof(struct pt_regs));
156 frame->childregs.psw.mask = psw_kernel_bits | PSW_MASK_DAT |
157 PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
158 frame->childregs.psw.addr = PSW_ADDR_AMODE |
159 (unsigned long) kernel_thread_starter;
160 frame->childregs.gprs[9] = new_stackp; /* function */
161 frame->childregs.gprs[10] = arg;
162 frame->childregs.gprs[11] = (unsigned long) do_exit;
163 frame->childregs.orig_gpr2 = -1;
164
165 return 0;
166 }
167 frame->childregs = *regs;
168 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
169 frame->childregs.gprs[15] = new_stackp;
170
171 /* Don't copy runtime instrumentation info */
172 p->thread.ri_cb = NULL;
173 p->thread.ri_signum = 0;
174 frame->childregs.psw.mask &= ~PSW_MASK_RI;
175
176 #ifndef CONFIG_64BIT
177 /*
178 * save fprs to current->thread.fp_regs to merge them with
179 * the emulated registers and then copy the result to the child.
180 */
181 save_fp_regs(&current->thread.fp_regs);
182 memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
183 sizeof(s390_fp_regs));
184 /* Set a new TLS ? */
185 if (clone_flags & CLONE_SETTLS)
186 p->thread.acrs[0] = regs->gprs[6];
187 #else /* CONFIG_64BIT */
188 /* Save the fpu registers to new thread structure. */
189 save_fp_regs(&p->thread.fp_regs);
190 /* Set a new TLS ? */
191 if (clone_flags & CLONE_SETTLS) {
192 if (is_compat_task()) {
193 p->thread.acrs[0] = (unsigned int) regs->gprs[6];
194 } else {
195 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
196 p->thread.acrs[1] = (unsigned int) regs->gprs[6];
197 }
198 }
199 #endif /* CONFIG_64BIT */
200 return 0;
201 }
202
203 SYSCALL_DEFINE0(fork)
204 {
205 struct pt_regs *regs = task_pt_regs(current);
206 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
207 }
208
209 SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
210 int __user *, parent_tidptr, int __user *, child_tidptr)
211 {
212 struct pt_regs *regs = task_pt_regs(current);
213
214 if (!newsp)
215 newsp = regs->gprs[15];
216 return do_fork(clone_flags, newsp, regs, 0,
217 parent_tidptr, child_tidptr);
218 }
219
220 /*
221 * This is trivial, and on the face of it looks like it
222 * could equally well be done in user mode.
223 *
224 * Not so, for quite unobvious reasons - register pressure.
225 * In user mode vfork() cannot have a stack frame, and if
226 * done by calling the "clone()" system call directly, you
227 * do not have enough call-clobbered registers to hold all
228 * the information you need.
229 */
230 SYSCALL_DEFINE0(vfork)
231 {
232 struct pt_regs *regs = task_pt_regs(current);
233 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
234 regs->gprs[15], regs, 0, NULL, NULL);
235 }
236
237 asmlinkage void execve_tail(void)
238 {
239 current->thread.fp_regs.fpc = 0;
240 if (MACHINE_HAS_IEEE)
241 asm volatile("sfpc %0,%0" : : "d" (0));
242 }
243
244 /*
245 * fill in the FPU structure for a core dump.
246 */
247 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
248 {
249 #ifndef CONFIG_64BIT
250 /*
251 * save fprs to current->thread.fp_regs to merge them with
252 * the emulated registers and then copy the result to the dump.
253 */
254 save_fp_regs(&current->thread.fp_regs);
255 memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
256 #else /* CONFIG_64BIT */
257 save_fp_regs(fpregs);
258 #endif /* CONFIG_64BIT */
259 return 1;
260 }
261 EXPORT_SYMBOL(dump_fpu);
262
263 unsigned long get_wchan(struct task_struct *p)
264 {
265 struct stack_frame *sf, *low, *high;
266 unsigned long return_address;
267 int count;
268
269 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
270 return 0;
271 low = task_stack_page(p);
272 high = (struct stack_frame *) task_pt_regs(p);
273 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
274 if (sf <= low || sf > high)
275 return 0;
276 for (count = 0; count < 16; count++) {
277 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
278 if (sf <= low || sf > high)
279 return 0;
280 return_address = sf->gprs[8] & PSW_ADDR_INSN;
281 if (!in_sched_functions(return_address))
282 return return_address;
283 }
284 return 0;
285 }
286
287 unsigned long arch_align_stack(unsigned long sp)
288 {
289 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
290 sp -= get_random_int() & ~PAGE_MASK;
291 return sp & ~0xf;
292 }
293
294 static inline unsigned long brk_rnd(void)
295 {
296 /* 8MB for 32bit, 1GB for 64bit */
297 if (is_32bit_task())
298 return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
299 else
300 return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
301 }
302
303 unsigned long arch_randomize_brk(struct mm_struct *mm)
304 {
305 unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
306
307 if (ret < mm->brk)
308 return mm->brk;
309 return ret;
310 }
311
312 unsigned long randomize_et_dyn(unsigned long base)
313 {
314 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
315
316 if (!(current->flags & PF_RANDOMIZE))
317 return base;
318 if (ret < base)
319 return base;
320 return ret;
321 }