Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / arch / s390 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corp. 2002, 2006
19 *
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21 */
22
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/hardirq.h>
32 #include <asm/cacheflush.h>
33 #include <asm/sections.h>
34 #include <asm/dis.h>
35
36 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
37 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
38
39 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
40
41 DEFINE_INSN_CACHE_OPS(dmainsn);
42
43 static void *alloc_dmainsn_page(void)
44 {
45 return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
46 }
47
48 static void free_dmainsn_page(void *page)
49 {
50 free_page((unsigned long)page);
51 }
52
53 struct kprobe_insn_cache kprobe_dmainsn_slots = {
54 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
55 .alloc = alloc_dmainsn_page,
56 .free = free_dmainsn_page,
57 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
58 .insn_size = MAX_INSN_SIZE,
59 };
60
61 static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
62 {
63 if (!is_known_insn((unsigned char *)insn))
64 return -EINVAL;
65 switch (insn[0] >> 8) {
66 case 0x0c: /* bassm */
67 case 0x0b: /* bsm */
68 case 0x83: /* diag */
69 case 0x44: /* ex */
70 case 0xac: /* stnsm */
71 case 0xad: /* stosm */
72 return -EINVAL;
73 case 0xc6:
74 switch (insn[0] & 0x0f) {
75 case 0x00: /* exrl */
76 return -EINVAL;
77 }
78 }
79 switch (insn[0]) {
80 case 0x0101: /* pr */
81 case 0xb25a: /* bsa */
82 case 0xb240: /* bakr */
83 case 0xb258: /* bsg */
84 case 0xb218: /* pc */
85 case 0xb228: /* pt */
86 case 0xb98d: /* epsw */
87 return -EINVAL;
88 }
89 return 0;
90 }
91
92 static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
93 {
94 /* default fixup method */
95 int fixup = FIXUP_PSW_NORMAL;
96
97 switch (insn[0] >> 8) {
98 case 0x05: /* balr */
99 case 0x0d: /* basr */
100 fixup = FIXUP_RETURN_REGISTER;
101 /* if r2 = 0, no branch will be taken */
102 if ((insn[0] & 0x0f) == 0)
103 fixup |= FIXUP_BRANCH_NOT_TAKEN;
104 break;
105 case 0x06: /* bctr */
106 case 0x07: /* bcr */
107 fixup = FIXUP_BRANCH_NOT_TAKEN;
108 break;
109 case 0x45: /* bal */
110 case 0x4d: /* bas */
111 fixup = FIXUP_RETURN_REGISTER;
112 break;
113 case 0x47: /* bc */
114 case 0x46: /* bct */
115 case 0x86: /* bxh */
116 case 0x87: /* bxle */
117 fixup = FIXUP_BRANCH_NOT_TAKEN;
118 break;
119 case 0x82: /* lpsw */
120 fixup = FIXUP_NOT_REQUIRED;
121 break;
122 case 0xb2: /* lpswe */
123 if ((insn[0] & 0xff) == 0xb2)
124 fixup = FIXUP_NOT_REQUIRED;
125 break;
126 case 0xa7: /* bras */
127 if ((insn[0] & 0x0f) == 0x05)
128 fixup |= FIXUP_RETURN_REGISTER;
129 break;
130 case 0xc0:
131 if ((insn[0] & 0x0f) == 0x05) /* brasl */
132 fixup |= FIXUP_RETURN_REGISTER;
133 break;
134 case 0xeb:
135 switch (insn[2] & 0xff) {
136 case 0x44: /* bxhg */
137 case 0x45: /* bxleg */
138 fixup = FIXUP_BRANCH_NOT_TAKEN;
139 break;
140 }
141 break;
142 case 0xe3: /* bctg */
143 if ((insn[2] & 0xff) == 0x46)
144 fixup = FIXUP_BRANCH_NOT_TAKEN;
145 break;
146 case 0xec:
147 switch (insn[2] & 0xff) {
148 case 0xe5: /* clgrb */
149 case 0xe6: /* cgrb */
150 case 0xf6: /* crb */
151 case 0xf7: /* clrb */
152 case 0xfc: /* cgib */
153 case 0xfd: /* cglib */
154 case 0xfe: /* cib */
155 case 0xff: /* clib */
156 fixup = FIXUP_BRANCH_NOT_TAKEN;
157 break;
158 }
159 break;
160 }
161 return fixup;
162 }
163
164 static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn)
165 {
166 /* Check if we have a RIL-b or RIL-c format instruction which
167 * we need to modify in order to avoid instruction emulation. */
168 switch (insn[0] >> 8) {
169 case 0xc0:
170 if ((insn[0] & 0x0f) == 0x00) /* larl */
171 return true;
172 break;
173 case 0xc4:
174 switch (insn[0] & 0x0f) {
175 case 0x02: /* llhrl */
176 case 0x04: /* lghrl */
177 case 0x05: /* lhrl */
178 case 0x06: /* llghrl */
179 case 0x07: /* sthrl */
180 case 0x08: /* lgrl */
181 case 0x0b: /* stgrl */
182 case 0x0c: /* lgfrl */
183 case 0x0d: /* lrl */
184 case 0x0e: /* llgfrl */
185 case 0x0f: /* strl */
186 return true;
187 }
188 break;
189 case 0xc6:
190 switch (insn[0] & 0x0f) {
191 case 0x02: /* pfdrl */
192 case 0x04: /* cghrl */
193 case 0x05: /* chrl */
194 case 0x06: /* clghrl */
195 case 0x07: /* clhrl */
196 case 0x08: /* cgrl */
197 case 0x0a: /* clgrl */
198 case 0x0c: /* cgfrl */
199 case 0x0d: /* crl */
200 case 0x0e: /* clgfrl */
201 case 0x0f: /* clrl */
202 return true;
203 }
204 break;
205 }
206 return false;
207 }
208
209 static void __kprobes copy_instruction(struct kprobe *p)
210 {
211 s64 disp, new_disp;
212 u64 addr, new_addr;
213
214 memcpy(p->ainsn.insn, p->addr, insn_length(p->opcode >> 8));
215 if (!is_insn_relative_long(p->ainsn.insn))
216 return;
217 /*
218 * For pc-relative instructions in RIL-b or RIL-c format patch the
219 * RI2 displacement field. We have already made sure that the insn
220 * slot for the patched instruction is within the same 2GB area
221 * as the original instruction (either kernel image or module area).
222 * Therefore the new displacement will always fit.
223 */
224 disp = *(s32 *)&p->ainsn.insn[1];
225 addr = (u64)(unsigned long)p->addr;
226 new_addr = (u64)(unsigned long)p->ainsn.insn;
227 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
228 *(s32 *)&p->ainsn.insn[1] = new_disp;
229 }
230
231 static inline int is_kernel_addr(void *addr)
232 {
233 return addr < (void *)_end;
234 }
235
236 static inline int is_module_addr(void *addr)
237 {
238 #ifdef CONFIG_64BIT
239 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
240 if (addr < (void *)MODULES_VADDR)
241 return 0;
242 if (addr > (void *)MODULES_END)
243 return 0;
244 #endif
245 return 1;
246 }
247
248 static int __kprobes s390_get_insn_slot(struct kprobe *p)
249 {
250 /*
251 * Get an insn slot that is within the same 2GB area like the original
252 * instruction. That way instructions with a 32bit signed displacement
253 * field can be patched and executed within the insn slot.
254 */
255 p->ainsn.insn = NULL;
256 if (is_kernel_addr(p->addr))
257 p->ainsn.insn = get_dmainsn_slot();
258 else if (is_module_addr(p->addr))
259 p->ainsn.insn = get_insn_slot();
260 return p->ainsn.insn ? 0 : -ENOMEM;
261 }
262
263 static void __kprobes s390_free_insn_slot(struct kprobe *p)
264 {
265 if (!p->ainsn.insn)
266 return;
267 if (is_kernel_addr(p->addr))
268 free_dmainsn_slot(p->ainsn.insn, 0);
269 else
270 free_insn_slot(p->ainsn.insn, 0);
271 p->ainsn.insn = NULL;
272 }
273
274 int __kprobes arch_prepare_kprobe(struct kprobe *p)
275 {
276 if ((unsigned long) p->addr & 0x01)
277 return -EINVAL;
278 /* Make sure the probe isn't going on a difficult instruction */
279 if (is_prohibited_opcode(p->addr))
280 return -EINVAL;
281 if (s390_get_insn_slot(p))
282 return -ENOMEM;
283 p->opcode = *p->addr;
284 copy_instruction(p);
285 return 0;
286 }
287
288 struct ins_replace_args {
289 kprobe_opcode_t *ptr;
290 kprobe_opcode_t opcode;
291 };
292
293 static int __kprobes swap_instruction(void *aref)
294 {
295 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
296 unsigned long status = kcb->kprobe_status;
297 struct ins_replace_args *args = aref;
298
299 kcb->kprobe_status = KPROBE_SWAP_INST;
300 probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
301 kcb->kprobe_status = status;
302 return 0;
303 }
304
305 void __kprobes arch_arm_kprobe(struct kprobe *p)
306 {
307 struct ins_replace_args args;
308
309 args.ptr = p->addr;
310 args.opcode = BREAKPOINT_INSTRUCTION;
311 stop_machine(swap_instruction, &args, NULL);
312 }
313
314 void __kprobes arch_disarm_kprobe(struct kprobe *p)
315 {
316 struct ins_replace_args args;
317
318 args.ptr = p->addr;
319 args.opcode = p->opcode;
320 stop_machine(swap_instruction, &args, NULL);
321 }
322
323 void __kprobes arch_remove_kprobe(struct kprobe *p)
324 {
325 s390_free_insn_slot(p);
326 }
327
328 static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
329 struct pt_regs *regs,
330 unsigned long ip)
331 {
332 struct per_regs per_kprobe;
333
334 /* Set up the PER control registers %cr9-%cr11 */
335 per_kprobe.control = PER_EVENT_IFETCH;
336 per_kprobe.start = ip;
337 per_kprobe.end = ip;
338
339 /* Save control regs and psw mask */
340 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
341 kcb->kprobe_saved_imask = regs->psw.mask &
342 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
343
344 /* Set PER control regs, turns on single step for the given address */
345 __ctl_load(per_kprobe, 9, 11);
346 regs->psw.mask |= PSW_MASK_PER;
347 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
348 regs->psw.addr = ip | PSW_ADDR_AMODE;
349 }
350
351 static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
352 struct pt_regs *regs,
353 unsigned long ip)
354 {
355 /* Restore control regs and psw mask, set new psw address */
356 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
357 regs->psw.mask &= ~PSW_MASK_PER;
358 regs->psw.mask |= kcb->kprobe_saved_imask;
359 regs->psw.addr = ip | PSW_ADDR_AMODE;
360 }
361
362 /*
363 * Activate a kprobe by storing its pointer to current_kprobe. The
364 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
365 * two kprobes can be active, see KPROBE_REENTER.
366 */
367 static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
368 {
369 kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
370 kcb->prev_kprobe.status = kcb->kprobe_status;
371 __get_cpu_var(current_kprobe) = p;
372 }
373
374 /*
375 * Deactivate a kprobe by backing up to the previous state. If the
376 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
377 * for any other state prev_kprobe.kp will be NULL.
378 */
379 static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
380 {
381 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
382 kcb->kprobe_status = kcb->prev_kprobe.status;
383 }
384
385 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
386 struct pt_regs *regs)
387 {
388 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
389
390 /* Replace the return addr with trampoline addr */
391 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
392 }
393
394 static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
395 struct kprobe *p)
396 {
397 switch (kcb->kprobe_status) {
398 case KPROBE_HIT_SSDONE:
399 case KPROBE_HIT_ACTIVE:
400 kprobes_inc_nmissed_count(p);
401 break;
402 case KPROBE_HIT_SS:
403 case KPROBE_REENTER:
404 default:
405 /*
406 * A kprobe on the code path to single step an instruction
407 * is a BUG. The code path resides in the .kprobes.text
408 * section and is executed with interrupts disabled.
409 */
410 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
411 dump_kprobe(p);
412 BUG();
413 }
414 }
415
416 static int __kprobes kprobe_handler(struct pt_regs *regs)
417 {
418 struct kprobe_ctlblk *kcb;
419 struct kprobe *p;
420
421 /*
422 * We want to disable preemption for the entire duration of kprobe
423 * processing. That includes the calls to the pre/post handlers
424 * and single stepping the kprobe instruction.
425 */
426 preempt_disable();
427 kcb = get_kprobe_ctlblk();
428 p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
429
430 if (p) {
431 if (kprobe_running()) {
432 /*
433 * We have hit a kprobe while another is still
434 * active. This can happen in the pre and post
435 * handler. Single step the instruction of the
436 * new probe but do not call any handler function
437 * of this secondary kprobe.
438 * push_kprobe and pop_kprobe saves and restores
439 * the currently active kprobe.
440 */
441 kprobe_reenter_check(kcb, p);
442 push_kprobe(kcb, p);
443 kcb->kprobe_status = KPROBE_REENTER;
444 } else {
445 /*
446 * If we have no pre-handler or it returned 0, we
447 * continue with single stepping. If we have a
448 * pre-handler and it returned non-zero, it prepped
449 * for calling the break_handler below on re-entry
450 * for jprobe processing, so get out doing nothing
451 * more here.
452 */
453 push_kprobe(kcb, p);
454 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
455 if (p->pre_handler && p->pre_handler(p, regs))
456 return 1;
457 kcb->kprobe_status = KPROBE_HIT_SS;
458 }
459 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
460 return 1;
461 } else if (kprobe_running()) {
462 p = __get_cpu_var(current_kprobe);
463 if (p->break_handler && p->break_handler(p, regs)) {
464 /*
465 * Continuation after the jprobe completed and
466 * caused the jprobe_return trap. The jprobe
467 * break_handler "returns" to the original
468 * function that still has the kprobe breakpoint
469 * installed. We continue with single stepping.
470 */
471 kcb->kprobe_status = KPROBE_HIT_SS;
472 enable_singlestep(kcb, regs,
473 (unsigned long) p->ainsn.insn);
474 return 1;
475 } /* else:
476 * No kprobe at this address and the current kprobe
477 * has no break handler (no jprobe!). The kernel just
478 * exploded, let the standard trap handler pick up the
479 * pieces.
480 */
481 } /* else:
482 * No kprobe at this address and no active kprobe. The trap has
483 * not been caused by a kprobe breakpoint. The race of breakpoint
484 * vs. kprobe remove does not exist because on s390 as we use
485 * stop_machine to arm/disarm the breakpoints.
486 */
487 preempt_enable_no_resched();
488 return 0;
489 }
490
491 /*
492 * Function return probe trampoline:
493 * - init_kprobes() establishes a probepoint here
494 * - When the probed function returns, this probe
495 * causes the handlers to fire
496 */
497 static void __used kretprobe_trampoline_holder(void)
498 {
499 asm volatile(".global kretprobe_trampoline\n"
500 "kretprobe_trampoline: bcr 0,0\n");
501 }
502
503 /*
504 * Called when the probe at kretprobe trampoline is hit
505 */
506 static int __kprobes trampoline_probe_handler(struct kprobe *p,
507 struct pt_regs *regs)
508 {
509 struct kretprobe_instance *ri;
510 struct hlist_head *head, empty_rp;
511 struct hlist_node *tmp;
512 unsigned long flags, orig_ret_address;
513 unsigned long trampoline_address;
514 kprobe_opcode_t *correct_ret_addr;
515
516 INIT_HLIST_HEAD(&empty_rp);
517 kretprobe_hash_lock(current, &head, &flags);
518
519 /*
520 * It is possible to have multiple instances associated with a given
521 * task either because an multiple functions in the call path
522 * have a return probe installed on them, and/or more than one return
523 * return probe was registered for a target function.
524 *
525 * We can handle this because:
526 * - instances are always inserted at the head of the list
527 * - when multiple return probes are registered for the same
528 * function, the first instance's ret_addr will point to the
529 * real return address, and all the rest will point to
530 * kretprobe_trampoline
531 */
532 ri = NULL;
533 orig_ret_address = 0;
534 correct_ret_addr = NULL;
535 trampoline_address = (unsigned long) &kretprobe_trampoline;
536 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
537 if (ri->task != current)
538 /* another task is sharing our hash bucket */
539 continue;
540
541 orig_ret_address = (unsigned long) ri->ret_addr;
542
543 if (orig_ret_address != trampoline_address)
544 /*
545 * This is the real return address. Any other
546 * instances associated with this task are for
547 * other calls deeper on the call stack
548 */
549 break;
550 }
551
552 kretprobe_assert(ri, orig_ret_address, trampoline_address);
553
554 correct_ret_addr = ri->ret_addr;
555 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
556 if (ri->task != current)
557 /* another task is sharing our hash bucket */
558 continue;
559
560 orig_ret_address = (unsigned long) ri->ret_addr;
561
562 if (ri->rp && ri->rp->handler) {
563 ri->ret_addr = correct_ret_addr;
564 ri->rp->handler(ri, regs);
565 }
566
567 recycle_rp_inst(ri, &empty_rp);
568
569 if (orig_ret_address != trampoline_address)
570 /*
571 * This is the real return address. Any other
572 * instances associated with this task are for
573 * other calls deeper on the call stack
574 */
575 break;
576 }
577
578 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
579
580 pop_kprobe(get_kprobe_ctlblk());
581 kretprobe_hash_unlock(current, &flags);
582 preempt_enable_no_resched();
583
584 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
585 hlist_del(&ri->hlist);
586 kfree(ri);
587 }
588 /*
589 * By returning a non-zero value, we are telling
590 * kprobe_handler() that we don't want the post_handler
591 * to run (and have re-enabled preemption)
592 */
593 return 1;
594 }
595
596 /*
597 * Called after single-stepping. p->addr is the address of the
598 * instruction whose first byte has been replaced by the "breakpoint"
599 * instruction. To avoid the SMP problems that can occur when we
600 * temporarily put back the original opcode to single-step, we
601 * single-stepped a copy of the instruction. The address of this
602 * copy is p->ainsn.insn.
603 */
604 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
605 {
606 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
607 unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
608 int fixup = get_fixup_type(p->ainsn.insn);
609
610 if (fixup & FIXUP_PSW_NORMAL)
611 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
612
613 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
614 int ilen = insn_length(p->ainsn.insn[0] >> 8);
615 if (ip - (unsigned long) p->ainsn.insn == ilen)
616 ip = (unsigned long) p->addr + ilen;
617 }
618
619 if (fixup & FIXUP_RETURN_REGISTER) {
620 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
621 regs->gprs[reg] += (unsigned long) p->addr -
622 (unsigned long) p->ainsn.insn;
623 }
624
625 disable_singlestep(kcb, regs, ip);
626 }
627
628 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
629 {
630 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
631 struct kprobe *p = kprobe_running();
632
633 if (!p)
634 return 0;
635
636 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
637 kcb->kprobe_status = KPROBE_HIT_SSDONE;
638 p->post_handler(p, regs, 0);
639 }
640
641 resume_execution(p, regs);
642 pop_kprobe(kcb);
643 preempt_enable_no_resched();
644
645 /*
646 * if somebody else is singlestepping across a probe point, psw mask
647 * will have PER set, in which case, continue the remaining processing
648 * of do_single_step, as if this is not a probe hit.
649 */
650 if (regs->psw.mask & PSW_MASK_PER)
651 return 0;
652
653 return 1;
654 }
655
656 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
657 {
658 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
659 struct kprobe *p = kprobe_running();
660 const struct exception_table_entry *entry;
661
662 switch(kcb->kprobe_status) {
663 case KPROBE_SWAP_INST:
664 /* We are here because the instruction replacement failed */
665 return 0;
666 case KPROBE_HIT_SS:
667 case KPROBE_REENTER:
668 /*
669 * We are here because the instruction being single
670 * stepped caused a page fault. We reset the current
671 * kprobe and the nip points back to the probe address
672 * and allow the page fault handler to continue as a
673 * normal page fault.
674 */
675 disable_singlestep(kcb, regs, (unsigned long) p->addr);
676 pop_kprobe(kcb);
677 preempt_enable_no_resched();
678 break;
679 case KPROBE_HIT_ACTIVE:
680 case KPROBE_HIT_SSDONE:
681 /*
682 * We increment the nmissed count for accounting,
683 * we can also use npre/npostfault count for accounting
684 * these specific fault cases.
685 */
686 kprobes_inc_nmissed_count(p);
687
688 /*
689 * We come here because instructions in the pre/post
690 * handler caused the page_fault, this could happen
691 * if handler tries to access user space by
692 * copy_from_user(), get_user() etc. Let the
693 * user-specified handler try to fix it first.
694 */
695 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
696 return 1;
697
698 /*
699 * In case the user-specified fault handler returned
700 * zero, try to fix up.
701 */
702 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
703 if (entry) {
704 regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
705 return 1;
706 }
707
708 /*
709 * fixup_exception() could not handle it,
710 * Let do_page_fault() fix it.
711 */
712 break;
713 default:
714 break;
715 }
716 return 0;
717 }
718
719 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
720 {
721 int ret;
722
723 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
724 local_irq_disable();
725 ret = kprobe_trap_handler(regs, trapnr);
726 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
727 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
728 return ret;
729 }
730
731 /*
732 * Wrapper routine to for handling exceptions.
733 */
734 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
735 unsigned long val, void *data)
736 {
737 struct die_args *args = (struct die_args *) data;
738 struct pt_regs *regs = args->regs;
739 int ret = NOTIFY_DONE;
740
741 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
742 local_irq_disable();
743
744 switch (val) {
745 case DIE_BPT:
746 if (kprobe_handler(regs))
747 ret = NOTIFY_STOP;
748 break;
749 case DIE_SSTEP:
750 if (post_kprobe_handler(regs))
751 ret = NOTIFY_STOP;
752 break;
753 case DIE_TRAP:
754 if (!preemptible() && kprobe_running() &&
755 kprobe_trap_handler(regs, args->trapnr))
756 ret = NOTIFY_STOP;
757 break;
758 default:
759 break;
760 }
761
762 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
763 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
764
765 return ret;
766 }
767
768 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
769 {
770 struct jprobe *jp = container_of(p, struct jprobe, kp);
771 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
772 unsigned long stack;
773
774 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
775
776 /* setup return addr to the jprobe handler routine */
777 regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
778 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
779
780 /* r15 is the stack pointer */
781 stack = (unsigned long) regs->gprs[15];
782
783 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
784 return 1;
785 }
786
787 void __kprobes jprobe_return(void)
788 {
789 asm volatile(".word 0x0002");
790 }
791
792 static void __used __kprobes jprobe_return_end(void)
793 {
794 asm volatile("bcr 0,0");
795 }
796
797 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
798 {
799 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
800 unsigned long stack;
801
802 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
803
804 /* Put the regs back */
805 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
806 /* put the stack back */
807 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
808 preempt_enable_no_resched();
809 return 1;
810 }
811
812 static struct kprobe trampoline = {
813 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
814 .pre_handler = trampoline_probe_handler
815 };
816
817 int __init arch_init_kprobes(void)
818 {
819 return register_kprobe(&trampoline);
820 }
821
822 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
823 {
824 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
825 }