Merge branch 'for-linus' of git://neil.brown.name/md
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / pseries / ras.c
1 /*
2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 /* Change Activity:
20 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21 * End Change Activity
22 */
23
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/irq.h>
36 #include <linux/random.h>
37 #include <linux/sysrq.h>
38 #include <linux/bitops.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/system.h>
42 #include <asm/io.h>
43 #include <asm/pgtable.h>
44 #include <asm/irq.h>
45 #include <asm/cache.h>
46 #include <asm/prom.h>
47 #include <asm/ptrace.h>
48 #include <asm/machdep.h>
49 #include <asm/rtas.h>
50 #include <asm/udbg.h>
51 #include <asm/firmware.h>
52
53 #include "pseries.h"
54
55 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
56 static DEFINE_SPINLOCK(ras_log_buf_lock);
57
58 static char mce_data_buf[RTAS_ERROR_LOG_MAX];
59
60 static int ras_get_sensor_state_token;
61 static int ras_check_exception_token;
62
63 #define EPOW_SENSOR_TOKEN 9
64 #define EPOW_SENSOR_INDEX 0
65 #define RAS_VECTOR_OFFSET 0x500
66
67 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
68 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
69
70
71 static void request_ras_irqs(struct device_node *np,
72 irq_handler_t handler,
73 const char *name)
74 {
75 int i, index, count = 0;
76 struct of_irq oirq;
77 const u32 *opicprop;
78 unsigned int opicplen;
79 unsigned int virqs[16];
80
81 /* Check for obsolete "open-pic-interrupt" property. If present, then
82 * map those interrupts using the default interrupt host and default
83 * trigger
84 */
85 opicprop = of_get_property(np, "open-pic-interrupt", &opicplen);
86 if (opicprop) {
87 opicplen /= sizeof(u32);
88 for (i = 0; i < opicplen; i++) {
89 if (count > 15)
90 break;
91 virqs[count] = irq_create_mapping(NULL, *(opicprop++));
92 if (virqs[count] == NO_IRQ)
93 printk(KERN_ERR "Unable to allocate interrupt "
94 "number for %s\n", np->full_name);
95 else
96 count++;
97
98 }
99 }
100 /* Else use normal interrupt tree parsing */
101 else {
102 /* First try to do a proper OF tree parsing */
103 for (index = 0; of_irq_map_one(np, index, &oirq) == 0;
104 index++) {
105 if (count > 15)
106 break;
107 virqs[count] = irq_create_of_mapping(oirq.controller,
108 oirq.specifier,
109 oirq.size);
110 if (virqs[count] == NO_IRQ)
111 printk(KERN_ERR "Unable to allocate interrupt "
112 "number for %s\n", np->full_name);
113 else
114 count++;
115 }
116 }
117
118 /* Now request them */
119 for (i = 0; i < count; i++) {
120 if (request_irq(virqs[i], handler, 0, name, NULL)) {
121 printk(KERN_ERR "Unable to request interrupt %d for "
122 "%s\n", virqs[i], np->full_name);
123 return;
124 }
125 }
126 }
127
128 /*
129 * Initialize handlers for the set of interrupts caused by hardware errors
130 * and power system events.
131 */
132 static int __init init_ras_IRQ(void)
133 {
134 struct device_node *np;
135
136 ras_get_sensor_state_token = rtas_token("get-sensor-state");
137 ras_check_exception_token = rtas_token("check-exception");
138
139 /* Internal Errors */
140 np = of_find_node_by_path("/event-sources/internal-errors");
141 if (np != NULL) {
142 request_ras_irqs(np, ras_error_interrupt, "RAS_ERROR");
143 of_node_put(np);
144 }
145
146 /* EPOW Events */
147 np = of_find_node_by_path("/event-sources/epow-events");
148 if (np != NULL) {
149 request_ras_irqs(np, ras_epow_interrupt, "RAS_EPOW");
150 of_node_put(np);
151 }
152
153 return 0;
154 }
155 __initcall(init_ras_IRQ);
156
157 /*
158 * Handle power subsystem events (EPOW).
159 *
160 * Presently we just log the event has occurred. This should be fixed
161 * to examine the type of power failure and take appropriate action where
162 * the time horizon permits something useful to be done.
163 */
164 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
165 {
166 int status = 0xdeadbeef;
167 int state = 0;
168 int critical;
169
170 status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
171 EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
172
173 if (state > 3)
174 critical = 1; /* Time Critical */
175 else
176 critical = 0;
177
178 spin_lock(&ras_log_buf_lock);
179
180 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
181 RAS_VECTOR_OFFSET,
182 irq_map[irq].hwirq,
183 RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
184 critical, __pa(&ras_log_buf),
185 rtas_get_error_log_max());
186
187 udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
188 *((unsigned long *)&ras_log_buf), status, state);
189 printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
190 *((unsigned long *)&ras_log_buf), status, state);
191
192 /* format and print the extended information */
193 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
194
195 spin_unlock(&ras_log_buf_lock);
196 return IRQ_HANDLED;
197 }
198
199 /*
200 * Handle hardware error interrupts.
201 *
202 * RTAS check-exception is called to collect data on the exception. If
203 * the error is deemed recoverable, we log a warning and return.
204 * For nonrecoverable errors, an error is logged and we stop all processing
205 * as quickly as possible in order to prevent propagation of the failure.
206 */
207 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
208 {
209 struct rtas_error_log *rtas_elog;
210 int status = 0xdeadbeef;
211 int fatal;
212
213 spin_lock(&ras_log_buf_lock);
214
215 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
216 RAS_VECTOR_OFFSET,
217 irq_map[irq].hwirq,
218 RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
219 __pa(&ras_log_buf),
220 rtas_get_error_log_max());
221
222 rtas_elog = (struct rtas_error_log *)ras_log_buf;
223
224 if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
225 fatal = 1;
226 else
227 fatal = 0;
228
229 /* format and print the extended information */
230 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
231
232 if (fatal) {
233 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
234 *((unsigned long *)&ras_log_buf), status);
235 printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
236 *((unsigned long *)&ras_log_buf), status);
237
238 #ifndef DEBUG_RTAS_POWER_OFF
239 /* Don't actually power off when debugging so we can test
240 * without actually failing while injecting errors.
241 * Error data will not be logged to syslog.
242 */
243 ppc_md.power_off();
244 #endif
245 } else {
246 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
247 *((unsigned long *)&ras_log_buf), status);
248 printk(KERN_WARNING
249 "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
250 *((unsigned long *)&ras_log_buf), status);
251 }
252
253 spin_unlock(&ras_log_buf_lock);
254 return IRQ_HANDLED;
255 }
256
257 /* Get the error information for errors coming through the
258 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
259 * the actual r3 if possible, and a ptr to the error log entry
260 * will be returned if found.
261 *
262 * The mce_data_buf does not have any locks or protection around it,
263 * if a second machine check comes in, or a system reset is done
264 * before we have logged the error, then we will get corruption in the
265 * error log. This is preferable over holding off on calling
266 * ibm,nmi-interlock which would result in us checkstopping if a
267 * second machine check did come in.
268 */
269 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
270 {
271 unsigned long errdata = regs->gpr[3];
272 struct rtas_error_log *errhdr = NULL;
273 unsigned long *savep;
274
275 if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
276 (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
277 savep = __va(errdata);
278 regs->gpr[3] = savep[0]; /* restore original r3 */
279 memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
280 memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
281 errhdr = (struct rtas_error_log *)mce_data_buf;
282 } else {
283 printk("FWNMI: corrupt r3\n");
284 }
285 return errhdr;
286 }
287
288 /* Call this when done with the data returned by FWNMI_get_errinfo.
289 * It will release the saved data area for other CPUs in the
290 * partition to receive FWNMI errors.
291 */
292 static void fwnmi_release_errinfo(void)
293 {
294 int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
295 if (ret != 0)
296 printk("FWNMI: nmi-interlock failed: %d\n", ret);
297 }
298
299 int pSeries_system_reset_exception(struct pt_regs *regs)
300 {
301 if (fwnmi_active) {
302 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
303 if (errhdr) {
304 /* XXX Should look at FWNMI information */
305 }
306 fwnmi_release_errinfo();
307 }
308 return 0; /* need to perform reset */
309 }
310
311 /*
312 * See if we can recover from a machine check exception.
313 * This is only called on power4 (or above) and only via
314 * the Firmware Non-Maskable Interrupts (fwnmi) handler
315 * which provides the error analysis for us.
316 *
317 * Return 1 if corrected (or delivered a signal).
318 * Return 0 if there is nothing we can do.
319 */
320 static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
321 {
322 int nonfatal = 0;
323
324 if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
325 /* Platform corrected itself */
326 nonfatal = 1;
327 } else if ((regs->msr & MSR_RI) &&
328 user_mode(regs) &&
329 err->severity == RTAS_SEVERITY_ERROR_SYNC &&
330 err->disposition == RTAS_DISP_NOT_RECOVERED &&
331 err->target == RTAS_TARGET_MEMORY &&
332 err->type == RTAS_TYPE_ECC_UNCORR &&
333 !(current->pid == 0 || is_global_init(current))) {
334 /* Kill off a user process with an ECC error */
335 printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
336 current->pid);
337 /* XXX something better for ECC error? */
338 _exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
339 nonfatal = 1;
340 }
341
342 log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
343
344 return nonfatal;
345 }
346
347 /*
348 * Handle a machine check.
349 *
350 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
351 * should be present. If so the handler which called us tells us if the
352 * error was recovered (never true if RI=0).
353 *
354 * On hardware prior to Power 4 these exceptions were asynchronous which
355 * means we can't tell exactly where it occurred and so we can't recover.
356 */
357 int pSeries_machine_check_exception(struct pt_regs *regs)
358 {
359 struct rtas_error_log *errp;
360
361 if (fwnmi_active) {
362 errp = fwnmi_get_errinfo(regs);
363 fwnmi_release_errinfo();
364 if (errp && recover_mce(regs, errp))
365 return 1;
366 }
367
368 return 0;
369 }