IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / pseries / ras.c
1 /*
2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 /* Change Activity:
20 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21 * End Change Activity
22 */
23
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/delay.h>
36 #include <linux/irq.h>
37 #include <linux/random.h>
38 #include <linux/sysrq.h>
39 #include <linux/bitops.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/pgtable.h>
45 #include <asm/irq.h>
46 #include <asm/cache.h>
47 #include <asm/prom.h>
48 #include <asm/ptrace.h>
49 #include <asm/machdep.h>
50 #include <asm/rtas.h>
51 #include <asm/udbg.h>
52 #include <asm/firmware.h>
53
54 #include "ras.h"
55
56 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
57 static DEFINE_SPINLOCK(ras_log_buf_lock);
58
59 char mce_data_buf[RTAS_ERROR_LOG_MAX];
60
61 static int ras_get_sensor_state_token;
62 static int ras_check_exception_token;
63
64 #define EPOW_SENSOR_TOKEN 9
65 #define EPOW_SENSOR_INDEX 0
66 #define RAS_VECTOR_OFFSET 0x500
67
68 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
69 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
70
71 /* #define DEBUG */
72
73
74 static void request_ras_irqs(struct device_node *np,
75 irq_handler_t handler,
76 const char *name)
77 {
78 int i, index, count = 0;
79 struct of_irq oirq;
80 const u32 *opicprop;
81 unsigned int opicplen;
82 unsigned int virqs[16];
83
84 /* Check for obsolete "open-pic-interrupt" property. If present, then
85 * map those interrupts using the default interrupt host and default
86 * trigger
87 */
88 opicprop = get_property(np, "open-pic-interrupt", &opicplen);
89 if (opicprop) {
90 opicplen /= sizeof(u32);
91 for (i = 0; i < opicplen; i++) {
92 if (count > 15)
93 break;
94 virqs[count] = irq_create_mapping(NULL, *(opicprop++));
95 if (virqs[count] == NO_IRQ)
96 printk(KERN_ERR "Unable to allocate interrupt "
97 "number for %s\n", np->full_name);
98 else
99 count++;
100
101 }
102 }
103 /* Else use normal interrupt tree parsing */
104 else {
105 /* First try to do a proper OF tree parsing */
106 for (index = 0; of_irq_map_one(np, index, &oirq) == 0;
107 index++) {
108 if (count > 15)
109 break;
110 virqs[count] = irq_create_of_mapping(oirq.controller,
111 oirq.specifier,
112 oirq.size);
113 if (virqs[count] == NO_IRQ)
114 printk(KERN_ERR "Unable to allocate interrupt "
115 "number for %s\n", np->full_name);
116 else
117 count++;
118 }
119 }
120
121 /* Now request them */
122 for (i = 0; i < count; i++) {
123 if (request_irq(virqs[i], handler, 0, name, NULL)) {
124 printk(KERN_ERR "Unable to request interrupt %d for "
125 "%s\n", virqs[i], np->full_name);
126 return;
127 }
128 }
129 }
130
131 /*
132 * Initialize handlers for the set of interrupts caused by hardware errors
133 * and power system events.
134 */
135 static int __init init_ras_IRQ(void)
136 {
137 struct device_node *np;
138
139 ras_get_sensor_state_token = rtas_token("get-sensor-state");
140 ras_check_exception_token = rtas_token("check-exception");
141
142 /* Internal Errors */
143 np = of_find_node_by_path("/event-sources/internal-errors");
144 if (np != NULL) {
145 request_ras_irqs(np, ras_error_interrupt, "RAS_ERROR");
146 of_node_put(np);
147 }
148
149 /* EPOW Events */
150 np = of_find_node_by_path("/event-sources/epow-events");
151 if (np != NULL) {
152 request_ras_irqs(np, ras_epow_interrupt, "RAS_EPOW");
153 of_node_put(np);
154 }
155
156 return 0;
157 }
158 __initcall(init_ras_IRQ);
159
160 /*
161 * Handle power subsystem events (EPOW).
162 *
163 * Presently we just log the event has occurred. This should be fixed
164 * to examine the type of power failure and take appropriate action where
165 * the time horizon permits something useful to be done.
166 */
167 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
168 {
169 int status = 0xdeadbeef;
170 int state = 0;
171 int critical;
172
173 status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
174 EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
175
176 if (state > 3)
177 critical = 1; /* Time Critical */
178 else
179 critical = 0;
180
181 spin_lock(&ras_log_buf_lock);
182
183 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
184 RAS_VECTOR_OFFSET,
185 irq_map[irq].hwirq,
186 RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
187 critical, __pa(&ras_log_buf),
188 rtas_get_error_log_max());
189
190 udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
191 *((unsigned long *)&ras_log_buf), status, state);
192 printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
193 *((unsigned long *)&ras_log_buf), status, state);
194
195 /* format and print the extended information */
196 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
197
198 spin_unlock(&ras_log_buf_lock);
199 return IRQ_HANDLED;
200 }
201
202 /*
203 * Handle hardware error interrupts.
204 *
205 * RTAS check-exception is called to collect data on the exception. If
206 * the error is deemed recoverable, we log a warning and return.
207 * For nonrecoverable errors, an error is logged and we stop all processing
208 * as quickly as possible in order to prevent propagation of the failure.
209 */
210 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
211 {
212 struct rtas_error_log *rtas_elog;
213 int status = 0xdeadbeef;
214 int fatal;
215
216 spin_lock(&ras_log_buf_lock);
217
218 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
219 RAS_VECTOR_OFFSET,
220 irq_map[irq].hwirq,
221 RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
222 __pa(&ras_log_buf),
223 rtas_get_error_log_max());
224
225 rtas_elog = (struct rtas_error_log *)ras_log_buf;
226
227 if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
228 fatal = 1;
229 else
230 fatal = 0;
231
232 /* format and print the extended information */
233 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
234
235 if (fatal) {
236 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
237 *((unsigned long *)&ras_log_buf), status);
238 printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
239 *((unsigned long *)&ras_log_buf), status);
240
241 #ifndef DEBUG
242 /* Don't actually power off when debugging so we can test
243 * without actually failing while injecting errors.
244 * Error data will not be logged to syslog.
245 */
246 ppc_md.power_off();
247 #endif
248 } else {
249 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
250 *((unsigned long *)&ras_log_buf), status);
251 printk(KERN_WARNING
252 "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
253 *((unsigned long *)&ras_log_buf), status);
254 }
255
256 spin_unlock(&ras_log_buf_lock);
257 return IRQ_HANDLED;
258 }
259
260 /* Get the error information for errors coming through the
261 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
262 * the actual r3 if possible, and a ptr to the error log entry
263 * will be returned if found.
264 *
265 * The mce_data_buf does not have any locks or protection around it,
266 * if a second machine check comes in, or a system reset is done
267 * before we have logged the error, then we will get corruption in the
268 * error log. This is preferable over holding off on calling
269 * ibm,nmi-interlock which would result in us checkstopping if a
270 * second machine check did come in.
271 */
272 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
273 {
274 unsigned long errdata = regs->gpr[3];
275 struct rtas_error_log *errhdr = NULL;
276 unsigned long *savep;
277
278 if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
279 (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
280 savep = __va(errdata);
281 regs->gpr[3] = savep[0]; /* restore original r3 */
282 memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
283 memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
284 errhdr = (struct rtas_error_log *)mce_data_buf;
285 } else {
286 printk("FWNMI: corrupt r3\n");
287 }
288 return errhdr;
289 }
290
291 /* Call this when done with the data returned by FWNMI_get_errinfo.
292 * It will release the saved data area for other CPUs in the
293 * partition to receive FWNMI errors.
294 */
295 static void fwnmi_release_errinfo(void)
296 {
297 int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
298 if (ret != 0)
299 printk("FWNMI: nmi-interlock failed: %d\n", ret);
300 }
301
302 int pSeries_system_reset_exception(struct pt_regs *regs)
303 {
304 if (fwnmi_active) {
305 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
306 if (errhdr) {
307 /* XXX Should look at FWNMI information */
308 }
309 fwnmi_release_errinfo();
310 }
311 return 0; /* need to perform reset */
312 }
313
314 /*
315 * See if we can recover from a machine check exception.
316 * This is only called on power4 (or above) and only via
317 * the Firmware Non-Maskable Interrupts (fwnmi) handler
318 * which provides the error analysis for us.
319 *
320 * Return 1 if corrected (or delivered a signal).
321 * Return 0 if there is nothing we can do.
322 */
323 static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
324 {
325 int nonfatal = 0;
326
327 if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
328 /* Platform corrected itself */
329 nonfatal = 1;
330 } else if ((regs->msr & MSR_RI) &&
331 user_mode(regs) &&
332 err->severity == RTAS_SEVERITY_ERROR_SYNC &&
333 err->disposition == RTAS_DISP_NOT_RECOVERED &&
334 err->target == RTAS_TARGET_MEMORY &&
335 err->type == RTAS_TYPE_ECC_UNCORR &&
336 !(current->pid == 0 || is_init(current))) {
337 /* Kill off a user process with an ECC error */
338 printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
339 current->pid);
340 /* XXX something better for ECC error? */
341 _exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
342 nonfatal = 1;
343 }
344
345 log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
346
347 return nonfatal;
348 }
349
350 /*
351 * Handle a machine check.
352 *
353 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
354 * should be present. If so the handler which called us tells us if the
355 * error was recovered (never true if RI=0).
356 *
357 * On hardware prior to Power 4 these exceptions were asynchronous which
358 * means we can't tell exactly where it occurred and so we can't recover.
359 */
360 int pSeries_machine_check_exception(struct pt_regs *regs)
361 {
362 struct rtas_error_log *errp;
363
364 if (fwnmi_active) {
365 errp = fwnmi_get_errinfo(regs);
366 fwnmi_release_errinfo();
367 if (errp && recover_mce(regs, errp))
368 return 1;
369 }
370
371 return 0;
372 }