[POWERPC] Assorted janitorial EEH cleanups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / pseries / eeh.c
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
35
36 #undef DEBUG
37
38 /** Overview:
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
52 *
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
60 * with EEH.
61 *
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
70 */
71
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
76 */
77 #define EEH_MAX_FAILS 2100000
78
79 /* Time to wait for a PCI slot to report status, in milliseconds */
80 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
81
82 /* RTAS tokens */
83 static int ibm_set_eeh_option;
84 static int ibm_set_slot_reset;
85 static int ibm_read_slot_reset_state;
86 static int ibm_read_slot_reset_state2;
87 static int ibm_slot_error_detail;
88 static int ibm_get_config_addr_info;
89 static int ibm_get_config_addr_info2;
90 static int ibm_configure_bridge;
91
92 int eeh_subsystem_enabled;
93 EXPORT_SYMBOL(eeh_subsystem_enabled);
94
95 /* Lock to avoid races due to multiple reports of an error */
96 static DEFINE_SPINLOCK(confirm_error_lock);
97
98 /* Buffer for reporting slot-error-detail rtas calls. Its here
99 * in BSS, and not dynamically alloced, so that it ends up in
100 * RMO where RTAS can access it.
101 */
102 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
103 static DEFINE_SPINLOCK(slot_errbuf_lock);
104 static int eeh_error_buf_size;
105
106 /* Buffer for reporting pci register dumps. Its here in BSS, and
107 * not dynamically alloced, so that it ends up in RMO where RTAS
108 * can access it.
109 */
110 #define EEH_PCI_REGS_LOG_LEN 4096
111 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
112
113 /* System monitoring statistics */
114 static unsigned long no_device;
115 static unsigned long no_dn;
116 static unsigned long no_cfg_addr;
117 static unsigned long ignored_check;
118 static unsigned long total_mmio_ffs;
119 static unsigned long false_positives;
120 static unsigned long ignored_failures;
121 static unsigned long slot_resets;
122
123 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
124
125 /* --------------------------------------------------------------- */
126 /* Below lies the EEH event infrastructure */
127
128 static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
129 char *driver_log, size_t loglen)
130 {
131 int config_addr;
132 unsigned long flags;
133 int rc;
134
135 /* Log the error with the rtas logger */
136 spin_lock_irqsave(&slot_errbuf_lock, flags);
137 memset(slot_errbuf, 0, eeh_error_buf_size);
138
139 /* Use PE configuration address, if present */
140 config_addr = pdn->eeh_config_addr;
141 if (pdn->eeh_pe_config_addr)
142 config_addr = pdn->eeh_pe_config_addr;
143
144 rc = rtas_call(ibm_slot_error_detail,
145 8, 1, NULL, config_addr,
146 BUID_HI(pdn->phb->buid),
147 BUID_LO(pdn->phb->buid),
148 virt_to_phys(driver_log), loglen,
149 virt_to_phys(slot_errbuf),
150 eeh_error_buf_size,
151 severity);
152
153 if (rc == 0)
154 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
155 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
156 }
157
158 /**
159 * gather_pci_data - copy assorted PCI config space registers to buff
160 * @pdn: device to report data for
161 * @buf: point to buffer in which to log
162 * @len: amount of room in buffer
163 *
164 * This routine captures assorted PCI configuration space data,
165 * and puts them into a buffer for RTAS error logging.
166 */
167 static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
168 {
169 u32 cfg;
170 int cap, i;
171 int n = 0;
172
173 n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
174 printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
175
176 rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
177 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
178 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
179
180 rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
181 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
182 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
183
184 /* Dump out the PCI-X command and status regs */
185 cap = pci_find_capability(pdn->pcidev, PCI_CAP_ID_PCIX);
186 if (cap) {
187 rtas_read_config(pdn, cap, 4, &cfg);
188 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
189 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
190
191 rtas_read_config(pdn, cap+4, 4, &cfg);
192 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
193 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
194 }
195
196 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
197 cap = pci_find_capability(pdn->pcidev, PCI_CAP_ID_EXP);
198 if (cap) {
199 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
200 printk(KERN_WARNING
201 "EEH: PCI-E capabilities and status follow:\n");
202
203 for (i=0; i<=8; i++) {
204 rtas_read_config(pdn, cap+4*i, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
206 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
207 }
208
209 cap = pci_find_ext_capability(pdn->pcidev,PCI_EXT_CAP_ID_ERR);
210 if (cap) {
211 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
212 printk(KERN_WARNING
213 "EEH: PCI-E AER capability register set follows:\n");
214
215 for (i=0; i<14; i++) {
216 rtas_read_config(pdn, cap+4*i, 4, &cfg);
217 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
219 }
220 }
221 }
222 return n;
223 }
224
225 void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
226 {
227 size_t loglen = 0;
228 pci_regs_buf[0] = 0;
229
230 rtas_pci_enable(pdn, EEH_THAW_MMIO);
231 loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
232
233 rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
234 }
235
236 /**
237 * read_slot_reset_state - Read the reset state of a device node's slot
238 * @dn: device node to read
239 * @rets: array to return results in
240 */
241 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
242 {
243 int token, outputs;
244 int config_addr;
245
246 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
247 token = ibm_read_slot_reset_state2;
248 outputs = 4;
249 } else {
250 token = ibm_read_slot_reset_state;
251 rets[2] = 0; /* fake PE Unavailable info */
252 outputs = 3;
253 }
254
255 /* Use PE configuration address, if present */
256 config_addr = pdn->eeh_config_addr;
257 if (pdn->eeh_pe_config_addr)
258 config_addr = pdn->eeh_pe_config_addr;
259
260 return rtas_call(token, 3, outputs, rets, config_addr,
261 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
262 }
263
264 /**
265 * eeh_wait_for_slot_status - returns error status of slot
266 * @pdn pci device node
267 * @max_wait_msecs maximum number to millisecs to wait
268 *
269 * Return negative value if a permanent error, else return
270 * Partition Endpoint (PE) status value.
271 *
272 * If @max_wait_msecs is positive, then this routine will
273 * sleep until a valid status can be obtained, or until
274 * the max allowed wait time is exceeded, in which case
275 * a -2 is returned.
276 */
277 int
278 eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
279 {
280 int rc;
281 int rets[3];
282 int mwait;
283
284 while (1) {
285 rc = read_slot_reset_state(pdn, rets);
286 if (rc) return rc;
287 if (rets[1] == 0) return -1; /* EEH is not supported */
288
289 if (rets[0] != 5) return rets[0]; /* return actual status */
290
291 if (rets[2] == 0) return -1; /* permanently unavailable */
292
293 if (max_wait_msecs <= 0) return -1;
294
295 mwait = rets[2];
296 if (mwait <= 0) {
297 printk (KERN_WARNING
298 "EEH: Firmware returned bad wait value=%d\n", mwait);
299 mwait = 1000;
300 } else if (mwait > 300*1000) {
301 printk (KERN_WARNING
302 "EEH: Firmware is taking too long, time=%d\n", mwait);
303 mwait = 300*1000;
304 }
305 max_wait_msecs -= mwait;
306 msleep (mwait);
307 }
308
309 printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
310 return -2;
311 }
312
313 /**
314 * eeh_token_to_phys - convert EEH address token to phys address
315 * @token i/o token, should be address in the form 0xA....
316 */
317 static inline unsigned long eeh_token_to_phys(unsigned long token)
318 {
319 pte_t *ptep;
320 unsigned long pa;
321
322 ptep = find_linux_pte(init_mm.pgd, token);
323 if (!ptep)
324 return token;
325 pa = pte_pfn(*ptep) << PAGE_SHIFT;
326
327 return pa | (token & (PAGE_SIZE-1));
328 }
329
330 /**
331 * Return the "partitionable endpoint" (pe) under which this device lies
332 */
333 struct device_node * find_device_pe(struct device_node *dn)
334 {
335 while ((dn->parent) && PCI_DN(dn->parent) &&
336 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
337 dn = dn->parent;
338 }
339 return dn;
340 }
341
342 /** Mark all devices that are peers of this device as failed.
343 * Mark the device driver too, so that it can see the failure
344 * immediately; this is critical, since some drivers poll
345 * status registers in interrupts ... If a driver is polling,
346 * and the slot is frozen, then the driver can deadlock in
347 * an interrupt context, which is bad.
348 */
349
350 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
351 {
352 while (dn) {
353 if (PCI_DN(dn)) {
354 /* Mark the pci device driver too */
355 struct pci_dev *dev = PCI_DN(dn)->pcidev;
356
357 PCI_DN(dn)->eeh_mode |= mode_flag;
358
359 if (dev && dev->driver)
360 dev->error_state = pci_channel_io_frozen;
361
362 if (dn->child)
363 __eeh_mark_slot (dn->child, mode_flag);
364 }
365 dn = dn->sibling;
366 }
367 }
368
369 void eeh_mark_slot (struct device_node *dn, int mode_flag)
370 {
371 struct pci_dev *dev;
372 dn = find_device_pe (dn);
373
374 /* Back up one, since config addrs might be shared */
375 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
376 dn = dn->parent;
377
378 PCI_DN(dn)->eeh_mode |= mode_flag;
379
380 /* Mark the pci device too */
381 dev = PCI_DN(dn)->pcidev;
382 if (dev)
383 dev->error_state = pci_channel_io_frozen;
384
385 __eeh_mark_slot (dn->child, mode_flag);
386 }
387
388 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
389 {
390 while (dn) {
391 if (PCI_DN(dn)) {
392 PCI_DN(dn)->eeh_mode &= ~mode_flag;
393 PCI_DN(dn)->eeh_check_count = 0;
394 if (dn->child)
395 __eeh_clear_slot (dn->child, mode_flag);
396 }
397 dn = dn->sibling;
398 }
399 }
400
401 void eeh_clear_slot (struct device_node *dn, int mode_flag)
402 {
403 unsigned long flags;
404 spin_lock_irqsave(&confirm_error_lock, flags);
405
406 dn = find_device_pe (dn);
407
408 /* Back up one, since config addrs might be shared */
409 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
410 dn = dn->parent;
411
412 PCI_DN(dn)->eeh_mode &= ~mode_flag;
413 PCI_DN(dn)->eeh_check_count = 0;
414 __eeh_clear_slot (dn->child, mode_flag);
415 spin_unlock_irqrestore(&confirm_error_lock, flags);
416 }
417
418 /**
419 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
420 * @dn device node
421 * @dev pci device, if known
422 *
423 * Check for an EEH failure for the given device node. Call this
424 * routine if the result of a read was all 0xff's and you want to
425 * find out if this is due to an EEH slot freeze. This routine
426 * will query firmware for the EEH status.
427 *
428 * Returns 0 if there has not been an EEH error; otherwise returns
429 * a non-zero value and queues up a slot isolation event notification.
430 *
431 * It is safe to call this routine in an interrupt context.
432 */
433 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
434 {
435 int ret;
436 int rets[3];
437 unsigned long flags;
438 struct pci_dn *pdn;
439 int rc = 0;
440
441 total_mmio_ffs++;
442
443 if (!eeh_subsystem_enabled)
444 return 0;
445
446 if (!dn) {
447 no_dn++;
448 return 0;
449 }
450 pdn = PCI_DN(dn);
451
452 /* Access to IO BARs might get this far and still not want checking. */
453 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
454 pdn->eeh_mode & EEH_MODE_NOCHECK) {
455 ignored_check++;
456 #ifdef DEBUG
457 printk ("EEH:ignored check (%x) for %s %s\n",
458 pdn->eeh_mode, pci_name (dev), dn->full_name);
459 #endif
460 return 0;
461 }
462
463 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
464 no_cfg_addr++;
465 return 0;
466 }
467
468 /* If we already have a pending isolation event for this
469 * slot, we know it's bad already, we don't need to check.
470 * Do this checking under a lock; as multiple PCI devices
471 * in one slot might report errors simultaneously, and we
472 * only want one error recovery routine running.
473 */
474 spin_lock_irqsave(&confirm_error_lock, flags);
475 rc = 1;
476 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
477 pdn->eeh_check_count ++;
478 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
479 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
480 pdn->eeh_check_count);
481 dump_stack();
482 msleep(5000);
483
484 /* re-read the slot reset state */
485 if (read_slot_reset_state(pdn, rets) != 0)
486 rets[0] = -1; /* reset state unknown */
487
488 /* If we are here, then we hit an infinite loop. Stop. */
489 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
490 }
491 goto dn_unlock;
492 }
493
494 /*
495 * Now test for an EEH failure. This is VERY expensive.
496 * Note that the eeh_config_addr may be a parent device
497 * in the case of a device behind a bridge, or it may be
498 * function zero of a multi-function device.
499 * In any case they must share a common PHB.
500 */
501 ret = read_slot_reset_state(pdn, rets);
502
503 /* If the call to firmware failed, punt */
504 if (ret != 0) {
505 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
506 ret, dn->full_name);
507 false_positives++;
508 rc = 0;
509 goto dn_unlock;
510 }
511
512 /* Note that config-io to empty slots may fail;
513 * they are empty when they don't have children. */
514 if ((rets[0] == 5) && (dn->child == NULL)) {
515 false_positives++;
516 rc = 0;
517 goto dn_unlock;
518 }
519
520 /* If EEH is not supported on this device, punt. */
521 if (rets[1] != 1) {
522 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
523 ret, dn->full_name);
524 false_positives++;
525 rc = 0;
526 goto dn_unlock;
527 }
528
529 /* If not the kind of error we know about, punt. */
530 if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
531 false_positives++;
532 rc = 0;
533 goto dn_unlock;
534 }
535
536 slot_resets++;
537
538 /* Avoid repeated reports of this failure, including problems
539 * with other functions on this device, and functions under
540 * bridges. */
541 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
542 spin_unlock_irqrestore(&confirm_error_lock, flags);
543
544 eeh_send_failure_event (dn, dev);
545
546 /* Most EEH events are due to device driver bugs. Having
547 * a stack trace will help the device-driver authors figure
548 * out what happened. So print that out. */
549 dump_stack();
550 return 1;
551
552 dn_unlock:
553 spin_unlock_irqrestore(&confirm_error_lock, flags);
554 return rc;
555 }
556
557 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
558
559 /**
560 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
561 * @token i/o token, should be address in the form 0xA....
562 * @val value, should be all 1's (XXX why do we need this arg??)
563 *
564 * Check for an EEH failure at the given token address. Call this
565 * routine if the result of a read was all 0xff's and you want to
566 * find out if this is due to an EEH slot freeze event. This routine
567 * will query firmware for the EEH status.
568 *
569 * Note this routine is safe to call in an interrupt context.
570 */
571 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
572 {
573 unsigned long addr;
574 struct pci_dev *dev;
575 struct device_node *dn;
576
577 /* Finding the phys addr + pci device; this is pretty quick. */
578 addr = eeh_token_to_phys((unsigned long __force) token);
579 dev = pci_get_device_by_addr(addr);
580 if (!dev) {
581 no_device++;
582 return val;
583 }
584
585 dn = pci_device_to_OF_node(dev);
586 eeh_dn_check_failure (dn, dev);
587
588 pci_dev_put(dev);
589 return val;
590 }
591
592 EXPORT_SYMBOL(eeh_check_failure);
593
594 /* ------------------------------------------------------------- */
595 /* The code below deals with error recovery */
596
597 /**
598 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
599 * @pdn pci device node
600 */
601
602 int
603 rtas_pci_enable(struct pci_dn *pdn, int function)
604 {
605 int config_addr;
606 int rc;
607
608 /* Use PE configuration address, if present */
609 config_addr = pdn->eeh_config_addr;
610 if (pdn->eeh_pe_config_addr)
611 config_addr = pdn->eeh_pe_config_addr;
612
613 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
614 config_addr,
615 BUID_HI(pdn->phb->buid),
616 BUID_LO(pdn->phb->buid),
617 function);
618
619 if (rc)
620 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
621 function, rc, pdn->node->full_name);
622
623 rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
624 if ((rc == 4) && (function == EEH_THAW_MMIO))
625 return 0;
626
627 return rc;
628 }
629
630 /**
631 * rtas_pci_slot_reset - raises/lowers the pci #RST line
632 * @pdn pci device node
633 * @state: 1/0 to raise/lower the #RST
634 *
635 * Clear the EEH-frozen condition on a slot. This routine
636 * asserts the PCI #RST line if the 'state' argument is '1',
637 * and drops the #RST line if 'state is '0'. This routine is
638 * safe to call in an interrupt context.
639 *
640 */
641
642 static void
643 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
644 {
645 int config_addr;
646 int rc;
647
648 BUG_ON (pdn==NULL);
649
650 if (!pdn->phb) {
651 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
652 pdn->node->full_name);
653 return;
654 }
655
656 /* Use PE configuration address, if present */
657 config_addr = pdn->eeh_config_addr;
658 if (pdn->eeh_pe_config_addr)
659 config_addr = pdn->eeh_pe_config_addr;
660
661 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
662 config_addr,
663 BUID_HI(pdn->phb->buid),
664 BUID_LO(pdn->phb->buid),
665 state);
666 if (rc)
667 printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
668 " (%d) #RST=%d dn=%s\n",
669 rc, state, pdn->node->full_name);
670 }
671
672 /**
673 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
674 * @dev: pci device struct
675 * @state: reset state to enter
676 *
677 * Return value:
678 * 0 if success
679 **/
680 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
681 {
682 struct device_node *dn = pci_device_to_OF_node(dev);
683 struct pci_dn *pdn = PCI_DN(dn);
684
685 switch (state) {
686 case pcie_deassert_reset:
687 rtas_pci_slot_reset(pdn, 0);
688 break;
689 case pcie_hot_reset:
690 rtas_pci_slot_reset(pdn, 1);
691 break;
692 case pcie_warm_reset:
693 rtas_pci_slot_reset(pdn, 3);
694 break;
695 default:
696 return -EINVAL;
697 };
698
699 return 0;
700 }
701
702 /**
703 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
704 * @pdn: pci device node to be reset.
705 *
706 * Return 0 if success, else a non-zero value.
707 */
708
709 static void __rtas_set_slot_reset(struct pci_dn *pdn)
710 {
711 rtas_pci_slot_reset (pdn, 1);
712
713 /* The PCI bus requires that the reset be held high for at least
714 * a 100 milliseconds. We wait a bit longer 'just in case'. */
715
716 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
717 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
718
719 /* We might get hit with another EEH freeze as soon as the
720 * pci slot reset line is dropped. Make sure we don't miss
721 * these, and clear the flag now. */
722 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
723
724 rtas_pci_slot_reset (pdn, 0);
725
726 /* After a PCI slot has been reset, the PCI Express spec requires
727 * a 1.5 second idle time for the bus to stabilize, before starting
728 * up traffic. */
729 #define PCI_BUS_SETTLE_TIME_MSEC 1800
730 msleep (PCI_BUS_SETTLE_TIME_MSEC);
731 }
732
733 int rtas_set_slot_reset(struct pci_dn *pdn)
734 {
735 int i, rc;
736
737 /* Take three shots at resetting the bus */
738 for (i=0; i<3; i++) {
739 __rtas_set_slot_reset(pdn);
740
741 rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
742 if (rc == 0)
743 return 0;
744
745 if (rc < 0) {
746 printk (KERN_ERR "EEH: unrecoverable slot failure %s\n",
747 pdn->node->full_name);
748 return -1;
749 }
750 printk (KERN_ERR "EEH: bus reset %d failed on slot %s\n",
751 i+1, pdn->node->full_name);
752 }
753
754 return -1;
755 }
756
757 /* ------------------------------------------------------- */
758 /** Save and restore of PCI BARs
759 *
760 * Although firmware will set up BARs during boot, it doesn't
761 * set up device BAR's after a device reset, although it will,
762 * if requested, set up bridge configuration. Thus, we need to
763 * configure the PCI devices ourselves.
764 */
765
766 /**
767 * __restore_bars - Restore the Base Address Registers
768 * @pdn: pci device node
769 *
770 * Loads the PCI configuration space base address registers,
771 * the expansion ROM base address, the latency timer, and etc.
772 * from the saved values in the device node.
773 */
774 static inline void __restore_bars (struct pci_dn *pdn)
775 {
776 int i;
777
778 if (NULL==pdn->phb) return;
779 for (i=4; i<10; i++) {
780 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
781 }
782
783 /* 12 == Expansion ROM Address */
784 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
785
786 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
787 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
788
789 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
790 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
791
792 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
793 SAVED_BYTE(PCI_LATENCY_TIMER));
794
795 /* max latency, min grant, interrupt pin and line */
796 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
797 }
798
799 /**
800 * eeh_restore_bars - restore the PCI config space info
801 *
802 * This routine performs a recursive walk to the children
803 * of this device as well.
804 */
805 void eeh_restore_bars(struct pci_dn *pdn)
806 {
807 struct device_node *dn;
808 if (!pdn)
809 return;
810
811 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
812 __restore_bars (pdn);
813
814 dn = pdn->node->child;
815 while (dn) {
816 eeh_restore_bars (PCI_DN(dn));
817 dn = dn->sibling;
818 }
819 }
820
821 /**
822 * eeh_save_bars - save device bars
823 *
824 * Save the values of the device bars. Unlike the restore
825 * routine, this routine is *not* recursive. This is because
826 * PCI devices are added individuallly; but, for the restore,
827 * an entire slot is reset at a time.
828 */
829 static void eeh_save_bars(struct pci_dn *pdn)
830 {
831 int i;
832
833 if (!pdn )
834 return;
835
836 for (i = 0; i < 16; i++)
837 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
838 }
839
840 void
841 rtas_configure_bridge(struct pci_dn *pdn)
842 {
843 int config_addr;
844 int rc;
845
846 /* Use PE configuration address, if present */
847 config_addr = pdn->eeh_config_addr;
848 if (pdn->eeh_pe_config_addr)
849 config_addr = pdn->eeh_pe_config_addr;
850
851 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
852 config_addr,
853 BUID_HI(pdn->phb->buid),
854 BUID_LO(pdn->phb->buid));
855 if (rc) {
856 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
857 rc, pdn->node->full_name);
858 }
859 }
860
861 /* ------------------------------------------------------------- */
862 /* The code below deals with enabling EEH for devices during the
863 * early boot sequence. EEH must be enabled before any PCI probing
864 * can be done.
865 */
866
867 #define EEH_ENABLE 1
868
869 struct eeh_early_enable_info {
870 unsigned int buid_hi;
871 unsigned int buid_lo;
872 };
873
874 static int get_pe_addr (int config_addr,
875 struct eeh_early_enable_info *info)
876 {
877 unsigned int rets[3];
878 int ret;
879
880 /* Use latest config-addr token on power6 */
881 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
882 /* Make sure we have a PE in hand */
883 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
884 config_addr, info->buid_hi, info->buid_lo, 1);
885 if (ret || (rets[0]==0))
886 return 0;
887
888 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
889 config_addr, info->buid_hi, info->buid_lo, 0);
890 if (ret)
891 return 0;
892 return rets[0];
893 }
894
895 /* Use older config-addr token on power5 */
896 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
897 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
898 config_addr, info->buid_hi, info->buid_lo, 0);
899 if (ret)
900 return 0;
901 return rets[0];
902 }
903 return 0;
904 }
905
906 /* Enable eeh for the given device node. */
907 static void *early_enable_eeh(struct device_node *dn, void *data)
908 {
909 unsigned int rets[3];
910 struct eeh_early_enable_info *info = data;
911 int ret;
912 const char *status = of_get_property(dn, "status", NULL);
913 const u32 *class_code = of_get_property(dn, "class-code", NULL);
914 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
915 const u32 *device_id = of_get_property(dn, "device-id", NULL);
916 const u32 *regs;
917 int enable;
918 struct pci_dn *pdn = PCI_DN(dn);
919
920 pdn->class_code = 0;
921 pdn->eeh_mode = 0;
922 pdn->eeh_check_count = 0;
923 pdn->eeh_freeze_count = 0;
924
925 if (status && strcmp(status, "ok") != 0)
926 return NULL; /* ignore devices with bad status */
927
928 /* Ignore bad nodes. */
929 if (!class_code || !vendor_id || !device_id)
930 return NULL;
931
932 /* There is nothing to check on PCI to ISA bridges */
933 if (dn->type && !strcmp(dn->type, "isa")) {
934 pdn->eeh_mode |= EEH_MODE_NOCHECK;
935 return NULL;
936 }
937 pdn->class_code = *class_code;
938
939 /*
940 * Now decide if we are going to "Disable" EEH checking
941 * for this device. We still run with the EEH hardware active,
942 * but we won't be checking for ff's. This means a driver
943 * could return bad data (very bad!), an interrupt handler could
944 * hang waiting on status bits that won't change, etc.
945 * But there are a few cases like display devices that make sense.
946 */
947 enable = 1; /* i.e. we will do checking */
948 #if 0
949 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
950 enable = 0;
951 #endif
952
953 if (!enable)
954 pdn->eeh_mode |= EEH_MODE_NOCHECK;
955
956 /* Ok... see if this device supports EEH. Some do, some don't,
957 * and the only way to find out is to check each and every one. */
958 regs = of_get_property(dn, "reg", NULL);
959 if (regs) {
960 /* First register entry is addr (00BBSS00) */
961 /* Try to enable eeh */
962 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
963 regs[0], info->buid_hi, info->buid_lo,
964 EEH_ENABLE);
965
966 enable = 0;
967 if (ret == 0) {
968 pdn->eeh_config_addr = regs[0];
969
970 /* If the newer, better, ibm,get-config-addr-info is supported,
971 * then use that instead. */
972 pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
973
974 /* Some older systems (Power4) allow the
975 * ibm,set-eeh-option call to succeed even on nodes
976 * where EEH is not supported. Verify support
977 * explicitly. */
978 ret = read_slot_reset_state(pdn, rets);
979 if ((ret == 0) && (rets[1] == 1))
980 enable = 1;
981 }
982
983 if (enable) {
984 eeh_subsystem_enabled = 1;
985 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
986
987 #ifdef DEBUG
988 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
989 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
990 #endif
991 } else {
992
993 /* This device doesn't support EEH, but it may have an
994 * EEH parent, in which case we mark it as supported. */
995 if (dn->parent && PCI_DN(dn->parent)
996 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
997 /* Parent supports EEH. */
998 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
999 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
1000 return NULL;
1001 }
1002 }
1003 } else {
1004 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
1005 dn->full_name);
1006 }
1007
1008 eeh_save_bars(pdn);
1009 return NULL;
1010 }
1011
1012 /*
1013 * Initialize EEH by trying to enable it for all of the adapters in the system.
1014 * As a side effect we can determine here if eeh is supported at all.
1015 * Note that we leave EEH on so failed config cycles won't cause a machine
1016 * check. If a user turns off EEH for a particular adapter they are really
1017 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1018 * grant access to a slot if EEH isn't enabled, and so we always enable
1019 * EEH for all slots/all devices.
1020 *
1021 * The eeh-force-off option disables EEH checking globally, for all slots.
1022 * Even if force-off is set, the EEH hardware is still enabled, so that
1023 * newer systems can boot.
1024 */
1025 void __init eeh_init(void)
1026 {
1027 struct device_node *phb, *np;
1028 struct eeh_early_enable_info info;
1029
1030 spin_lock_init(&confirm_error_lock);
1031 spin_lock_init(&slot_errbuf_lock);
1032
1033 np = of_find_node_by_path("/rtas");
1034 if (np == NULL)
1035 return;
1036
1037 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1038 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1039 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1040 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1041 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1042 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1043 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1044 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1045
1046 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1047 return;
1048
1049 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1050 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1051 eeh_error_buf_size = 1024;
1052 }
1053 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1054 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1055 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1056 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1057 }
1058
1059 /* Enable EEH for all adapters. Note that eeh requires buid's */
1060 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1061 phb = of_find_node_by_name(phb, "pci")) {
1062 unsigned long buid;
1063
1064 buid = get_phb_buid(phb);
1065 if (buid == 0 || PCI_DN(phb) == NULL)
1066 continue;
1067
1068 info.buid_lo = BUID_LO(buid);
1069 info.buid_hi = BUID_HI(buid);
1070 traverse_pci_devices(phb, early_enable_eeh, &info);
1071 }
1072
1073 if (eeh_subsystem_enabled)
1074 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1075 else
1076 printk(KERN_WARNING "EEH: No capable adapters found\n");
1077 }
1078
1079 /**
1080 * eeh_add_device_early - enable EEH for the indicated device_node
1081 * @dn: device node for which to set up EEH
1082 *
1083 * This routine must be used to perform EEH initialization for PCI
1084 * devices that were added after system boot (e.g. hotplug, dlpar).
1085 * This routine must be called before any i/o is performed to the
1086 * adapter (inluding any config-space i/o).
1087 * Whether this actually enables EEH or not for this device depends
1088 * on the CEC architecture, type of the device, on earlier boot
1089 * command-line arguments & etc.
1090 */
1091 static void eeh_add_device_early(struct device_node *dn)
1092 {
1093 struct pci_controller *phb;
1094 struct eeh_early_enable_info info;
1095
1096 if (!dn || !PCI_DN(dn))
1097 return;
1098 phb = PCI_DN(dn)->phb;
1099
1100 /* USB Bus children of PCI devices will not have BUID's */
1101 if (NULL == phb || 0 == phb->buid)
1102 return;
1103
1104 info.buid_hi = BUID_HI(phb->buid);
1105 info.buid_lo = BUID_LO(phb->buid);
1106 early_enable_eeh(dn, &info);
1107 }
1108
1109 void eeh_add_device_tree_early(struct device_node *dn)
1110 {
1111 struct device_node *sib;
1112 for (sib = dn->child; sib; sib = sib->sibling)
1113 eeh_add_device_tree_early(sib);
1114 eeh_add_device_early(dn);
1115 }
1116 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1117
1118 /**
1119 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1120 * @dev: pci device for which to set up EEH
1121 *
1122 * This routine must be used to complete EEH initialization for PCI
1123 * devices that were added after system boot (e.g. hotplug, dlpar).
1124 */
1125 static void eeh_add_device_late(struct pci_dev *dev)
1126 {
1127 struct device_node *dn;
1128 struct pci_dn *pdn;
1129
1130 if (!dev || !eeh_subsystem_enabled)
1131 return;
1132
1133 #ifdef DEBUG
1134 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
1135 #endif
1136
1137 pci_dev_get (dev);
1138 dn = pci_device_to_OF_node(dev);
1139 pdn = PCI_DN(dn);
1140 pdn->pcidev = dev;
1141
1142 pci_addr_cache_insert_device (dev);
1143 }
1144
1145 void eeh_add_device_tree_late(struct pci_bus *bus)
1146 {
1147 struct pci_dev *dev;
1148
1149 list_for_each_entry(dev, &bus->devices, bus_list) {
1150 eeh_add_device_late(dev);
1151 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1152 struct pci_bus *subbus = dev->subordinate;
1153 if (subbus)
1154 eeh_add_device_tree_late(subbus);
1155 }
1156 }
1157 }
1158 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1159
1160 /**
1161 * eeh_remove_device - undo EEH setup for the indicated pci device
1162 * @dev: pci device to be removed
1163 *
1164 * This routine should be called when a device is removed from
1165 * a running system (e.g. by hotplug or dlpar). It unregisters
1166 * the PCI device from the EEH subsystem. I/O errors affecting
1167 * this device will no longer be detected after this call; thus,
1168 * i/o errors affecting this slot may leave this device unusable.
1169 */
1170 static void eeh_remove_device(struct pci_dev *dev)
1171 {
1172 struct device_node *dn;
1173 if (!dev || !eeh_subsystem_enabled)
1174 return;
1175
1176 /* Unregister the device with the EEH/PCI address search system */
1177 #ifdef DEBUG
1178 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1179 #endif
1180 pci_addr_cache_remove_device(dev);
1181
1182 dn = pci_device_to_OF_node(dev);
1183 if (PCI_DN(dn)->pcidev) {
1184 PCI_DN(dn)->pcidev = NULL;
1185 pci_dev_put (dev);
1186 }
1187 }
1188
1189 void eeh_remove_bus_device(struct pci_dev *dev)
1190 {
1191 struct pci_bus *bus = dev->subordinate;
1192 struct pci_dev *child, *tmp;
1193
1194 eeh_remove_device(dev);
1195
1196 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1197 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1198 eeh_remove_bus_device(child);
1199 }
1200 }
1201 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1202
1203 static int proc_eeh_show(struct seq_file *m, void *v)
1204 {
1205 if (0 == eeh_subsystem_enabled) {
1206 seq_printf(m, "EEH Subsystem is globally disabled\n");
1207 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1208 } else {
1209 seq_printf(m, "EEH Subsystem is enabled\n");
1210 seq_printf(m,
1211 "no device=%ld\n"
1212 "no device node=%ld\n"
1213 "no config address=%ld\n"
1214 "check not wanted=%ld\n"
1215 "eeh_total_mmio_ffs=%ld\n"
1216 "eeh_false_positives=%ld\n"
1217 "eeh_ignored_failures=%ld\n"
1218 "eeh_slot_resets=%ld\n",
1219 no_device, no_dn, no_cfg_addr,
1220 ignored_check, total_mmio_ffs,
1221 false_positives, ignored_failures,
1222 slot_resets);
1223 }
1224
1225 return 0;
1226 }
1227
1228 static int proc_eeh_open(struct inode *inode, struct file *file)
1229 {
1230 return single_open(file, proc_eeh_show, NULL);
1231 }
1232
1233 static const struct file_operations proc_eeh_operations = {
1234 .open = proc_eeh_open,
1235 .read = seq_read,
1236 .llseek = seq_lseek,
1237 .release = single_release,
1238 };
1239
1240 static int __init eeh_init_proc(void)
1241 {
1242 struct proc_dir_entry *e;
1243
1244 if (machine_is(pseries)) {
1245 e = create_proc_entry("ppc64/eeh", 0, NULL);
1246 if (e)
1247 e->proc_fops = &proc_eeh_operations;
1248 }
1249
1250 return 0;
1251 }
1252 __initcall(eeh_init_proc);