093438b93bd9e102e9e332988f9c763af385958f
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / pseries / eeh.c
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
35
36 #undef DEBUG
37
38 /** Overview:
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
52 *
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
60 * with EEH.
61 *
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
70 */
71
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
76 */
77 #define EEH_MAX_FAILS 2100000
78
79 /* Time to wait for a PCI slot to retport status, in milliseconds */
80 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
81
82 /* RTAS tokens */
83 static int ibm_set_eeh_option;
84 static int ibm_set_slot_reset;
85 static int ibm_read_slot_reset_state;
86 static int ibm_read_slot_reset_state2;
87 static int ibm_slot_error_detail;
88 static int ibm_get_config_addr_info;
89 static int ibm_get_config_addr_info2;
90 static int ibm_configure_bridge;
91
92 int eeh_subsystem_enabled;
93 EXPORT_SYMBOL(eeh_subsystem_enabled);
94
95 /* Lock to avoid races due to multiple reports of an error */
96 static DEFINE_SPINLOCK(confirm_error_lock);
97
98 /* Buffer for reporting slot-error-detail rtas calls */
99 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
100 static DEFINE_SPINLOCK(slot_errbuf_lock);
101 static int eeh_error_buf_size;
102
103 #define EEH_PCI_REGS_LOG_LEN 4096
104 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
105
106 /* System monitoring statistics */
107 static unsigned long no_device;
108 static unsigned long no_dn;
109 static unsigned long no_cfg_addr;
110 static unsigned long ignored_check;
111 static unsigned long total_mmio_ffs;
112 static unsigned long false_positives;
113 static unsigned long ignored_failures;
114 static unsigned long slot_resets;
115
116 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
117
118 /* --------------------------------------------------------------- */
119 /* Below lies the EEH event infrastructure */
120
121 static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
122 char *driver_log, size_t loglen)
123 {
124 int config_addr;
125 unsigned long flags;
126 int rc;
127
128 /* Log the error with the rtas logger */
129 spin_lock_irqsave(&slot_errbuf_lock, flags);
130 memset(slot_errbuf, 0, eeh_error_buf_size);
131
132 /* Use PE configuration address, if present */
133 config_addr = pdn->eeh_config_addr;
134 if (pdn->eeh_pe_config_addr)
135 config_addr = pdn->eeh_pe_config_addr;
136
137 rc = rtas_call(ibm_slot_error_detail,
138 8, 1, NULL, config_addr,
139 BUID_HI(pdn->phb->buid),
140 BUID_LO(pdn->phb->buid),
141 virt_to_phys(driver_log), loglen,
142 virt_to_phys(slot_errbuf),
143 eeh_error_buf_size,
144 severity);
145
146 if (rc == 0)
147 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
148 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
149 }
150
151 /**
152 * gather_pci_data - copy assorted PCI config space registers to buff
153 * @pdn: device to report data for
154 * @buf: point to buffer in which to log
155 * @len: amount of room in buffer
156 *
157 * This routine captures assorted PCI configuration space data,
158 * and puts them into a buffer for RTAS error logging.
159 */
160 static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
161 {
162 u32 cfg;
163 int cap, i;
164 int n = 0;
165
166 n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
167 printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
168
169 rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
170 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
171 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
172
173 rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
174 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
175 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
176
177 /* Dump out the PCI-X command and status regs */
178 cap = pci_find_capability(pdn->pcidev, PCI_CAP_ID_PCIX);
179 if (cap) {
180 rtas_read_config(pdn, cap, 4, &cfg);
181 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
182 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
183
184 rtas_read_config(pdn, cap+4, 4, &cfg);
185 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
186 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
187 }
188
189 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
190 cap = pci_find_capability(pdn->pcidev, PCI_CAP_ID_EXP);
191 if (cap) {
192 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
193 printk(KERN_WARNING
194 "EEH: PCI-E capabilities and status follow:\n");
195
196 for (i=0; i<=8; i++) {
197 rtas_read_config(pdn, cap+4*i, 4, &cfg);
198 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
199 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
200 }
201
202 cap = pci_find_ext_capability(pdn->pcidev,PCI_EXT_CAP_ID_ERR);
203 if (cap) {
204 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
205 printk(KERN_WARNING
206 "EEH: PCI-E AER capability register set follows:\n");
207
208 for (i=0; i<14; i++) {
209 rtas_read_config(pdn, cap+4*i, 4, &cfg);
210 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
211 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
212 }
213 }
214 }
215 return n;
216 }
217
218 void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
219 {
220 size_t loglen = 0;
221 memset(pci_regs_buf, 0, EEH_PCI_REGS_LOG_LEN);
222
223 rtas_pci_enable(pdn, EEH_THAW_MMIO);
224 loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
225
226 rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
227 }
228
229 /**
230 * read_slot_reset_state - Read the reset state of a device node's slot
231 * @dn: device node to read
232 * @rets: array to return results in
233 */
234 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
235 {
236 int token, outputs;
237 int config_addr;
238
239 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
240 token = ibm_read_slot_reset_state2;
241 outputs = 4;
242 } else {
243 token = ibm_read_slot_reset_state;
244 rets[2] = 0; /* fake PE Unavailable info */
245 outputs = 3;
246 }
247
248 /* Use PE configuration address, if present */
249 config_addr = pdn->eeh_config_addr;
250 if (pdn->eeh_pe_config_addr)
251 config_addr = pdn->eeh_pe_config_addr;
252
253 return rtas_call(token, 3, outputs, rets, config_addr,
254 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
255 }
256
257 /**
258 * eeh_wait_for_slot_status - returns error status of slot
259 * @pdn pci device node
260 * @max_wait_msecs maximum number to millisecs to wait
261 *
262 * Return negative value if a permanent error, else return
263 * Partition Endpoint (PE) status value.
264 *
265 * If @max_wait_msecs is positive, then this routine will
266 * sleep until a valid status can be obtained, or until
267 * the max allowed wait time is exceeded, in which case
268 * a -2 is returned.
269 */
270 int
271 eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
272 {
273 int rc;
274 int rets[3];
275 int mwait;
276
277 while (1) {
278 rc = read_slot_reset_state(pdn, rets);
279 if (rc) return rc;
280 if (rets[1] == 0) return -1; /* EEH is not supported */
281
282 if (rets[0] != 5) return rets[0]; /* return actual status */
283
284 if (rets[2] == 0) return -1; /* permanently unavailable */
285
286 if (max_wait_msecs <= 0) return -1;
287
288 mwait = rets[2];
289 if (mwait <= 0) {
290 printk (KERN_WARNING
291 "EEH: Firmware returned bad wait value=%d\n", mwait);
292 mwait = 1000;
293 } else if (mwait > 300*1000) {
294 printk (KERN_WARNING
295 "EEH: Firmware is taking too long, time=%d\n", mwait);
296 mwait = 300*1000;
297 }
298 max_wait_msecs -= mwait;
299 msleep (mwait);
300 }
301
302 printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
303 return -2;
304 }
305
306 /**
307 * eeh_token_to_phys - convert EEH address token to phys address
308 * @token i/o token, should be address in the form 0xA....
309 */
310 static inline unsigned long eeh_token_to_phys(unsigned long token)
311 {
312 pte_t *ptep;
313 unsigned long pa;
314
315 ptep = find_linux_pte(init_mm.pgd, token);
316 if (!ptep)
317 return token;
318 pa = pte_pfn(*ptep) << PAGE_SHIFT;
319
320 return pa | (token & (PAGE_SIZE-1));
321 }
322
323 /**
324 * Return the "partitionable endpoint" (pe) under which this device lies
325 */
326 struct device_node * find_device_pe(struct device_node *dn)
327 {
328 while ((dn->parent) && PCI_DN(dn->parent) &&
329 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
330 dn = dn->parent;
331 }
332 return dn;
333 }
334
335 /** Mark all devices that are peers of this device as failed.
336 * Mark the device driver too, so that it can see the failure
337 * immediately; this is critical, since some drivers poll
338 * status registers in interrupts ... If a driver is polling,
339 * and the slot is frozen, then the driver can deadlock in
340 * an interrupt context, which is bad.
341 */
342
343 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
344 {
345 while (dn) {
346 if (PCI_DN(dn)) {
347 /* Mark the pci device driver too */
348 struct pci_dev *dev = PCI_DN(dn)->pcidev;
349
350 PCI_DN(dn)->eeh_mode |= mode_flag;
351
352 if (dev && dev->driver)
353 dev->error_state = pci_channel_io_frozen;
354
355 if (dn->child)
356 __eeh_mark_slot (dn->child, mode_flag);
357 }
358 dn = dn->sibling;
359 }
360 }
361
362 void eeh_mark_slot (struct device_node *dn, int mode_flag)
363 {
364 struct pci_dev *dev;
365 dn = find_device_pe (dn);
366
367 /* Back up one, since config addrs might be shared */
368 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
369 dn = dn->parent;
370
371 PCI_DN(dn)->eeh_mode |= mode_flag;
372
373 /* Mark the pci device too */
374 dev = PCI_DN(dn)->pcidev;
375 if (dev)
376 dev->error_state = pci_channel_io_frozen;
377
378 __eeh_mark_slot (dn->child, mode_flag);
379 }
380
381 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
382 {
383 while (dn) {
384 if (PCI_DN(dn)) {
385 PCI_DN(dn)->eeh_mode &= ~mode_flag;
386 PCI_DN(dn)->eeh_check_count = 0;
387 if (dn->child)
388 __eeh_clear_slot (dn->child, mode_flag);
389 }
390 dn = dn->sibling;
391 }
392 }
393
394 void eeh_clear_slot (struct device_node *dn, int mode_flag)
395 {
396 unsigned long flags;
397 spin_lock_irqsave(&confirm_error_lock, flags);
398
399 dn = find_device_pe (dn);
400
401 /* Back up one, since config addrs might be shared */
402 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
403 dn = dn->parent;
404
405 PCI_DN(dn)->eeh_mode &= ~mode_flag;
406 PCI_DN(dn)->eeh_check_count = 0;
407 __eeh_clear_slot (dn->child, mode_flag);
408 spin_unlock_irqrestore(&confirm_error_lock, flags);
409 }
410
411 /**
412 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
413 * @dn device node
414 * @dev pci device, if known
415 *
416 * Check for an EEH failure for the given device node. Call this
417 * routine if the result of a read was all 0xff's and you want to
418 * find out if this is due to an EEH slot freeze. This routine
419 * will query firmware for the EEH status.
420 *
421 * Returns 0 if there has not been an EEH error; otherwise returns
422 * a non-zero value and queues up a slot isolation event notification.
423 *
424 * It is safe to call this routine in an interrupt context.
425 */
426 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
427 {
428 int ret;
429 int rets[3];
430 unsigned long flags;
431 struct pci_dn *pdn;
432 int rc = 0;
433
434 total_mmio_ffs++;
435
436 if (!eeh_subsystem_enabled)
437 return 0;
438
439 if (!dn) {
440 no_dn++;
441 return 0;
442 }
443 pdn = PCI_DN(dn);
444
445 /* Access to IO BARs might get this far and still not want checking. */
446 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
447 pdn->eeh_mode & EEH_MODE_NOCHECK) {
448 ignored_check++;
449 #ifdef DEBUG
450 printk ("EEH:ignored check (%x) for %s %s\n",
451 pdn->eeh_mode, pci_name (dev), dn->full_name);
452 #endif
453 return 0;
454 }
455
456 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
457 no_cfg_addr++;
458 return 0;
459 }
460
461 /* If we already have a pending isolation event for this
462 * slot, we know it's bad already, we don't need to check.
463 * Do this checking under a lock; as multiple PCI devices
464 * in one slot might report errors simultaneously, and we
465 * only want one error recovery routine running.
466 */
467 spin_lock_irqsave(&confirm_error_lock, flags);
468 rc = 1;
469 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
470 pdn->eeh_check_count ++;
471 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
472 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
473 pdn->eeh_check_count);
474 dump_stack();
475 msleep(5000);
476
477 /* re-read the slot reset state */
478 if (read_slot_reset_state(pdn, rets) != 0)
479 rets[0] = -1; /* reset state unknown */
480
481 /* If we are here, then we hit an infinite loop. Stop. */
482 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
483 }
484 goto dn_unlock;
485 }
486
487 /*
488 * Now test for an EEH failure. This is VERY expensive.
489 * Note that the eeh_config_addr may be a parent device
490 * in the case of a device behind a bridge, or it may be
491 * function zero of a multi-function device.
492 * In any case they must share a common PHB.
493 */
494 ret = read_slot_reset_state(pdn, rets);
495
496 /* If the call to firmware failed, punt */
497 if (ret != 0) {
498 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
499 ret, dn->full_name);
500 false_positives++;
501 rc = 0;
502 goto dn_unlock;
503 }
504
505 /* Note that config-io to empty slots may fail;
506 * they are empty when they don't have children. */
507 if ((rets[0] == 5) && (dn->child == NULL)) {
508 false_positives++;
509 rc = 0;
510 goto dn_unlock;
511 }
512
513 /* If EEH is not supported on this device, punt. */
514 if (rets[1] != 1) {
515 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
516 ret, dn->full_name);
517 false_positives++;
518 rc = 0;
519 goto dn_unlock;
520 }
521
522 /* If not the kind of error we know about, punt. */
523 if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
524 false_positives++;
525 rc = 0;
526 goto dn_unlock;
527 }
528
529 slot_resets++;
530
531 /* Avoid repeated reports of this failure, including problems
532 * with other functions on this device, and functions under
533 * bridges. */
534 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
535 spin_unlock_irqrestore(&confirm_error_lock, flags);
536
537 eeh_send_failure_event (dn, dev);
538
539 /* Most EEH events are due to device driver bugs. Having
540 * a stack trace will help the device-driver authors figure
541 * out what happened. So print that out. */
542 dump_stack();
543 return 1;
544
545 dn_unlock:
546 spin_unlock_irqrestore(&confirm_error_lock, flags);
547 return rc;
548 }
549
550 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
551
552 /**
553 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
554 * @token i/o token, should be address in the form 0xA....
555 * @val value, should be all 1's (XXX why do we need this arg??)
556 *
557 * Check for an EEH failure at the given token address. Call this
558 * routine if the result of a read was all 0xff's and you want to
559 * find out if this is due to an EEH slot freeze event. This routine
560 * will query firmware for the EEH status.
561 *
562 * Note this routine is safe to call in an interrupt context.
563 */
564 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
565 {
566 unsigned long addr;
567 struct pci_dev *dev;
568 struct device_node *dn;
569
570 /* Finding the phys addr + pci device; this is pretty quick. */
571 addr = eeh_token_to_phys((unsigned long __force) token);
572 dev = pci_get_device_by_addr(addr);
573 if (!dev) {
574 no_device++;
575 return val;
576 }
577
578 dn = pci_device_to_OF_node(dev);
579 eeh_dn_check_failure (dn, dev);
580
581 pci_dev_put(dev);
582 return val;
583 }
584
585 EXPORT_SYMBOL(eeh_check_failure);
586
587 /* ------------------------------------------------------------- */
588 /* The code below deals with error recovery */
589
590 /**
591 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
592 * @pdn pci device node
593 */
594
595 int
596 rtas_pci_enable(struct pci_dn *pdn, int function)
597 {
598 int config_addr;
599 int rc;
600
601 /* Use PE configuration address, if present */
602 config_addr = pdn->eeh_config_addr;
603 if (pdn->eeh_pe_config_addr)
604 config_addr = pdn->eeh_pe_config_addr;
605
606 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
607 config_addr,
608 BUID_HI(pdn->phb->buid),
609 BUID_LO(pdn->phb->buid),
610 function);
611
612 if (rc)
613 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
614 function, rc, pdn->node->full_name);
615
616 rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
617 if ((rc == 4) && (function == EEH_THAW_MMIO))
618 return 0;
619
620 return rc;
621 }
622
623 /**
624 * rtas_pci_slot_reset - raises/lowers the pci #RST line
625 * @pdn pci device node
626 * @state: 1/0 to raise/lower the #RST
627 *
628 * Clear the EEH-frozen condition on a slot. This routine
629 * asserts the PCI #RST line if the 'state' argument is '1',
630 * and drops the #RST line if 'state is '0'. This routine is
631 * safe to call in an interrupt context.
632 *
633 */
634
635 static void
636 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
637 {
638 int config_addr;
639 int rc;
640
641 BUG_ON (pdn==NULL);
642
643 if (!pdn->phb) {
644 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
645 pdn->node->full_name);
646 return;
647 }
648
649 /* Use PE configuration address, if present */
650 config_addr = pdn->eeh_config_addr;
651 if (pdn->eeh_pe_config_addr)
652 config_addr = pdn->eeh_pe_config_addr;
653
654 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
655 config_addr,
656 BUID_HI(pdn->phb->buid),
657 BUID_LO(pdn->phb->buid),
658 state);
659 if (rc)
660 printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
661 " (%d) #RST=%d dn=%s\n",
662 rc, state, pdn->node->full_name);
663 }
664
665 /**
666 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
667 * @dev: pci device struct
668 * @state: reset state to enter
669 *
670 * Return value:
671 * 0 if success
672 **/
673 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
674 {
675 struct device_node *dn = pci_device_to_OF_node(dev);
676 struct pci_dn *pdn = PCI_DN(dn);
677
678 switch (state) {
679 case pcie_deassert_reset:
680 rtas_pci_slot_reset(pdn, 0);
681 break;
682 case pcie_hot_reset:
683 rtas_pci_slot_reset(pdn, 1);
684 break;
685 case pcie_warm_reset:
686 rtas_pci_slot_reset(pdn, 3);
687 break;
688 default:
689 return -EINVAL;
690 };
691
692 return 0;
693 }
694
695 /**
696 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
697 * @pdn: pci device node to be reset.
698 *
699 * Return 0 if success, else a non-zero value.
700 */
701
702 static void __rtas_set_slot_reset(struct pci_dn *pdn)
703 {
704 rtas_pci_slot_reset (pdn, 1);
705
706 /* The PCI bus requires that the reset be held high for at least
707 * a 100 milliseconds. We wait a bit longer 'just in case'. */
708
709 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
710 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
711
712 /* We might get hit with another EEH freeze as soon as the
713 * pci slot reset line is dropped. Make sure we don't miss
714 * these, and clear the flag now. */
715 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
716
717 rtas_pci_slot_reset (pdn, 0);
718
719 /* After a PCI slot has been reset, the PCI Express spec requires
720 * a 1.5 second idle time for the bus to stabilize, before starting
721 * up traffic. */
722 #define PCI_BUS_SETTLE_TIME_MSEC 1800
723 msleep (PCI_BUS_SETTLE_TIME_MSEC);
724 }
725
726 int rtas_set_slot_reset(struct pci_dn *pdn)
727 {
728 int i, rc;
729
730 /* Take three shots at resetting the bus */
731 for (i=0; i<3; i++) {
732 __rtas_set_slot_reset(pdn);
733
734 rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
735 if (rc == 0)
736 return 0;
737
738 if (rc < 0) {
739 printk (KERN_ERR "EEH: unrecoverable slot failure %s\n",
740 pdn->node->full_name);
741 return -1;
742 }
743 printk (KERN_ERR "EEH: bus reset %d failed on slot %s\n",
744 i+1, pdn->node->full_name);
745 }
746
747 return -1;
748 }
749
750 /* ------------------------------------------------------- */
751 /** Save and restore of PCI BARs
752 *
753 * Although firmware will set up BARs during boot, it doesn't
754 * set up device BAR's after a device reset, although it will,
755 * if requested, set up bridge configuration. Thus, we need to
756 * configure the PCI devices ourselves.
757 */
758
759 /**
760 * __restore_bars - Restore the Base Address Registers
761 * @pdn: pci device node
762 *
763 * Loads the PCI configuration space base address registers,
764 * the expansion ROM base address, the latency timer, and etc.
765 * from the saved values in the device node.
766 */
767 static inline void __restore_bars (struct pci_dn *pdn)
768 {
769 int i;
770
771 if (NULL==pdn->phb) return;
772 for (i=4; i<10; i++) {
773 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
774 }
775
776 /* 12 == Expansion ROM Address */
777 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
778
779 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
780 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
781
782 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
783 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
784
785 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
786 SAVED_BYTE(PCI_LATENCY_TIMER));
787
788 /* max latency, min grant, interrupt pin and line */
789 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
790 }
791
792 /**
793 * eeh_restore_bars - restore the PCI config space info
794 *
795 * This routine performs a recursive walk to the children
796 * of this device as well.
797 */
798 void eeh_restore_bars(struct pci_dn *pdn)
799 {
800 struct device_node *dn;
801 if (!pdn)
802 return;
803
804 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
805 __restore_bars (pdn);
806
807 dn = pdn->node->child;
808 while (dn) {
809 eeh_restore_bars (PCI_DN(dn));
810 dn = dn->sibling;
811 }
812 }
813
814 /**
815 * eeh_save_bars - save device bars
816 *
817 * Save the values of the device bars. Unlike the restore
818 * routine, this routine is *not* recursive. This is because
819 * PCI devices are added individuallly; but, for the restore,
820 * an entire slot is reset at a time.
821 */
822 static void eeh_save_bars(struct pci_dn *pdn)
823 {
824 int i;
825
826 if (!pdn )
827 return;
828
829 for (i = 0; i < 16; i++)
830 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
831 }
832
833 void
834 rtas_configure_bridge(struct pci_dn *pdn)
835 {
836 int config_addr;
837 int rc;
838
839 /* Use PE configuration address, if present */
840 config_addr = pdn->eeh_config_addr;
841 if (pdn->eeh_pe_config_addr)
842 config_addr = pdn->eeh_pe_config_addr;
843
844 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
845 config_addr,
846 BUID_HI(pdn->phb->buid),
847 BUID_LO(pdn->phb->buid));
848 if (rc) {
849 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
850 rc, pdn->node->full_name);
851 }
852 }
853
854 /* ------------------------------------------------------------- */
855 /* The code below deals with enabling EEH for devices during the
856 * early boot sequence. EEH must be enabled before any PCI probing
857 * can be done.
858 */
859
860 #define EEH_ENABLE 1
861
862 struct eeh_early_enable_info {
863 unsigned int buid_hi;
864 unsigned int buid_lo;
865 };
866
867 static int get_pe_addr (int config_addr,
868 struct eeh_early_enable_info *info)
869 {
870 unsigned int rets[3];
871 int ret;
872
873 /* Use latest config-addr token on power6 */
874 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
875 /* Make sure we have a PE in hand */
876 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
877 config_addr, info->buid_hi, info->buid_lo, 1);
878 if (ret || (rets[0]==0))
879 return 0;
880
881 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
882 config_addr, info->buid_hi, info->buid_lo, 0);
883 if (ret)
884 return 0;
885 return rets[0];
886 }
887
888 /* Use older config-addr token on power5 */
889 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
890 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
891 config_addr, info->buid_hi, info->buid_lo, 0);
892 if (ret)
893 return 0;
894 return rets[0];
895 }
896 return 0;
897 }
898
899 /* Enable eeh for the given device node. */
900 static void *early_enable_eeh(struct device_node *dn, void *data)
901 {
902 unsigned int rets[3];
903 struct eeh_early_enable_info *info = data;
904 int ret;
905 const char *status = of_get_property(dn, "status", NULL);
906 const u32 *class_code = of_get_property(dn, "class-code", NULL);
907 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
908 const u32 *device_id = of_get_property(dn, "device-id", NULL);
909 const u32 *regs;
910 int enable;
911 struct pci_dn *pdn = PCI_DN(dn);
912
913 pdn->class_code = 0;
914 pdn->eeh_mode = 0;
915 pdn->eeh_check_count = 0;
916 pdn->eeh_freeze_count = 0;
917
918 if (status && strcmp(status, "ok") != 0)
919 return NULL; /* ignore devices with bad status */
920
921 /* Ignore bad nodes. */
922 if (!class_code || !vendor_id || !device_id)
923 return NULL;
924
925 /* There is nothing to check on PCI to ISA bridges */
926 if (dn->type && !strcmp(dn->type, "isa")) {
927 pdn->eeh_mode |= EEH_MODE_NOCHECK;
928 return NULL;
929 }
930 pdn->class_code = *class_code;
931
932 /*
933 * Now decide if we are going to "Disable" EEH checking
934 * for this device. We still run with the EEH hardware active,
935 * but we won't be checking for ff's. This means a driver
936 * could return bad data (very bad!), an interrupt handler could
937 * hang waiting on status bits that won't change, etc.
938 * But there are a few cases like display devices that make sense.
939 */
940 enable = 1; /* i.e. we will do checking */
941 #if 0
942 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
943 enable = 0;
944 #endif
945
946 if (!enable)
947 pdn->eeh_mode |= EEH_MODE_NOCHECK;
948
949 /* Ok... see if this device supports EEH. Some do, some don't,
950 * and the only way to find out is to check each and every one. */
951 regs = of_get_property(dn, "reg", NULL);
952 if (regs) {
953 /* First register entry is addr (00BBSS00) */
954 /* Try to enable eeh */
955 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
956 regs[0], info->buid_hi, info->buid_lo,
957 EEH_ENABLE);
958
959 enable = 0;
960 if (ret == 0) {
961 pdn->eeh_config_addr = regs[0];
962
963 /* If the newer, better, ibm,get-config-addr-info is supported,
964 * then use that instead. */
965 pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
966
967 /* Some older systems (Power4) allow the
968 * ibm,set-eeh-option call to succeed even on nodes
969 * where EEH is not supported. Verify support
970 * explicitly. */
971 ret = read_slot_reset_state(pdn, rets);
972 if ((ret == 0) && (rets[1] == 1))
973 enable = 1;
974 }
975
976 if (enable) {
977 eeh_subsystem_enabled = 1;
978 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
979
980 #ifdef DEBUG
981 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
982 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
983 #endif
984 } else {
985
986 /* This device doesn't support EEH, but it may have an
987 * EEH parent, in which case we mark it as supported. */
988 if (dn->parent && PCI_DN(dn->parent)
989 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
990 /* Parent supports EEH. */
991 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
992 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
993 return NULL;
994 }
995 }
996 } else {
997 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
998 dn->full_name);
999 }
1000
1001 eeh_save_bars(pdn);
1002 return NULL;
1003 }
1004
1005 /*
1006 * Initialize EEH by trying to enable it for all of the adapters in the system.
1007 * As a side effect we can determine here if eeh is supported at all.
1008 * Note that we leave EEH on so failed config cycles won't cause a machine
1009 * check. If a user turns off EEH for a particular adapter they are really
1010 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1011 * grant access to a slot if EEH isn't enabled, and so we always enable
1012 * EEH for all slots/all devices.
1013 *
1014 * The eeh-force-off option disables EEH checking globally, for all slots.
1015 * Even if force-off is set, the EEH hardware is still enabled, so that
1016 * newer systems can boot.
1017 */
1018 void __init eeh_init(void)
1019 {
1020 struct device_node *phb, *np;
1021 struct eeh_early_enable_info info;
1022
1023 spin_lock_init(&confirm_error_lock);
1024 spin_lock_init(&slot_errbuf_lock);
1025
1026 np = of_find_node_by_path("/rtas");
1027 if (np == NULL)
1028 return;
1029
1030 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1031 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1032 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1033 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1034 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1035 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1036 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1037 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1038
1039 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1040 return;
1041
1042 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1043 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1044 eeh_error_buf_size = 1024;
1045 }
1046 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1047 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1048 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1049 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1050 }
1051
1052 /* Enable EEH for all adapters. Note that eeh requires buid's */
1053 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1054 phb = of_find_node_by_name(phb, "pci")) {
1055 unsigned long buid;
1056
1057 buid = get_phb_buid(phb);
1058 if (buid == 0 || PCI_DN(phb) == NULL)
1059 continue;
1060
1061 info.buid_lo = BUID_LO(buid);
1062 info.buid_hi = BUID_HI(buid);
1063 traverse_pci_devices(phb, early_enable_eeh, &info);
1064 }
1065
1066 if (eeh_subsystem_enabled)
1067 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1068 else
1069 printk(KERN_WARNING "EEH: No capable adapters found\n");
1070 }
1071
1072 /**
1073 * eeh_add_device_early - enable EEH for the indicated device_node
1074 * @dn: device node for which to set up EEH
1075 *
1076 * This routine must be used to perform EEH initialization for PCI
1077 * devices that were added after system boot (e.g. hotplug, dlpar).
1078 * This routine must be called before any i/o is performed to the
1079 * adapter (inluding any config-space i/o).
1080 * Whether this actually enables EEH or not for this device depends
1081 * on the CEC architecture, type of the device, on earlier boot
1082 * command-line arguments & etc.
1083 */
1084 static void eeh_add_device_early(struct device_node *dn)
1085 {
1086 struct pci_controller *phb;
1087 struct eeh_early_enable_info info;
1088
1089 if (!dn || !PCI_DN(dn))
1090 return;
1091 phb = PCI_DN(dn)->phb;
1092
1093 /* USB Bus children of PCI devices will not have BUID's */
1094 if (NULL == phb || 0 == phb->buid)
1095 return;
1096
1097 info.buid_hi = BUID_HI(phb->buid);
1098 info.buid_lo = BUID_LO(phb->buid);
1099 early_enable_eeh(dn, &info);
1100 }
1101
1102 void eeh_add_device_tree_early(struct device_node *dn)
1103 {
1104 struct device_node *sib;
1105 for (sib = dn->child; sib; sib = sib->sibling)
1106 eeh_add_device_tree_early(sib);
1107 eeh_add_device_early(dn);
1108 }
1109 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1110
1111 /**
1112 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1113 * @dev: pci device for which to set up EEH
1114 *
1115 * This routine must be used to complete EEH initialization for PCI
1116 * devices that were added after system boot (e.g. hotplug, dlpar).
1117 */
1118 static void eeh_add_device_late(struct pci_dev *dev)
1119 {
1120 struct device_node *dn;
1121 struct pci_dn *pdn;
1122
1123 if (!dev || !eeh_subsystem_enabled)
1124 return;
1125
1126 #ifdef DEBUG
1127 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
1128 #endif
1129
1130 pci_dev_get (dev);
1131 dn = pci_device_to_OF_node(dev);
1132 pdn = PCI_DN(dn);
1133 pdn->pcidev = dev;
1134
1135 pci_addr_cache_insert_device (dev);
1136 }
1137
1138 void eeh_add_device_tree_late(struct pci_bus *bus)
1139 {
1140 struct pci_dev *dev;
1141
1142 list_for_each_entry(dev, &bus->devices, bus_list) {
1143 eeh_add_device_late(dev);
1144 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1145 struct pci_bus *subbus = dev->subordinate;
1146 if (subbus)
1147 eeh_add_device_tree_late(subbus);
1148 }
1149 }
1150 }
1151 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1152
1153 /**
1154 * eeh_remove_device - undo EEH setup for the indicated pci device
1155 * @dev: pci device to be removed
1156 *
1157 * This routine should be called when a device is removed from
1158 * a running system (e.g. by hotplug or dlpar). It unregisters
1159 * the PCI device from the EEH subsystem. I/O errors affecting
1160 * this device will no longer be detected after this call; thus,
1161 * i/o errors affecting this slot may leave this device unusable.
1162 */
1163 static void eeh_remove_device(struct pci_dev *dev)
1164 {
1165 struct device_node *dn;
1166 if (!dev || !eeh_subsystem_enabled)
1167 return;
1168
1169 /* Unregister the device with the EEH/PCI address search system */
1170 #ifdef DEBUG
1171 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1172 #endif
1173 pci_addr_cache_remove_device(dev);
1174
1175 dn = pci_device_to_OF_node(dev);
1176 if (PCI_DN(dn)->pcidev) {
1177 PCI_DN(dn)->pcidev = NULL;
1178 pci_dev_put (dev);
1179 }
1180 }
1181
1182 void eeh_remove_bus_device(struct pci_dev *dev)
1183 {
1184 struct pci_bus *bus = dev->subordinate;
1185 struct pci_dev *child, *tmp;
1186
1187 eeh_remove_device(dev);
1188
1189 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1190 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1191 eeh_remove_bus_device(child);
1192 }
1193 }
1194 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1195
1196 static int proc_eeh_show(struct seq_file *m, void *v)
1197 {
1198 if (0 == eeh_subsystem_enabled) {
1199 seq_printf(m, "EEH Subsystem is globally disabled\n");
1200 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1201 } else {
1202 seq_printf(m, "EEH Subsystem is enabled\n");
1203 seq_printf(m,
1204 "no device=%ld\n"
1205 "no device node=%ld\n"
1206 "no config address=%ld\n"
1207 "check not wanted=%ld\n"
1208 "eeh_total_mmio_ffs=%ld\n"
1209 "eeh_false_positives=%ld\n"
1210 "eeh_ignored_failures=%ld\n"
1211 "eeh_slot_resets=%ld\n",
1212 no_device, no_dn, no_cfg_addr,
1213 ignored_check, total_mmio_ffs,
1214 false_positives, ignored_failures,
1215 slot_resets);
1216 }
1217
1218 return 0;
1219 }
1220
1221 static int proc_eeh_open(struct inode *inode, struct file *file)
1222 {
1223 return single_open(file, proc_eeh_show, NULL);
1224 }
1225
1226 static const struct file_operations proc_eeh_operations = {
1227 .open = proc_eeh_open,
1228 .read = seq_read,
1229 .llseek = seq_lseek,
1230 .release = single_release,
1231 };
1232
1233 static int __init eeh_init_proc(void)
1234 {
1235 struct proc_dir_entry *e;
1236
1237 if (machine_is(pseries)) {
1238 e = create_proc_entry("ppc64/eeh", 0, NULL);
1239 if (e)
1240 e->proc_fops = &proc_eeh_operations;
1241 }
1242
1243 return 0;
1244 }
1245 __initcall(eeh_init_proc);