powerpc/eeh: Null check uses of eeh_pe_bus_get
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / arch / powerpc / platforms / powernv / eeh-powernv.c
1 /*
2 * The file intends to implement the platform dependent EEH operations on
3 * powernv platform. Actually, the powernv was created in order to fully
4 * hypervisor support.
5 *
6 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/atomic.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/spinlock.h>
29
30 #include <asm/eeh.h>
31 #include <asm/eeh_event.h>
32 #include <asm/firmware.h>
33 #include <asm/io.h>
34 #include <asm/iommu.h>
35 #include <asm/machdep.h>
36 #include <asm/msi_bitmap.h>
37 #include <asm/opal.h>
38 #include <asm/ppc-pci.h>
39
40 #include "powernv.h"
41 #include "pci.h"
42
43 static bool pnv_eeh_nb_init = false;
44 static int eeh_event_irq = -EINVAL;
45
46 static int pnv_eeh_init(void)
47 {
48 struct pci_controller *hose;
49 struct pnv_phb *phb;
50
51 if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
52 pr_warn("%s: OPALv3 is required !\n",
53 __func__);
54 return -EINVAL;
55 }
56
57 /* Set probe mode */
58 eeh_add_flag(EEH_PROBE_MODE_DEV);
59
60 /*
61 * P7IOC blocks PCI config access to frozen PE, but PHB3
62 * doesn't do that. So we have to selectively enable I/O
63 * prior to collecting error log.
64 */
65 list_for_each_entry(hose, &hose_list, list_node) {
66 phb = hose->private_data;
67
68 if (phb->model == PNV_PHB_MODEL_P7IOC)
69 eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
70
71 /*
72 * PE#0 should be regarded as valid by EEH core
73 * if it's not the reserved one. Currently, we
74 * have the reserved PE#255 and PE#127 for PHB3
75 * and P7IOC separately. So we should regard
76 * PE#0 as valid for PHB3 and P7IOC.
77 */
78 if (phb->ioda.reserved_pe != 0)
79 eeh_add_flag(EEH_VALID_PE_ZERO);
80
81 break;
82 }
83
84 return 0;
85 }
86
87 static irqreturn_t pnv_eeh_event(int irq, void *data)
88 {
89 /*
90 * We simply send a special EEH event if EEH has been
91 * enabled. We don't care about EEH events until we've
92 * finished processing the outstanding ones. Event processing
93 * gets unmasked in next_error() if EEH is enabled.
94 */
95 disable_irq_nosync(irq);
96
97 if (eeh_enabled())
98 eeh_send_failure_event(NULL);
99
100 return IRQ_HANDLED;
101 }
102
103 #ifdef CONFIG_DEBUG_FS
104 static ssize_t pnv_eeh_ei_write(struct file *filp,
105 const char __user *user_buf,
106 size_t count, loff_t *ppos)
107 {
108 struct pci_controller *hose = filp->private_data;
109 struct eeh_dev *edev;
110 struct eeh_pe *pe;
111 int pe_no, type, func;
112 unsigned long addr, mask;
113 char buf[50];
114 int ret;
115
116 if (!eeh_ops || !eeh_ops->err_inject)
117 return -ENXIO;
118
119 /* Copy over argument buffer */
120 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
121 if (!ret)
122 return -EFAULT;
123
124 /* Retrieve parameters */
125 ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
126 &pe_no, &type, &func, &addr, &mask);
127 if (ret != 5)
128 return -EINVAL;
129
130 /* Retrieve PE */
131 edev = kzalloc(sizeof(*edev), GFP_KERNEL);
132 if (!edev)
133 return -ENOMEM;
134 edev->phb = hose;
135 edev->pe_config_addr = pe_no;
136 pe = eeh_pe_get(edev);
137 kfree(edev);
138 if (!pe)
139 return -ENODEV;
140
141 /* Do error injection */
142 ret = eeh_ops->err_inject(pe, type, func, addr, mask);
143 return ret < 0 ? ret : count;
144 }
145
146 static const struct file_operations pnv_eeh_ei_fops = {
147 .open = simple_open,
148 .llseek = no_llseek,
149 .write = pnv_eeh_ei_write,
150 };
151
152 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
153 {
154 struct pci_controller *hose = data;
155 struct pnv_phb *phb = hose->private_data;
156
157 out_be64(phb->regs + offset, val);
158 return 0;
159 }
160
161 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
162 {
163 struct pci_controller *hose = data;
164 struct pnv_phb *phb = hose->private_data;
165
166 *val = in_be64(phb->regs + offset);
167 return 0;
168 }
169
170 static int pnv_eeh_outb_dbgfs_set(void *data, u64 val)
171 {
172 return pnv_eeh_dbgfs_set(data, 0xD10, val);
173 }
174
175 static int pnv_eeh_outb_dbgfs_get(void *data, u64 *val)
176 {
177 return pnv_eeh_dbgfs_get(data, 0xD10, val);
178 }
179
180 static int pnv_eeh_inbA_dbgfs_set(void *data, u64 val)
181 {
182 return pnv_eeh_dbgfs_set(data, 0xD90, val);
183 }
184
185 static int pnv_eeh_inbA_dbgfs_get(void *data, u64 *val)
186 {
187 return pnv_eeh_dbgfs_get(data, 0xD90, val);
188 }
189
190 static int pnv_eeh_inbB_dbgfs_set(void *data, u64 val)
191 {
192 return pnv_eeh_dbgfs_set(data, 0xE10, val);
193 }
194
195 static int pnv_eeh_inbB_dbgfs_get(void *data, u64 *val)
196 {
197 return pnv_eeh_dbgfs_get(data, 0xE10, val);
198 }
199
200 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_outb_dbgfs_ops, pnv_eeh_outb_dbgfs_get,
201 pnv_eeh_outb_dbgfs_set, "0x%llx\n");
202 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbA_dbgfs_ops, pnv_eeh_inbA_dbgfs_get,
203 pnv_eeh_inbA_dbgfs_set, "0x%llx\n");
204 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbB_dbgfs_ops, pnv_eeh_inbB_dbgfs_get,
205 pnv_eeh_inbB_dbgfs_set, "0x%llx\n");
206 #endif /* CONFIG_DEBUG_FS */
207
208 /**
209 * pnv_eeh_post_init - EEH platform dependent post initialization
210 *
211 * EEH platform dependent post initialization on powernv. When
212 * the function is called, the EEH PEs and devices should have
213 * been built. If the I/O cache staff has been built, EEH is
214 * ready to supply service.
215 */
216 static int pnv_eeh_post_init(void)
217 {
218 struct pci_controller *hose;
219 struct pnv_phb *phb;
220 int ret = 0;
221
222 /* Register OPAL event notifier */
223 if (!pnv_eeh_nb_init) {
224 eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
225 if (eeh_event_irq < 0) {
226 pr_err("%s: Can't register OPAL event interrupt (%d)\n",
227 __func__, eeh_event_irq);
228 return eeh_event_irq;
229 }
230
231 ret = request_irq(eeh_event_irq, pnv_eeh_event,
232 IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
233 if (ret < 0) {
234 irq_dispose_mapping(eeh_event_irq);
235 pr_err("%s: Can't request OPAL event interrupt (%d)\n",
236 __func__, eeh_event_irq);
237 return ret;
238 }
239
240 pnv_eeh_nb_init = true;
241 }
242
243 if (!eeh_enabled())
244 disable_irq(eeh_event_irq);
245
246 list_for_each_entry(hose, &hose_list, list_node) {
247 phb = hose->private_data;
248
249 /*
250 * If EEH is enabled, we're going to rely on that.
251 * Otherwise, we restore to conventional mechanism
252 * to clear frozen PE during PCI config access.
253 */
254 if (eeh_enabled())
255 phb->flags |= PNV_PHB_FLAG_EEH;
256 else
257 phb->flags &= ~PNV_PHB_FLAG_EEH;
258
259 /* Create debugfs entries */
260 #ifdef CONFIG_DEBUG_FS
261 if (phb->has_dbgfs || !phb->dbgfs)
262 continue;
263
264 phb->has_dbgfs = 1;
265 debugfs_create_file("err_injct", 0200,
266 phb->dbgfs, hose,
267 &pnv_eeh_ei_fops);
268
269 debugfs_create_file("err_injct_outbound", 0600,
270 phb->dbgfs, hose,
271 &pnv_eeh_outb_dbgfs_ops);
272 debugfs_create_file("err_injct_inboundA", 0600,
273 phb->dbgfs, hose,
274 &pnv_eeh_inbA_dbgfs_ops);
275 debugfs_create_file("err_injct_inboundB", 0600,
276 phb->dbgfs, hose,
277 &pnv_eeh_inbB_dbgfs_ops);
278 #endif /* CONFIG_DEBUG_FS */
279 }
280
281 return ret;
282 }
283
284 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
285 {
286 int pos = PCI_CAPABILITY_LIST;
287 int cnt = 48; /* Maximal number of capabilities */
288 u32 status, id;
289
290 if (!pdn)
291 return 0;
292
293 /* Check if the device supports capabilities */
294 pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
295 if (!(status & PCI_STATUS_CAP_LIST))
296 return 0;
297
298 while (cnt--) {
299 pnv_pci_cfg_read(pdn, pos, 1, &pos);
300 if (pos < 0x40)
301 break;
302
303 pos &= ~3;
304 pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
305 if (id == 0xff)
306 break;
307
308 /* Found */
309 if (id == cap)
310 return pos;
311
312 /* Next one */
313 pos += PCI_CAP_LIST_NEXT;
314 }
315
316 return 0;
317 }
318
319 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
320 {
321 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
322 u32 header;
323 int pos = 256, ttl = (4096 - 256) / 8;
324
325 if (!edev || !edev->pcie_cap)
326 return 0;
327 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
328 return 0;
329 else if (!header)
330 return 0;
331
332 while (ttl-- > 0) {
333 if (PCI_EXT_CAP_ID(header) == cap && pos)
334 return pos;
335
336 pos = PCI_EXT_CAP_NEXT(header);
337 if (pos < 256)
338 break;
339
340 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
341 break;
342 }
343
344 return 0;
345 }
346
347 /**
348 * pnv_eeh_probe - Do probe on PCI device
349 * @pdn: PCI device node
350 * @data: unused
351 *
352 * When EEH module is installed during system boot, all PCI devices
353 * are checked one by one to see if it supports EEH. The function
354 * is introduced for the purpose. By default, EEH has been enabled
355 * on all PCI devices. That's to say, we only need do necessary
356 * initialization on the corresponding eeh device and create PE
357 * accordingly.
358 *
359 * It's notable that's unsafe to retrieve the EEH device through
360 * the corresponding PCI device. During the PCI device hotplug, which
361 * was possiblly triggered by EEH core, the binding between EEH device
362 * and the PCI device isn't built yet.
363 */
364 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data)
365 {
366 struct pci_controller *hose = pdn->phb;
367 struct pnv_phb *phb = hose->private_data;
368 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
369 uint32_t pcie_flags;
370 int ret;
371
372 /*
373 * When probing the root bridge, which doesn't have any
374 * subordinate PCI devices. We don't have OF node for
375 * the root bridge. So it's not reasonable to continue
376 * the probing.
377 */
378 if (!edev || edev->pe)
379 return NULL;
380
381 /* Skip for PCI-ISA bridge */
382 if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
383 return NULL;
384
385 /* Initialize eeh device */
386 edev->class_code = pdn->class_code;
387 edev->mode &= 0xFFFFFF00;
388 edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
389 edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
390 edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
391 if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
392 edev->mode |= EEH_DEV_BRIDGE;
393 if (edev->pcie_cap) {
394 pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
395 2, &pcie_flags);
396 pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
397 if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
398 edev->mode |= EEH_DEV_ROOT_PORT;
399 else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
400 edev->mode |= EEH_DEV_DS_PORT;
401 }
402 }
403
404 edev->config_addr = (pdn->busno << 8) | (pdn->devfn);
405 edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr];
406
407 /* Create PE */
408 ret = eeh_add_to_parent_pe(edev);
409 if (ret) {
410 pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n",
411 __func__, hose->global_number, pdn->busno,
412 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret);
413 return NULL;
414 }
415
416 /*
417 * If the PE contains any one of following adapters, the
418 * PCI config space can't be accessed when dumping EEH log.
419 * Otherwise, we will run into fenced PHB caused by shortage
420 * of outbound credits in the adapter. The PCI config access
421 * should be blocked until PE reset. MMIO access is dropped
422 * by hardware certainly. In order to drop PCI config requests,
423 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
424 * will be checked in the backend for PE state retrival. If
425 * the PE becomes frozen for the first time and the flag has
426 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
427 * that PE to block its config space.
428 *
429 * Broadcom Austin 4-ports NICs (14e4:1657)
430 * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
431 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
432 */
433 if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
434 pdn->device_id == 0x1657) ||
435 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
436 pdn->device_id == 0x168a) ||
437 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
438 pdn->device_id == 0x168e))
439 edev->pe->state |= EEH_PE_CFG_RESTRICTED;
440
441 /*
442 * Cache the PE primary bus, which can't be fetched when
443 * full hotplug is in progress. In that case, all child
444 * PCI devices of the PE are expected to be removed prior
445 * to PE reset.
446 */
447 if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
448 edev->pe->bus = pci_find_bus(hose->global_number,
449 pdn->busno);
450 if (edev->pe->bus)
451 edev->pe->state |= EEH_PE_PRI_BUS;
452 }
453
454 /*
455 * Enable EEH explicitly so that we will do EEH check
456 * while accessing I/O stuff
457 */
458 eeh_add_flag(EEH_ENABLED);
459
460 /* Save memory bars */
461 eeh_save_bars(edev);
462
463 return NULL;
464 }
465
466 /**
467 * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
468 * @pe: EEH PE
469 * @option: operation to be issued
470 *
471 * The function is used to control the EEH functionality globally.
472 * Currently, following options are support according to PAPR:
473 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
474 */
475 static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
476 {
477 struct pci_controller *hose = pe->phb;
478 struct pnv_phb *phb = hose->private_data;
479 bool freeze_pe = false;
480 int opt;
481 s64 rc;
482
483 switch (option) {
484 case EEH_OPT_DISABLE:
485 return -EPERM;
486 case EEH_OPT_ENABLE:
487 return 0;
488 case EEH_OPT_THAW_MMIO:
489 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
490 break;
491 case EEH_OPT_THAW_DMA:
492 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
493 break;
494 case EEH_OPT_FREEZE_PE:
495 freeze_pe = true;
496 opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
497 break;
498 default:
499 pr_warn("%s: Invalid option %d\n", __func__, option);
500 return -EINVAL;
501 }
502
503 /* Freeze master and slave PEs if PHB supports compound PEs */
504 if (freeze_pe) {
505 if (phb->freeze_pe) {
506 phb->freeze_pe(phb, pe->addr);
507 return 0;
508 }
509
510 rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
511 if (rc != OPAL_SUCCESS) {
512 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
513 __func__, rc, phb->hose->global_number,
514 pe->addr);
515 return -EIO;
516 }
517
518 return 0;
519 }
520
521 /* Unfreeze master and slave PEs if PHB supports */
522 if (phb->unfreeze_pe)
523 return phb->unfreeze_pe(phb, pe->addr, opt);
524
525 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
526 if (rc != OPAL_SUCCESS) {
527 pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
528 __func__, rc, option, phb->hose->global_number,
529 pe->addr);
530 return -EIO;
531 }
532
533 return 0;
534 }
535
536 /**
537 * pnv_eeh_get_pe_addr - Retrieve PE address
538 * @pe: EEH PE
539 *
540 * Retrieve the PE address according to the given tranditional
541 * PCI BDF (Bus/Device/Function) address.
542 */
543 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
544 {
545 return pe->addr;
546 }
547
548 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
549 {
550 struct pnv_phb *phb = pe->phb->private_data;
551 s64 rc;
552
553 rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
554 PNV_PCI_DIAG_BUF_SIZE);
555 if (rc != OPAL_SUCCESS)
556 pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
557 __func__, rc, pe->phb->global_number);
558 }
559
560 static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
561 {
562 struct pnv_phb *phb = pe->phb->private_data;
563 u8 fstate;
564 __be16 pcierr;
565 s64 rc;
566 int result = 0;
567
568 rc = opal_pci_eeh_freeze_status(phb->opal_id,
569 pe->addr,
570 &fstate,
571 &pcierr,
572 NULL);
573 if (rc != OPAL_SUCCESS) {
574 pr_warn("%s: Failure %lld getting PHB#%x state\n",
575 __func__, rc, phb->hose->global_number);
576 return EEH_STATE_NOT_SUPPORT;
577 }
578
579 /*
580 * Check PHB state. If the PHB is frozen for the
581 * first time, to dump the PHB diag-data.
582 */
583 if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
584 result = (EEH_STATE_MMIO_ACTIVE |
585 EEH_STATE_DMA_ACTIVE |
586 EEH_STATE_MMIO_ENABLED |
587 EEH_STATE_DMA_ENABLED);
588 } else if (!(pe->state & EEH_PE_ISOLATED)) {
589 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
590 pnv_eeh_get_phb_diag(pe);
591
592 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
593 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
594 }
595
596 return result;
597 }
598
599 static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
600 {
601 struct pnv_phb *phb = pe->phb->private_data;
602 u8 fstate;
603 __be16 pcierr;
604 s64 rc;
605 int result;
606
607 /*
608 * We don't clobber hardware frozen state until PE
609 * reset is completed. In order to keep EEH core
610 * moving forward, we have to return operational
611 * state during PE reset.
612 */
613 if (pe->state & EEH_PE_RESET) {
614 result = (EEH_STATE_MMIO_ACTIVE |
615 EEH_STATE_DMA_ACTIVE |
616 EEH_STATE_MMIO_ENABLED |
617 EEH_STATE_DMA_ENABLED);
618 return result;
619 }
620
621 /*
622 * Fetch PE state from hardware. If the PHB
623 * supports compound PE, let it handle that.
624 */
625 if (phb->get_pe_state) {
626 fstate = phb->get_pe_state(phb, pe->addr);
627 } else {
628 rc = opal_pci_eeh_freeze_status(phb->opal_id,
629 pe->addr,
630 &fstate,
631 &pcierr,
632 NULL);
633 if (rc != OPAL_SUCCESS) {
634 pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
635 __func__, rc, phb->hose->global_number,
636 pe->addr);
637 return EEH_STATE_NOT_SUPPORT;
638 }
639 }
640
641 /* Figure out state */
642 switch (fstate) {
643 case OPAL_EEH_STOPPED_NOT_FROZEN:
644 result = (EEH_STATE_MMIO_ACTIVE |
645 EEH_STATE_DMA_ACTIVE |
646 EEH_STATE_MMIO_ENABLED |
647 EEH_STATE_DMA_ENABLED);
648 break;
649 case OPAL_EEH_STOPPED_MMIO_FREEZE:
650 result = (EEH_STATE_DMA_ACTIVE |
651 EEH_STATE_DMA_ENABLED);
652 break;
653 case OPAL_EEH_STOPPED_DMA_FREEZE:
654 result = (EEH_STATE_MMIO_ACTIVE |
655 EEH_STATE_MMIO_ENABLED);
656 break;
657 case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
658 result = 0;
659 break;
660 case OPAL_EEH_STOPPED_RESET:
661 result = EEH_STATE_RESET_ACTIVE;
662 break;
663 case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
664 result = EEH_STATE_UNAVAILABLE;
665 break;
666 case OPAL_EEH_STOPPED_PERM_UNAVAIL:
667 result = EEH_STATE_NOT_SUPPORT;
668 break;
669 default:
670 result = EEH_STATE_NOT_SUPPORT;
671 pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
672 __func__, phb->hose->global_number,
673 pe->addr, fstate);
674 }
675
676 /*
677 * If PHB supports compound PE, to freeze all
678 * slave PEs for consistency.
679 *
680 * If the PE is switching to frozen state for the
681 * first time, to dump the PHB diag-data.
682 */
683 if (!(result & EEH_STATE_NOT_SUPPORT) &&
684 !(result & EEH_STATE_UNAVAILABLE) &&
685 !(result & EEH_STATE_MMIO_ACTIVE) &&
686 !(result & EEH_STATE_DMA_ACTIVE) &&
687 !(pe->state & EEH_PE_ISOLATED)) {
688 if (phb->freeze_pe)
689 phb->freeze_pe(phb, pe->addr);
690
691 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
692 pnv_eeh_get_phb_diag(pe);
693
694 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
695 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
696 }
697
698 return result;
699 }
700
701 /**
702 * pnv_eeh_get_state - Retrieve PE state
703 * @pe: EEH PE
704 * @delay: delay while PE state is temporarily unavailable
705 *
706 * Retrieve the state of the specified PE. For IODA-compitable
707 * platform, it should be retrieved from IODA table. Therefore,
708 * we prefer passing down to hardware implementation to handle
709 * it.
710 */
711 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
712 {
713 int ret;
714
715 if (pe->type & EEH_PE_PHB)
716 ret = pnv_eeh_get_phb_state(pe);
717 else
718 ret = pnv_eeh_get_pe_state(pe);
719
720 if (!delay)
721 return ret;
722
723 /*
724 * If the PE state is temporarily unavailable,
725 * to inform the EEH core delay for default
726 * period (1 second)
727 */
728 *delay = 0;
729 if (ret & EEH_STATE_UNAVAILABLE)
730 *delay = 1000;
731
732 return ret;
733 }
734
735 static s64 pnv_eeh_phb_poll(struct pnv_phb *phb)
736 {
737 s64 rc = OPAL_HARDWARE;
738
739 while (1) {
740 rc = opal_pci_poll(phb->opal_id);
741 if (rc <= 0)
742 break;
743
744 if (system_state < SYSTEM_RUNNING)
745 udelay(1000 * rc);
746 else
747 msleep(rc);
748 }
749
750 return rc;
751 }
752
753 int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
754 {
755 struct pnv_phb *phb = hose->private_data;
756 s64 rc = OPAL_HARDWARE;
757
758 pr_debug("%s: Reset PHB#%x, option=%d\n",
759 __func__, hose->global_number, option);
760
761 /* Issue PHB complete reset request */
762 if (option == EEH_RESET_FUNDAMENTAL ||
763 option == EEH_RESET_HOT)
764 rc = opal_pci_reset(phb->opal_id,
765 OPAL_RESET_PHB_COMPLETE,
766 OPAL_ASSERT_RESET);
767 else if (option == EEH_RESET_DEACTIVATE)
768 rc = opal_pci_reset(phb->opal_id,
769 OPAL_RESET_PHB_COMPLETE,
770 OPAL_DEASSERT_RESET);
771 if (rc < 0)
772 goto out;
773
774 /*
775 * Poll state of the PHB until the request is done
776 * successfully. The PHB reset is usually PHB complete
777 * reset followed by hot reset on root bus. So we also
778 * need the PCI bus settlement delay.
779 */
780 rc = pnv_eeh_phb_poll(phb);
781 if (option == EEH_RESET_DEACTIVATE) {
782 if (system_state < SYSTEM_RUNNING)
783 udelay(1000 * EEH_PE_RST_SETTLE_TIME);
784 else
785 msleep(EEH_PE_RST_SETTLE_TIME);
786 }
787 out:
788 if (rc != OPAL_SUCCESS)
789 return -EIO;
790
791 return 0;
792 }
793
794 static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
795 {
796 struct pnv_phb *phb = hose->private_data;
797 s64 rc = OPAL_HARDWARE;
798
799 pr_debug("%s: Reset PHB#%x, option=%d\n",
800 __func__, hose->global_number, option);
801
802 /*
803 * During the reset deassert time, we needn't care
804 * the reset scope because the firmware does nothing
805 * for fundamental or hot reset during deassert phase.
806 */
807 if (option == EEH_RESET_FUNDAMENTAL)
808 rc = opal_pci_reset(phb->opal_id,
809 OPAL_RESET_PCI_FUNDAMENTAL,
810 OPAL_ASSERT_RESET);
811 else if (option == EEH_RESET_HOT)
812 rc = opal_pci_reset(phb->opal_id,
813 OPAL_RESET_PCI_HOT,
814 OPAL_ASSERT_RESET);
815 else if (option == EEH_RESET_DEACTIVATE)
816 rc = opal_pci_reset(phb->opal_id,
817 OPAL_RESET_PCI_HOT,
818 OPAL_DEASSERT_RESET);
819 if (rc < 0)
820 goto out;
821
822 /* Poll state of the PHB until the request is done */
823 rc = pnv_eeh_phb_poll(phb);
824 if (option == EEH_RESET_DEACTIVATE)
825 msleep(EEH_PE_RST_SETTLE_TIME);
826 out:
827 if (rc != OPAL_SUCCESS)
828 return -EIO;
829
830 return 0;
831 }
832
833 static int pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
834 {
835 struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
836 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
837 int aer = edev ? edev->aer_cap : 0;
838 u32 ctrl;
839
840 pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
841 __func__, pci_domain_nr(dev->bus),
842 dev->bus->number, option);
843
844 switch (option) {
845 case EEH_RESET_FUNDAMENTAL:
846 case EEH_RESET_HOT:
847 /* Don't report linkDown event */
848 if (aer) {
849 eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
850 4, &ctrl);
851 ctrl |= PCI_ERR_UNC_SURPDN;
852 eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
853 4, ctrl);
854 }
855
856 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
857 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
858 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
859
860 msleep(EEH_PE_RST_HOLD_TIME);
861 break;
862 case EEH_RESET_DEACTIVATE:
863 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
864 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
865 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
866
867 msleep(EEH_PE_RST_SETTLE_TIME);
868
869 /* Continue reporting linkDown event */
870 if (aer) {
871 eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
872 4, &ctrl);
873 ctrl &= ~PCI_ERR_UNC_SURPDN;
874 eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
875 4, ctrl);
876 }
877
878 break;
879 }
880
881 return 0;
882 }
883
884 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
885 {
886 struct pci_controller *hose;
887
888 if (pci_is_root_bus(dev->bus)) {
889 hose = pci_bus_to_host(dev->bus);
890 pnv_eeh_root_reset(hose, EEH_RESET_HOT);
891 pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
892 } else {
893 pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
894 pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
895 }
896 }
897
898 /**
899 * pnv_eeh_reset - Reset the specified PE
900 * @pe: EEH PE
901 * @option: reset option
902 *
903 * Do reset on the indicated PE. For PCI bus sensitive PE,
904 * we need to reset the parent p2p bridge. The PHB has to
905 * be reinitialized if the p2p bridge is root bridge. For
906 * PCI device sensitive PE, we will try to reset the device
907 * through FLR. For now, we don't have OPAL APIs to do HARD
908 * reset yet, so all reset would be SOFT (HOT) reset.
909 */
910 static int pnv_eeh_reset(struct eeh_pe *pe, int option)
911 {
912 struct pci_controller *hose = pe->phb;
913 struct pci_bus *bus;
914 int ret;
915
916 /*
917 * For PHB reset, we always have complete reset. For those PEs whose
918 * primary bus derived from root complex (root bus) or root port
919 * (usually bus#1), we apply hot or fundamental reset on the root port.
920 * For other PEs, we always have hot reset on the PE primary bus.
921 *
922 * Here, we have different design to pHyp, which always clear the
923 * frozen state during PE reset. However, the good idea here from
924 * benh is to keep frozen state before we get PE reset done completely
925 * (until BAR restore). With the frozen state, HW drops illegal IO
926 * or MMIO access, which can incur recrusive frozen PE during PE
927 * reset. The side effect is that EEH core has to clear the frozen
928 * state explicitly after BAR restore.
929 */
930 if (pe->type & EEH_PE_PHB) {
931 ret = pnv_eeh_phb_reset(hose, option);
932 } else {
933 struct pnv_phb *phb;
934 s64 rc;
935
936 /*
937 * The frozen PE might be caused by PAPR error injection
938 * registers, which are expected to be cleared after hitting
939 * frozen PE as stated in the hardware spec. Unfortunately,
940 * that's not true on P7IOC. So we have to clear it manually
941 * to avoid recursive EEH errors during recovery.
942 */
943 phb = hose->private_data;
944 if (phb->model == PNV_PHB_MODEL_P7IOC &&
945 (option == EEH_RESET_HOT ||
946 option == EEH_RESET_FUNDAMENTAL)) {
947 rc = opal_pci_reset(phb->opal_id,
948 OPAL_RESET_PHB_ERROR,
949 OPAL_ASSERT_RESET);
950 if (rc != OPAL_SUCCESS) {
951 pr_warn("%s: Failure %lld clearing "
952 "error injection registers\n",
953 __func__, rc);
954 return -EIO;
955 }
956 }
957
958 bus = eeh_pe_bus_get(pe);
959 if (!bus) {
960 pr_err("%s: Cannot find PCI bus for PHB#%d-PE#%x\n",
961 __func__, pe->phb->global_number, pe->addr);
962 return -EIO;
963 }
964 if (pci_is_root_bus(bus) ||
965 pci_is_root_bus(bus->parent))
966 ret = pnv_eeh_root_reset(hose, option);
967 else
968 ret = pnv_eeh_bridge_reset(bus->self, option);
969 }
970
971 return ret;
972 }
973
974 /**
975 * pnv_eeh_wait_state - Wait for PE state
976 * @pe: EEH PE
977 * @max_wait: maximal period in millisecond
978 *
979 * Wait for the state of associated PE. It might take some time
980 * to retrieve the PE's state.
981 */
982 static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait)
983 {
984 int ret;
985 int mwait;
986
987 while (1) {
988 ret = pnv_eeh_get_state(pe, &mwait);
989
990 /*
991 * If the PE's state is temporarily unavailable,
992 * we have to wait for the specified time. Otherwise,
993 * the PE's state will be returned immediately.
994 */
995 if (ret != EEH_STATE_UNAVAILABLE)
996 return ret;
997
998 if (max_wait <= 0) {
999 pr_warn("%s: Timeout getting PE#%x's state (%d)\n",
1000 __func__, pe->addr, max_wait);
1001 return EEH_STATE_NOT_SUPPORT;
1002 }
1003
1004 max_wait -= mwait;
1005 msleep(mwait);
1006 }
1007
1008 return EEH_STATE_NOT_SUPPORT;
1009 }
1010
1011 /**
1012 * pnv_eeh_get_log - Retrieve error log
1013 * @pe: EEH PE
1014 * @severity: temporary or permanent error log
1015 * @drv_log: driver log to be combined with retrieved error log
1016 * @len: length of driver log
1017 *
1018 * Retrieve the temporary or permanent error from the PE.
1019 */
1020 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1021 char *drv_log, unsigned long len)
1022 {
1023 if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1024 pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1025
1026 return 0;
1027 }
1028
1029 /**
1030 * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1031 * @pe: EEH PE
1032 *
1033 * The function will be called to reconfigure the bridges included
1034 * in the specified PE so that the mulfunctional PE would be recovered
1035 * again.
1036 */
1037 static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1038 {
1039 return 0;
1040 }
1041
1042 /**
1043 * pnv_pe_err_inject - Inject specified error to the indicated PE
1044 * @pe: the indicated PE
1045 * @type: error type
1046 * @func: specific error type
1047 * @addr: address
1048 * @mask: address mask
1049 *
1050 * The routine is called to inject specified error, which is
1051 * determined by @type and @func, to the indicated PE for
1052 * testing purpose.
1053 */
1054 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1055 unsigned long addr, unsigned long mask)
1056 {
1057 struct pci_controller *hose = pe->phb;
1058 struct pnv_phb *phb = hose->private_data;
1059 s64 rc;
1060
1061 if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1062 type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1063 pr_warn("%s: Invalid error type %d\n",
1064 __func__, type);
1065 return -ERANGE;
1066 }
1067
1068 if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1069 func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1070 pr_warn("%s: Invalid error function %d\n",
1071 __func__, func);
1072 return -ERANGE;
1073 }
1074
1075 /* Firmware supports error injection ? */
1076 if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1077 pr_warn("%s: Firmware doesn't support error injection\n",
1078 __func__);
1079 return -ENXIO;
1080 }
1081
1082 /* Do error injection */
1083 rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1084 type, func, addr, mask);
1085 if (rc != OPAL_SUCCESS) {
1086 pr_warn("%s: Failure %lld injecting error "
1087 "%d-%d to PHB#%x-PE#%x\n",
1088 __func__, rc, type, func,
1089 hose->global_number, pe->addr);
1090 return -EIO;
1091 }
1092
1093 return 0;
1094 }
1095
1096 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1097 {
1098 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1099
1100 if (!edev || !edev->pe)
1101 return false;
1102
1103 if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1104 return true;
1105
1106 return false;
1107 }
1108
1109 static int pnv_eeh_read_config(struct pci_dn *pdn,
1110 int where, int size, u32 *val)
1111 {
1112 if (!pdn)
1113 return PCIBIOS_DEVICE_NOT_FOUND;
1114
1115 if (pnv_eeh_cfg_blocked(pdn)) {
1116 *val = 0xFFFFFFFF;
1117 return PCIBIOS_SET_FAILED;
1118 }
1119
1120 return pnv_pci_cfg_read(pdn, where, size, val);
1121 }
1122
1123 static int pnv_eeh_write_config(struct pci_dn *pdn,
1124 int where, int size, u32 val)
1125 {
1126 if (!pdn)
1127 return PCIBIOS_DEVICE_NOT_FOUND;
1128
1129 if (pnv_eeh_cfg_blocked(pdn))
1130 return PCIBIOS_SET_FAILED;
1131
1132 return pnv_pci_cfg_write(pdn, where, size, val);
1133 }
1134
1135 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1136 {
1137 /* GEM */
1138 if (data->gemXfir || data->gemRfir ||
1139 data->gemRirqfir || data->gemMask || data->gemRwof)
1140 pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n",
1141 be64_to_cpu(data->gemXfir),
1142 be64_to_cpu(data->gemRfir),
1143 be64_to_cpu(data->gemRirqfir),
1144 be64_to_cpu(data->gemMask),
1145 be64_to_cpu(data->gemRwof));
1146
1147 /* LEM */
1148 if (data->lemFir || data->lemErrMask ||
1149 data->lemAction0 || data->lemAction1 || data->lemWof)
1150 pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n",
1151 be64_to_cpu(data->lemFir),
1152 be64_to_cpu(data->lemErrMask),
1153 be64_to_cpu(data->lemAction0),
1154 be64_to_cpu(data->lemAction1),
1155 be64_to_cpu(data->lemWof));
1156 }
1157
1158 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1159 {
1160 struct pnv_phb *phb = hose->private_data;
1161 struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
1162 long rc;
1163
1164 rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1165 if (rc != OPAL_SUCCESS) {
1166 pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1167 __func__, phb->hub_id, rc);
1168 return;
1169 }
1170
1171 switch (be16_to_cpu(data->type)) {
1172 case OPAL_P7IOC_DIAG_TYPE_RGC:
1173 pr_info("P7IOC diag-data for RGC\n\n");
1174 pnv_eeh_dump_hub_diag_common(data);
1175 if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1176 pr_info(" RGC: %016llx %016llx\n",
1177 be64_to_cpu(data->rgc.rgcStatus),
1178 be64_to_cpu(data->rgc.rgcLdcp));
1179 break;
1180 case OPAL_P7IOC_DIAG_TYPE_BI:
1181 pr_info("P7IOC diag-data for BI %s\n\n",
1182 data->bi.biDownbound ? "Downbound" : "Upbound");
1183 pnv_eeh_dump_hub_diag_common(data);
1184 if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1185 data->bi.biLdcp2 || data->bi.biFenceStatus)
1186 pr_info(" BI: %016llx %016llx %016llx %016llx\n",
1187 be64_to_cpu(data->bi.biLdcp0),
1188 be64_to_cpu(data->bi.biLdcp1),
1189 be64_to_cpu(data->bi.biLdcp2),
1190 be64_to_cpu(data->bi.biFenceStatus));
1191 break;
1192 case OPAL_P7IOC_DIAG_TYPE_CI:
1193 pr_info("P7IOC diag-data for CI Port %d\n\n",
1194 data->ci.ciPort);
1195 pnv_eeh_dump_hub_diag_common(data);
1196 if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1197 pr_info(" CI: %016llx %016llx\n",
1198 be64_to_cpu(data->ci.ciPortStatus),
1199 be64_to_cpu(data->ci.ciPortLdcp));
1200 break;
1201 case OPAL_P7IOC_DIAG_TYPE_MISC:
1202 pr_info("P7IOC diag-data for MISC\n\n");
1203 pnv_eeh_dump_hub_diag_common(data);
1204 break;
1205 case OPAL_P7IOC_DIAG_TYPE_I2C:
1206 pr_info("P7IOC diag-data for I2C\n\n");
1207 pnv_eeh_dump_hub_diag_common(data);
1208 break;
1209 default:
1210 pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1211 __func__, phb->hub_id, data->type);
1212 }
1213 }
1214
1215 static int pnv_eeh_get_pe(struct pci_controller *hose,
1216 u16 pe_no, struct eeh_pe **pe)
1217 {
1218 struct pnv_phb *phb = hose->private_data;
1219 struct pnv_ioda_pe *pnv_pe;
1220 struct eeh_pe *dev_pe;
1221 struct eeh_dev edev;
1222
1223 /*
1224 * If PHB supports compound PE, to fetch
1225 * the master PE because slave PE is invisible
1226 * to EEH core.
1227 */
1228 pnv_pe = &phb->ioda.pe_array[pe_no];
1229 if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1230 pnv_pe = pnv_pe->master;
1231 WARN_ON(!pnv_pe ||
1232 !(pnv_pe->flags & PNV_IODA_PE_MASTER));
1233 pe_no = pnv_pe->pe_number;
1234 }
1235
1236 /* Find the PE according to PE# */
1237 memset(&edev, 0, sizeof(struct eeh_dev));
1238 edev.phb = hose;
1239 edev.pe_config_addr = pe_no;
1240 dev_pe = eeh_pe_get(&edev);
1241 if (!dev_pe)
1242 return -EEXIST;
1243
1244 /* Freeze the (compound) PE */
1245 *pe = dev_pe;
1246 if (!(dev_pe->state & EEH_PE_ISOLATED))
1247 phb->freeze_pe(phb, pe_no);
1248
1249 /*
1250 * At this point, we're sure the (compound) PE should
1251 * have been frozen. However, we still need poke until
1252 * hitting the frozen PE on top level.
1253 */
1254 dev_pe = dev_pe->parent;
1255 while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1256 int ret;
1257 int active_flags = (EEH_STATE_MMIO_ACTIVE |
1258 EEH_STATE_DMA_ACTIVE);
1259
1260 ret = eeh_ops->get_state(dev_pe, NULL);
1261 if (ret <= 0 || (ret & active_flags) == active_flags) {
1262 dev_pe = dev_pe->parent;
1263 continue;
1264 }
1265
1266 /* Frozen parent PE */
1267 *pe = dev_pe;
1268 if (!(dev_pe->state & EEH_PE_ISOLATED))
1269 phb->freeze_pe(phb, dev_pe->addr);
1270
1271 /* Next one */
1272 dev_pe = dev_pe->parent;
1273 }
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * pnv_eeh_next_error - Retrieve next EEH error to handle
1280 * @pe: Affected PE
1281 *
1282 * The function is expected to be called by EEH core while it gets
1283 * special EEH event (without binding PE). The function calls to
1284 * OPAL APIs for next error to handle. The informational error is
1285 * handled internally by platform. However, the dead IOC, dead PHB,
1286 * fenced PHB and frozen PE should be handled by EEH core eventually.
1287 */
1288 static int pnv_eeh_next_error(struct eeh_pe **pe)
1289 {
1290 struct pci_controller *hose;
1291 struct pnv_phb *phb;
1292 struct eeh_pe *phb_pe, *parent_pe;
1293 __be64 frozen_pe_no;
1294 __be16 err_type, severity;
1295 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1296 long rc;
1297 int state, ret = EEH_NEXT_ERR_NONE;
1298
1299 /*
1300 * While running here, it's safe to purge the event queue. The
1301 * event should still be masked.
1302 */
1303 eeh_remove_event(NULL, false);
1304
1305 list_for_each_entry(hose, &hose_list, list_node) {
1306 /*
1307 * If the subordinate PCI buses of the PHB has been
1308 * removed or is exactly under error recovery, we
1309 * needn't take care of it any more.
1310 */
1311 phb = hose->private_data;
1312 phb_pe = eeh_phb_pe_get(hose);
1313 if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1314 continue;
1315
1316 rc = opal_pci_next_error(phb->opal_id,
1317 &frozen_pe_no, &err_type, &severity);
1318 if (rc != OPAL_SUCCESS) {
1319 pr_devel("%s: Invalid return value on "
1320 "PHB#%x (0x%lx) from opal_pci_next_error",
1321 __func__, hose->global_number, rc);
1322 continue;
1323 }
1324
1325 /* If the PHB doesn't have error, stop processing */
1326 if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1327 be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1328 pr_devel("%s: No error found on PHB#%x\n",
1329 __func__, hose->global_number);
1330 continue;
1331 }
1332
1333 /*
1334 * Processing the error. We're expecting the error with
1335 * highest priority reported upon multiple errors on the
1336 * specific PHB.
1337 */
1338 pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1339 __func__, be16_to_cpu(err_type),
1340 be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1341 hose->global_number);
1342 switch (be16_to_cpu(err_type)) {
1343 case OPAL_EEH_IOC_ERROR:
1344 if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1345 pr_err("EEH: dead IOC detected\n");
1346 ret = EEH_NEXT_ERR_DEAD_IOC;
1347 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1348 pr_info("EEH: IOC informative error "
1349 "detected\n");
1350 pnv_eeh_get_and_dump_hub_diag(hose);
1351 ret = EEH_NEXT_ERR_NONE;
1352 }
1353
1354 break;
1355 case OPAL_EEH_PHB_ERROR:
1356 if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1357 *pe = phb_pe;
1358 pr_err("EEH: dead PHB#%x detected, "
1359 "location: %s\n",
1360 hose->global_number,
1361 eeh_pe_loc_get(phb_pe));
1362 ret = EEH_NEXT_ERR_DEAD_PHB;
1363 } else if (be16_to_cpu(severity) ==
1364 OPAL_EEH_SEV_PHB_FENCED) {
1365 *pe = phb_pe;
1366 pr_err("EEH: Fenced PHB#%x detected, "
1367 "location: %s\n",
1368 hose->global_number,
1369 eeh_pe_loc_get(phb_pe));
1370 ret = EEH_NEXT_ERR_FENCED_PHB;
1371 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1372 pr_info("EEH: PHB#%x informative error "
1373 "detected, location: %s\n",
1374 hose->global_number,
1375 eeh_pe_loc_get(phb_pe));
1376 pnv_eeh_get_phb_diag(phb_pe);
1377 pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1378 ret = EEH_NEXT_ERR_NONE;
1379 }
1380
1381 break;
1382 case OPAL_EEH_PE_ERROR:
1383 /*
1384 * If we can't find the corresponding PE, we
1385 * just try to unfreeze.
1386 */
1387 if (pnv_eeh_get_pe(hose,
1388 be64_to_cpu(frozen_pe_no), pe)) {
1389 pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1390 hose->global_number, be64_to_cpu(frozen_pe_no));
1391 pr_info("EEH: PHB location: %s\n",
1392 eeh_pe_loc_get(phb_pe));
1393
1394 /* Dump PHB diag-data */
1395 rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1396 phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE);
1397 if (rc == OPAL_SUCCESS)
1398 pnv_pci_dump_phb_diag_data(hose,
1399 phb->diag.blob);
1400
1401 /* Try best to clear it */
1402 opal_pci_eeh_freeze_clear(phb->opal_id,
1403 be64_to_cpu(frozen_pe_no),
1404 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1405 ret = EEH_NEXT_ERR_NONE;
1406 } else if ((*pe)->state & EEH_PE_ISOLATED ||
1407 eeh_pe_passed(*pe)) {
1408 ret = EEH_NEXT_ERR_NONE;
1409 } else {
1410 pr_err("EEH: Frozen PE#%x "
1411 "on PHB#%x detected\n",
1412 (*pe)->addr,
1413 (*pe)->phb->global_number);
1414 pr_err("EEH: PE location: %s, "
1415 "PHB location: %s\n",
1416 eeh_pe_loc_get(*pe),
1417 eeh_pe_loc_get(phb_pe));
1418 ret = EEH_NEXT_ERR_FROZEN_PE;
1419 }
1420
1421 break;
1422 default:
1423 pr_warn("%s: Unexpected error type %d\n",
1424 __func__, be16_to_cpu(err_type));
1425 }
1426
1427 /*
1428 * EEH core will try recover from fenced PHB or
1429 * frozen PE. In the time for frozen PE, EEH core
1430 * enable IO path for that before collecting logs,
1431 * but it ruins the site. So we have to dump the
1432 * log in advance here.
1433 */
1434 if ((ret == EEH_NEXT_ERR_FROZEN_PE ||
1435 ret == EEH_NEXT_ERR_FENCED_PHB) &&
1436 !((*pe)->state & EEH_PE_ISOLATED)) {
1437 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1438 pnv_eeh_get_phb_diag(*pe);
1439
1440 if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1441 pnv_pci_dump_phb_diag_data((*pe)->phb,
1442 (*pe)->data);
1443 }
1444
1445 /*
1446 * We probably have the frozen parent PE out there and
1447 * we need have to handle frozen parent PE firstly.
1448 */
1449 if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1450 parent_pe = (*pe)->parent;
1451 while (parent_pe) {
1452 /* Hit the ceiling ? */
1453 if (parent_pe->type & EEH_PE_PHB)
1454 break;
1455
1456 /* Frozen parent PE ? */
1457 state = eeh_ops->get_state(parent_pe, NULL);
1458 if (state > 0 &&
1459 (state & active_flags) != active_flags)
1460 *pe = parent_pe;
1461
1462 /* Next parent level */
1463 parent_pe = parent_pe->parent;
1464 }
1465
1466 /* We possibly migrate to another PE */
1467 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1468 }
1469
1470 /*
1471 * If we have no errors on the specific PHB or only
1472 * informative error there, we continue poking it.
1473 * Otherwise, we need actions to be taken by upper
1474 * layer.
1475 */
1476 if (ret > EEH_NEXT_ERR_INF)
1477 break;
1478 }
1479
1480 /* Unmask the event */
1481 if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1482 enable_irq(eeh_event_irq);
1483
1484 return ret;
1485 }
1486
1487 static int pnv_eeh_restore_config(struct pci_dn *pdn)
1488 {
1489 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1490 struct pnv_phb *phb;
1491 s64 ret;
1492
1493 if (!edev)
1494 return -EEXIST;
1495
1496 phb = edev->phb->private_data;
1497 ret = opal_pci_reinit(phb->opal_id,
1498 OPAL_REINIT_PCI_DEV, edev->config_addr);
1499 if (ret) {
1500 pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1501 __func__, edev->config_addr, ret);
1502 return -EIO;
1503 }
1504
1505 return 0;
1506 }
1507
1508 static struct eeh_ops pnv_eeh_ops = {
1509 .name = "powernv",
1510 .init = pnv_eeh_init,
1511 .post_init = pnv_eeh_post_init,
1512 .probe = pnv_eeh_probe,
1513 .set_option = pnv_eeh_set_option,
1514 .get_pe_addr = pnv_eeh_get_pe_addr,
1515 .get_state = pnv_eeh_get_state,
1516 .reset = pnv_eeh_reset,
1517 .wait_state = pnv_eeh_wait_state,
1518 .get_log = pnv_eeh_get_log,
1519 .configure_bridge = pnv_eeh_configure_bridge,
1520 .err_inject = pnv_eeh_err_inject,
1521 .read_config = pnv_eeh_read_config,
1522 .write_config = pnv_eeh_write_config,
1523 .next_error = pnv_eeh_next_error,
1524 .restore_config = pnv_eeh_restore_config
1525 };
1526
1527 /**
1528 * eeh_powernv_init - Register platform dependent EEH operations
1529 *
1530 * EEH initialization on powernv platform. This function should be
1531 * called before any EEH related functions.
1532 */
1533 static int __init eeh_powernv_init(void)
1534 {
1535 int ret = -EINVAL;
1536
1537 eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE);
1538 ret = eeh_ops_register(&pnv_eeh_ops);
1539 if (!ret)
1540 pr_info("EEH: PowerNV platform initialized\n");
1541 else
1542 pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1543
1544 return ret;
1545 }
1546 machine_early_initcall(powernv, eeh_powernv_init);