Merge branch 'master'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / iseries / setup.c
1 /*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4 *
5 * Description:
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9 * <dan@net4x.com>.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #undef DEBUG
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/system.h>
43 #include <asm/time.h>
44 #include <asm/paca.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/hv_lp_event.h>
54 #include <asm/iseries/lpar_map.h>
55 #include <asm/udbg.h>
56
57 #include "naca.h"
58 #include "setup.h"
59 #include "irq.h"
60 #include "vpd_areas.h"
61 #include "processor_vpd.h"
62 #include "main_store.h"
63 #include "call_sm.h"
64 #include "call_hpt.h"
65
66 #ifdef DEBUG
67 #define DBG(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG(fmt...)
70 #endif
71
72 /* Function Prototypes */
73 static unsigned long build_iSeries_Memory_Map(void);
74 static void iseries_shared_idle(void);
75 static void iseries_dedicated_idle(void);
76 #ifdef CONFIG_PCI
77 extern void iSeries_pci_final_fixup(void);
78 #else
79 static void iSeries_pci_final_fixup(void) { }
80 #endif
81
82 /* Global Variables */
83 int piranha_simulator;
84
85 extern int rd_size; /* Defined in drivers/block/rd.c */
86 extern unsigned long embedded_sysmap_start;
87 extern unsigned long embedded_sysmap_end;
88
89 extern unsigned long iSeries_recal_tb;
90 extern unsigned long iSeries_recal_titan;
91
92 static int mf_initialized;
93
94 static unsigned long cmd_mem_limit;
95
96 struct MemoryBlock {
97 unsigned long absStart;
98 unsigned long absEnd;
99 unsigned long logicalStart;
100 unsigned long logicalEnd;
101 };
102
103 /*
104 * Process the main store vpd to determine where the holes in memory are
105 * and return the number of physical blocks and fill in the array of
106 * block data.
107 */
108 static unsigned long iSeries_process_Condor_mainstore_vpd(
109 struct MemoryBlock *mb_array, unsigned long max_entries)
110 {
111 unsigned long holeFirstChunk, holeSizeChunks;
112 unsigned long numMemoryBlocks = 1;
113 struct IoHriMainStoreSegment4 *msVpd =
114 (struct IoHriMainStoreSegment4 *)xMsVpd;
115 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
116 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
117 unsigned long holeSize = holeEnd - holeStart;
118
119 printk("Mainstore_VPD: Condor\n");
120 /*
121 * Determine if absolute memory has any
122 * holes so that we can interpret the
123 * access map we get back from the hypervisor
124 * correctly.
125 */
126 mb_array[0].logicalStart = 0;
127 mb_array[0].logicalEnd = 0x100000000;
128 mb_array[0].absStart = 0;
129 mb_array[0].absEnd = 0x100000000;
130
131 if (holeSize) {
132 numMemoryBlocks = 2;
133 holeStart = holeStart & 0x000fffffffffffff;
134 holeStart = addr_to_chunk(holeStart);
135 holeFirstChunk = holeStart;
136 holeSize = addr_to_chunk(holeSize);
137 holeSizeChunks = holeSize;
138 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
139 holeFirstChunk, holeSizeChunks );
140 mb_array[0].logicalEnd = holeFirstChunk;
141 mb_array[0].absEnd = holeFirstChunk;
142 mb_array[1].logicalStart = holeFirstChunk;
143 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
144 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
145 mb_array[1].absEnd = 0x100000000;
146 }
147 return numMemoryBlocks;
148 }
149
150 #define MaxSegmentAreas 32
151 #define MaxSegmentAdrRangeBlocks 128
152 #define MaxAreaRangeBlocks 4
153
154 static unsigned long iSeries_process_Regatta_mainstore_vpd(
155 struct MemoryBlock *mb_array, unsigned long max_entries)
156 {
157 struct IoHriMainStoreSegment5 *msVpdP =
158 (struct IoHriMainStoreSegment5 *)xMsVpd;
159 unsigned long numSegmentBlocks = 0;
160 u32 existsBits = msVpdP->msAreaExists;
161 unsigned long area_num;
162
163 printk("Mainstore_VPD: Regatta\n");
164
165 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
166 unsigned long numAreaBlocks;
167 struct IoHriMainStoreArea4 *currentArea;
168
169 if (existsBits & 0x80000000) {
170 unsigned long block_num;
171
172 currentArea = &msVpdP->msAreaArray[area_num];
173 numAreaBlocks = currentArea->numAdrRangeBlocks;
174 printk("ms_vpd: processing area %2ld blocks=%ld",
175 area_num, numAreaBlocks);
176 for (block_num = 0; block_num < numAreaBlocks;
177 ++block_num ) {
178 /* Process an address range block */
179 struct MemoryBlock tempBlock;
180 unsigned long i;
181
182 tempBlock.absStart =
183 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
184 tempBlock.absEnd =
185 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
186 tempBlock.logicalStart = 0;
187 tempBlock.logicalEnd = 0;
188 printk("\n block %ld absStart=%016lx absEnd=%016lx",
189 block_num, tempBlock.absStart,
190 tempBlock.absEnd);
191
192 for (i = 0; i < numSegmentBlocks; ++i) {
193 if (mb_array[i].absStart ==
194 tempBlock.absStart)
195 break;
196 }
197 if (i == numSegmentBlocks) {
198 if (numSegmentBlocks == max_entries)
199 panic("iSeries_process_mainstore_vpd: too many memory blocks");
200 mb_array[numSegmentBlocks] = tempBlock;
201 ++numSegmentBlocks;
202 } else
203 printk(" (duplicate)");
204 }
205 printk("\n");
206 }
207 existsBits <<= 1;
208 }
209 /* Now sort the blocks found into ascending sequence */
210 if (numSegmentBlocks > 1) {
211 unsigned long m, n;
212
213 for (m = 0; m < numSegmentBlocks - 1; ++m) {
214 for (n = numSegmentBlocks - 1; m < n; --n) {
215 if (mb_array[n].absStart <
216 mb_array[n-1].absStart) {
217 struct MemoryBlock tempBlock;
218
219 tempBlock = mb_array[n];
220 mb_array[n] = mb_array[n-1];
221 mb_array[n-1] = tempBlock;
222 }
223 }
224 }
225 }
226 /*
227 * Assign "logical" addresses to each block. These
228 * addresses correspond to the hypervisor "bitmap" space.
229 * Convert all addresses into units of 256K chunks.
230 */
231 {
232 unsigned long i, nextBitmapAddress;
233
234 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
235 nextBitmapAddress = 0;
236 for (i = 0; i < numSegmentBlocks; ++i) {
237 unsigned long length = mb_array[i].absEnd -
238 mb_array[i].absStart;
239
240 mb_array[i].logicalStart = nextBitmapAddress;
241 mb_array[i].logicalEnd = nextBitmapAddress + length;
242 nextBitmapAddress += length;
243 printk(" Bitmap range: %016lx - %016lx\n"
244 " Absolute range: %016lx - %016lx\n",
245 mb_array[i].logicalStart,
246 mb_array[i].logicalEnd,
247 mb_array[i].absStart, mb_array[i].absEnd);
248 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
249 0x000fffffffffffff);
250 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
251 0x000fffffffffffff);
252 mb_array[i].logicalStart =
253 addr_to_chunk(mb_array[i].logicalStart);
254 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
255 }
256 }
257
258 return numSegmentBlocks;
259 }
260
261 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
262 unsigned long max_entries)
263 {
264 unsigned long i;
265 unsigned long mem_blocks = 0;
266
267 if (cpu_has_feature(CPU_FTR_SLB))
268 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
269 max_entries);
270 else
271 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
272 max_entries);
273
274 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
275 for (i = 0; i < mem_blocks; ++i) {
276 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
277 " abs chunks %016lx - %016lx\n",
278 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
279 mb_array[i].absStart, mb_array[i].absEnd);
280 }
281 return mem_blocks;
282 }
283
284 static void __init iSeries_get_cmdline(void)
285 {
286 char *p, *q;
287
288 /* copy the command line parameter from the primary VSP */
289 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
290 HvLpDma_Direction_RemoteToLocal);
291
292 p = cmd_line;
293 q = cmd_line + 255;
294 while(p < q) {
295 if (!*p || *p == '\n')
296 break;
297 ++p;
298 }
299 *p = 0;
300 }
301
302 static void __init iSeries_init_early(void)
303 {
304 DBG(" -> iSeries_init_early()\n");
305
306 ppc64_firmware_features = FW_FEATURE_ISERIES;
307
308 ppc64_interrupt_controller = IC_ISERIES;
309
310 #if defined(CONFIG_BLK_DEV_INITRD)
311 /*
312 * If the init RAM disk has been configured and there is
313 * a non-zero starting address for it, set it up
314 */
315 if (naca.xRamDisk) {
316 initrd_start = (unsigned long)__va(naca.xRamDisk);
317 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
318 initrd_below_start_ok = 1; // ramdisk in kernel space
319 ROOT_DEV = Root_RAM0;
320 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
321 rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
322 } else
323 #endif /* CONFIG_BLK_DEV_INITRD */
324 {
325 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
326 }
327
328 iSeries_recal_tb = get_tb();
329 iSeries_recal_titan = HvCallXm_loadTod();
330
331 /*
332 * Initialize the hash table management pointers
333 */
334 hpte_init_iSeries();
335
336 /*
337 * Initialize the DMA/TCE management
338 */
339 iommu_init_early_iSeries();
340
341 /* Initialize machine-dependency vectors */
342 #ifdef CONFIG_SMP
343 smp_init_iSeries();
344 #endif
345 if (itLpNaca.xPirEnvironMode == 0)
346 piranha_simulator = 1;
347
348 /* Associate Lp Event Queue 0 with processor 0 */
349 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
350
351 mf_init();
352 mf_initialized = 1;
353 mb();
354
355 /* If we were passed an initrd, set the ROOT_DEV properly if the values
356 * look sensible. If not, clear initrd reference.
357 */
358 #ifdef CONFIG_BLK_DEV_INITRD
359 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
360 initrd_end > initrd_start)
361 ROOT_DEV = Root_RAM0;
362 else
363 initrd_start = initrd_end = 0;
364 #endif /* CONFIG_BLK_DEV_INITRD */
365
366 DBG(" <- iSeries_init_early()\n");
367 }
368
369 struct mschunks_map mschunks_map = {
370 /* XXX We don't use these, but Piranha might need them. */
371 .chunk_size = MSCHUNKS_CHUNK_SIZE,
372 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
373 .chunk_mask = MSCHUNKS_OFFSET_MASK,
374 };
375 EXPORT_SYMBOL(mschunks_map);
376
377 void mschunks_alloc(unsigned long num_chunks)
378 {
379 klimit = _ALIGN(klimit, sizeof(u32));
380 mschunks_map.mapping = (u32 *)klimit;
381 klimit += num_chunks * sizeof(u32);
382 mschunks_map.num_chunks = num_chunks;
383 }
384
385 /*
386 * The iSeries may have very large memories ( > 128 GB ) and a partition
387 * may get memory in "chunks" that may be anywhere in the 2**52 real
388 * address space. The chunks are 256K in size. To map this to the
389 * memory model Linux expects, the AS/400 specific code builds a
390 * translation table to translate what Linux thinks are "physical"
391 * addresses to the actual real addresses. This allows us to make
392 * it appear to Linux that we have contiguous memory starting at
393 * physical address zero while in fact this could be far from the truth.
394 * To avoid confusion, I'll let the words physical and/or real address
395 * apply to the Linux addresses while I'll use "absolute address" to
396 * refer to the actual hardware real address.
397 *
398 * build_iSeries_Memory_Map gets information from the Hypervisor and
399 * looks at the Main Store VPD to determine the absolute addresses
400 * of the memory that has been assigned to our partition and builds
401 * a table used to translate Linux's physical addresses to these
402 * absolute addresses. Absolute addresses are needed when
403 * communicating with the hypervisor (e.g. to build HPT entries)
404 *
405 * Returns the physical memory size
406 */
407
408 static unsigned long __init build_iSeries_Memory_Map(void)
409 {
410 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
411 u32 nextPhysChunk;
412 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
413 u32 totalChunks,moreChunks;
414 u32 currChunk, thisChunk, absChunk;
415 u32 currDword;
416 u32 chunkBit;
417 u64 map;
418 struct MemoryBlock mb[32];
419 unsigned long numMemoryBlocks, curBlock;
420
421 /* Chunk size on iSeries is 256K bytes */
422 totalChunks = (u32)HvLpConfig_getMsChunks();
423 mschunks_alloc(totalChunks);
424
425 /*
426 * Get absolute address of our load area
427 * and map it to physical address 0
428 * This guarantees that the loadarea ends up at physical 0
429 * otherwise, it might not be returned by PLIC as the first
430 * chunks
431 */
432
433 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
434 loadAreaSize = itLpNaca.xLoadAreaChunks;
435
436 /*
437 * Only add the pages already mapped here.
438 * Otherwise we might add the hpt pages
439 * The rest of the pages of the load area
440 * aren't in the HPT yet and can still
441 * be assigned an arbitrary physical address
442 */
443 if ((loadAreaSize * 64) > HvPagesToMap)
444 loadAreaSize = HvPagesToMap / 64;
445
446 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
447
448 /*
449 * TODO Do we need to do something if the HPT is in the 64MB load area?
450 * This would be required if the itLpNaca.xLoadAreaChunks includes
451 * the HPT size
452 */
453
454 printk("Mapping load area - physical addr = 0000000000000000\n"
455 " absolute addr = %016lx\n",
456 chunk_to_addr(loadAreaFirstChunk));
457 printk("Load area size %dK\n", loadAreaSize * 256);
458
459 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
460 mschunks_map.mapping[nextPhysChunk] =
461 loadAreaFirstChunk + nextPhysChunk;
462
463 /*
464 * Get absolute address of our HPT and remember it so
465 * we won't map it to any physical address
466 */
467 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
468 hptSizePages = (u32)HvCallHpt_getHptPages();
469 hptSizeChunks = hptSizePages >>
470 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
471 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
472
473 printk("HPT absolute addr = %016lx, size = %dK\n",
474 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
475
476 /*
477 * Determine if absolute memory has any
478 * holes so that we can interpret the
479 * access map we get back from the hypervisor
480 * correctly.
481 */
482 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
483
484 /*
485 * Process the main store access map from the hypervisor
486 * to build up our physical -> absolute translation table
487 */
488 curBlock = 0;
489 currChunk = 0;
490 currDword = 0;
491 moreChunks = totalChunks;
492
493 while (moreChunks) {
494 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
495 currDword);
496 thisChunk = currChunk;
497 while (map) {
498 chunkBit = map >> 63;
499 map <<= 1;
500 if (chunkBit) {
501 --moreChunks;
502 while (thisChunk >= mb[curBlock].logicalEnd) {
503 ++curBlock;
504 if (curBlock >= numMemoryBlocks)
505 panic("out of memory blocks");
506 }
507 if (thisChunk < mb[curBlock].logicalStart)
508 panic("memory block error");
509
510 absChunk = mb[curBlock].absStart +
511 (thisChunk - mb[curBlock].logicalStart);
512 if (((absChunk < hptFirstChunk) ||
513 (absChunk > hptLastChunk)) &&
514 ((absChunk < loadAreaFirstChunk) ||
515 (absChunk > loadAreaLastChunk))) {
516 mschunks_map.mapping[nextPhysChunk] =
517 absChunk;
518 ++nextPhysChunk;
519 }
520 }
521 ++thisChunk;
522 }
523 ++currDword;
524 currChunk += 64;
525 }
526
527 /*
528 * main store size (in chunks) is
529 * totalChunks - hptSizeChunks
530 * which should be equal to
531 * nextPhysChunk
532 */
533 return chunk_to_addr(nextPhysChunk);
534 }
535
536 /*
537 * Document me.
538 */
539 static void __init iSeries_setup_arch(void)
540 {
541 if (get_lppaca()->shared_proc) {
542 ppc_md.idle_loop = iseries_shared_idle;
543 printk(KERN_INFO "Using shared processor idle loop\n");
544 } else {
545 ppc_md.idle_loop = iseries_dedicated_idle;
546 printk(KERN_INFO "Using dedicated idle loop\n");
547 }
548
549 /* Setup the Lp Event Queue */
550 setup_hvlpevent_queue();
551
552 printk("Max logical processors = %d\n",
553 itVpdAreas.xSlicMaxLogicalProcs);
554 printk("Max physical processors = %d\n",
555 itVpdAreas.xSlicMaxPhysicalProcs);
556 }
557
558 static void iSeries_show_cpuinfo(struct seq_file *m)
559 {
560 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
561 }
562
563 /*
564 * Document me.
565 */
566 static void iSeries_restart(char *cmd)
567 {
568 mf_reboot();
569 }
570
571 /*
572 * Document me.
573 */
574 static void iSeries_power_off(void)
575 {
576 mf_power_off();
577 }
578
579 /*
580 * Document me.
581 */
582 static void iSeries_halt(void)
583 {
584 mf_power_off();
585 }
586
587 static void __init iSeries_progress(char * st, unsigned short code)
588 {
589 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
590 if (!piranha_simulator && mf_initialized) {
591 if (code != 0xffff)
592 mf_display_progress(code);
593 else
594 mf_clear_src();
595 }
596 }
597
598 static void __init iSeries_fixup_klimit(void)
599 {
600 /*
601 * Change klimit to take into account any ram disk
602 * that may be included
603 */
604 if (naca.xRamDisk)
605 klimit = KERNELBASE + (u64)naca.xRamDisk +
606 (naca.xRamDiskSize * HW_PAGE_SIZE);
607 else {
608 /*
609 * No ram disk was included - check and see if there
610 * was an embedded system map. Change klimit to take
611 * into account any embedded system map
612 */
613 if (embedded_sysmap_end)
614 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
615 0xfffffffffffff000);
616 }
617 }
618
619 static int __init iSeries_src_init(void)
620 {
621 /* clear the progress line */
622 ppc_md.progress(" ", 0xffff);
623 return 0;
624 }
625
626 late_initcall(iSeries_src_init);
627
628 static inline void process_iSeries_events(void)
629 {
630 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
631 }
632
633 static void yield_shared_processor(void)
634 {
635 unsigned long tb;
636
637 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
638 HvCall_MaskLpEvent |
639 HvCall_MaskLpProd |
640 HvCall_MaskTimeout);
641
642 tb = get_tb();
643 /* Compute future tb value when yield should expire */
644 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
645
646 /*
647 * The decrementer stops during the yield. Force a fake decrementer
648 * here and let the timer_interrupt code sort out the actual time.
649 */
650 get_lppaca()->int_dword.fields.decr_int = 1;
651 ppc64_runlatch_on();
652 process_iSeries_events();
653 }
654
655 static void iseries_shared_idle(void)
656 {
657 while (1) {
658 while (!need_resched() && !hvlpevent_is_pending()) {
659 local_irq_disable();
660 ppc64_runlatch_off();
661
662 /* Recheck with irqs off */
663 if (!need_resched() && !hvlpevent_is_pending())
664 yield_shared_processor();
665
666 HMT_medium();
667 local_irq_enable();
668 }
669
670 ppc64_runlatch_on();
671
672 if (hvlpevent_is_pending())
673 process_iSeries_events();
674
675 preempt_enable_no_resched();
676 schedule();
677 preempt_disable();
678 }
679 }
680
681 static void iseries_dedicated_idle(void)
682 {
683 set_thread_flag(TIF_POLLING_NRFLAG);
684
685 while (1) {
686 if (!need_resched()) {
687 while (!need_resched()) {
688 ppc64_runlatch_off();
689 HMT_low();
690
691 if (hvlpevent_is_pending()) {
692 HMT_medium();
693 ppc64_runlatch_on();
694 process_iSeries_events();
695 }
696 }
697
698 HMT_medium();
699 }
700
701 ppc64_runlatch_on();
702 preempt_enable_no_resched();
703 schedule();
704 preempt_disable();
705 }
706 }
707
708 #ifndef CONFIG_PCI
709 void __init iSeries_init_IRQ(void) { }
710 #endif
711
712 static int __init iseries_probe(int platform)
713 {
714 return PLATFORM_ISERIES_LPAR == platform;
715 }
716
717 struct machdep_calls __initdata iseries_md = {
718 .setup_arch = iSeries_setup_arch,
719 .show_cpuinfo = iSeries_show_cpuinfo,
720 .init_IRQ = iSeries_init_IRQ,
721 .get_irq = iSeries_get_irq,
722 .init_early = iSeries_init_early,
723 .pcibios_fixup = iSeries_pci_final_fixup,
724 .restart = iSeries_restart,
725 .power_off = iSeries_power_off,
726 .halt = iSeries_halt,
727 .get_boot_time = iSeries_get_boot_time,
728 .set_rtc_time = iSeries_set_rtc_time,
729 .get_rtc_time = iSeries_get_rtc_time,
730 .calibrate_decr = generic_calibrate_decr,
731 .progress = iSeries_progress,
732 .probe = iseries_probe,
733 /* XXX Implement enable_pmcs for iSeries */
734 };
735
736 struct blob {
737 unsigned char data[PAGE_SIZE];
738 unsigned long next;
739 };
740
741 struct iseries_flat_dt {
742 struct boot_param_header header;
743 u64 reserve_map[2];
744 struct blob dt;
745 struct blob strings;
746 };
747
748 struct iseries_flat_dt iseries_dt;
749
750 void dt_init(struct iseries_flat_dt *dt)
751 {
752 dt->header.off_mem_rsvmap =
753 offsetof(struct iseries_flat_dt, reserve_map);
754 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
755 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
756 dt->header.totalsize = sizeof(struct iseries_flat_dt);
757 dt->header.dt_strings_size = sizeof(struct blob);
758
759 /* There is no notion of hardware cpu id on iSeries */
760 dt->header.boot_cpuid_phys = smp_processor_id();
761
762 dt->dt.next = (unsigned long)&dt->dt.data;
763 dt->strings.next = (unsigned long)&dt->strings.data;
764
765 dt->header.magic = OF_DT_HEADER;
766 dt->header.version = 0x10;
767 dt->header.last_comp_version = 0x10;
768
769 dt->reserve_map[0] = 0;
770 dt->reserve_map[1] = 0;
771 }
772
773 void dt_check_blob(struct blob *b)
774 {
775 if (b->next >= (unsigned long)&b->next) {
776 DBG("Ran out of space in flat device tree blob!\n");
777 BUG();
778 }
779 }
780
781 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
782 {
783 *((u32*)dt->dt.next) = value;
784 dt->dt.next += sizeof(u32);
785
786 dt_check_blob(&dt->dt);
787 }
788
789 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
790 {
791 *((u64*)dt->dt.next) = value;
792 dt->dt.next += sizeof(u64);
793
794 dt_check_blob(&dt->dt);
795 }
796
797 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
798 {
799 unsigned long start = blob->next - (unsigned long)blob->data;
800
801 memcpy((char *)blob->next, data, len);
802 blob->next = _ALIGN(blob->next + len, 4);
803
804 dt_check_blob(blob);
805
806 return start;
807 }
808
809 void dt_start_node(struct iseries_flat_dt *dt, char *name)
810 {
811 dt_push_u32(dt, OF_DT_BEGIN_NODE);
812 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
813 }
814
815 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
816
817 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
818 {
819 unsigned long offset;
820
821 dt_push_u32(dt, OF_DT_PROP);
822
823 /* Length of the data */
824 dt_push_u32(dt, len);
825
826 /* Put the property name in the string blob. */
827 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
828
829 /* The offset of the properties name in the string blob. */
830 dt_push_u32(dt, (u32)offset);
831
832 /* The actual data. */
833 dt_push_bytes(&dt->dt, data, len);
834 }
835
836 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
837 {
838 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
839 }
840
841 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
842 {
843 dt_prop(dt, name, (char *)&data, sizeof(u32));
844 }
845
846 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
847 {
848 dt_prop(dt, name, (char *)&data, sizeof(u64));
849 }
850
851 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
852 {
853 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
854 }
855
856 void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
857 {
858 dt_prop(dt, name, (char *)data, sizeof(u32) * n);
859 }
860
861 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
862 {
863 dt_prop(dt, name, NULL, 0);
864 }
865
866 void dt_cpus(struct iseries_flat_dt *dt)
867 {
868 unsigned char buf[32];
869 unsigned char *p;
870 unsigned int i, index;
871 struct IoHriProcessorVpd *d;
872 u32 pft_size[2];
873
874 /* yuck */
875 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
876 p = strchr(buf, ' ');
877 if (!p) p = buf + strlen(buf);
878
879 dt_start_node(dt, "cpus");
880 dt_prop_u32(dt, "#address-cells", 1);
881 dt_prop_u32(dt, "#size-cells", 0);
882
883 pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
884 pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
885
886 for (i = 0; i < NR_CPUS; i++) {
887 if (lppaca[i].dyn_proc_status >= 2)
888 continue;
889
890 snprintf(p, 32 - (p - buf), "@%d", i);
891 dt_start_node(dt, buf);
892
893 dt_prop_str(dt, "device_type", "cpu");
894
895 index = lppaca[i].dyn_hv_phys_proc_index;
896 d = &xIoHriProcessorVpd[index];
897
898 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
899 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
900
901 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
902 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
903
904 /* magic conversions to Hz copied from old code */
905 dt_prop_u32(dt, "clock-frequency",
906 ((1UL << 34) * 1000000) / d->xProcFreq);
907 dt_prop_u32(dt, "timebase-frequency",
908 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
909
910 dt_prop_u32(dt, "reg", i);
911
912 dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
913
914 dt_end_node(dt);
915 }
916
917 dt_end_node(dt);
918 }
919
920 void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
921 {
922 u64 tmp[2];
923
924 dt_init(dt);
925
926 dt_start_node(dt, "");
927
928 dt_prop_u32(dt, "#address-cells", 2);
929 dt_prop_u32(dt, "#size-cells", 2);
930
931 /* /memory */
932 dt_start_node(dt, "memory@0");
933 dt_prop_str(dt, "name", "memory");
934 dt_prop_str(dt, "device_type", "memory");
935 tmp[0] = 0;
936 tmp[1] = phys_mem_size;
937 dt_prop_u64_list(dt, "reg", tmp, 2);
938 dt_end_node(dt);
939
940 /* /chosen */
941 dt_start_node(dt, "chosen");
942 dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
943 if (cmd_mem_limit)
944 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
945 dt_end_node(dt);
946
947 dt_cpus(dt);
948
949 dt_end_node(dt);
950
951 dt_push_u32(dt, OF_DT_END);
952 }
953
954 void * __init iSeries_early_setup(void)
955 {
956 unsigned long phys_mem_size;
957
958 iSeries_fixup_klimit();
959
960 /*
961 * Initialize the table which translate Linux physical addresses to
962 * AS/400 absolute addresses
963 */
964 phys_mem_size = build_iSeries_Memory_Map();
965
966 iSeries_get_cmdline();
967
968 /* Save unparsed command line copy for /proc/cmdline */
969 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
970
971 /* Parse early parameters, in particular mem=x */
972 parse_early_param();
973
974 build_flat_dt(&iseries_dt, phys_mem_size);
975
976 return (void *) __pa(&iseries_dt);
977 }
978
979 /*
980 * On iSeries we just parse the mem=X option from the command line.
981 * On pSeries it's a bit more complicated, see prom_init_mem()
982 */
983 static int __init early_parsemem(char *p)
984 {
985 if (p)
986 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
987 return 0;
988 }
989 early_param("mem", early_parsemem);
990
991 static void hvputc(char c)
992 {
993 if (c == '\n')
994 hvputc('\r');
995
996 HvCall_writeLogBuffer(&c, 1);
997 }
998
999 void __init udbg_init_iseries(void)
1000 {
1001 udbg_putc = hvputc;
1002 }