Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/apm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / cell / spufs / file.c
1 /*
2 * SPU file system -- file contents
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39
40 #include "spufs.h"
41 #include "sputrace.h"
42
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44
45 /* Simple attribute files */
46 struct spufs_attr {
47 int (*get)(void *, u64 *);
48 int (*set)(void *, u64);
49 char get_buf[24]; /* enough to store a u64 and "\n\0" */
50 char set_buf[24];
51 void *data;
52 const char *fmt; /* format for read operation */
53 struct mutex mutex; /* protects access to these buffers */
54 };
55
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 int (*get)(void *, u64 *), int (*set)(void *, u64),
58 const char *fmt)
59 {
60 struct spufs_attr *attr;
61
62 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 if (!attr)
64 return -ENOMEM;
65
66 attr->get = get;
67 attr->set = set;
68 attr->data = inode->i_private;
69 attr->fmt = fmt;
70 mutex_init(&attr->mutex);
71 file->private_data = attr;
72
73 return nonseekable_open(inode, file);
74 }
75
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78 kfree(file->private_data);
79 return 0;
80 }
81
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 size_t len, loff_t *ppos)
84 {
85 struct spufs_attr *attr;
86 size_t size;
87 ssize_t ret;
88
89 attr = file->private_data;
90 if (!attr->get)
91 return -EACCES;
92
93 ret = mutex_lock_interruptible(&attr->mutex);
94 if (ret)
95 return ret;
96
97 if (*ppos) { /* continued read */
98 size = strlen(attr->get_buf);
99 } else { /* first read */
100 u64 val;
101 ret = attr->get(attr->data, &val);
102 if (ret)
103 goto out;
104
105 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 attr->fmt, (unsigned long long)val);
107 }
108
109 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 mutex_unlock(&attr->mutex);
112 return ret;
113 }
114
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 size_t len, loff_t *ppos)
117 {
118 struct spufs_attr *attr;
119 u64 val;
120 size_t size;
121 ssize_t ret;
122
123 attr = file->private_data;
124 if (!attr->set)
125 return -EACCES;
126
127 ret = mutex_lock_interruptible(&attr->mutex);
128 if (ret)
129 return ret;
130
131 ret = -EFAULT;
132 size = min(sizeof(attr->set_buf) - 1, len);
133 if (copy_from_user(attr->set_buf, buf, size))
134 goto out;
135
136 ret = len; /* claim we got the whole input */
137 attr->set_buf[size] = '\0';
138 val = simple_strtol(attr->set_buf, NULL, 0);
139 attr->set(attr->data, val);
140 out:
141 mutex_unlock(&attr->mutex);
142 return ret;
143 }
144
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
146 static int __fops ## _open(struct inode *inode, struct file *file) \
147 { \
148 __simple_attr_check_format(__fmt, 0ull); \
149 return spufs_attr_open(inode, file, __get, __set, __fmt); \
150 } \
151 static const struct file_operations __fops = { \
152 .owner = THIS_MODULE, \
153 .open = __fops ## _open, \
154 .release = spufs_attr_release, \
155 .read = spufs_attr_read, \
156 .write = spufs_attr_write, \
157 .llseek = generic_file_llseek, \
158 };
159
160
161 static int
162 spufs_mem_open(struct inode *inode, struct file *file)
163 {
164 struct spufs_inode_info *i = SPUFS_I(inode);
165 struct spu_context *ctx = i->i_ctx;
166
167 mutex_lock(&ctx->mapping_lock);
168 file->private_data = ctx;
169 if (!i->i_openers++)
170 ctx->local_store = inode->i_mapping;
171 mutex_unlock(&ctx->mapping_lock);
172 return 0;
173 }
174
175 static int
176 spufs_mem_release(struct inode *inode, struct file *file)
177 {
178 struct spufs_inode_info *i = SPUFS_I(inode);
179 struct spu_context *ctx = i->i_ctx;
180
181 mutex_lock(&ctx->mapping_lock);
182 if (!--i->i_openers)
183 ctx->local_store = NULL;
184 mutex_unlock(&ctx->mapping_lock);
185 return 0;
186 }
187
188 static ssize_t
189 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
190 size_t size, loff_t *pos)
191 {
192 char *local_store = ctx->ops->get_ls(ctx);
193 return simple_read_from_buffer(buffer, size, pos, local_store,
194 LS_SIZE);
195 }
196
197 static ssize_t
198 spufs_mem_read(struct file *file, char __user *buffer,
199 size_t size, loff_t *pos)
200 {
201 struct spu_context *ctx = file->private_data;
202 ssize_t ret;
203
204 ret = spu_acquire(ctx);
205 if (ret)
206 return ret;
207 ret = __spufs_mem_read(ctx, buffer, size, pos);
208 spu_release(ctx);
209
210 return ret;
211 }
212
213 static ssize_t
214 spufs_mem_write(struct file *file, const char __user *buffer,
215 size_t size, loff_t *ppos)
216 {
217 struct spu_context *ctx = file->private_data;
218 char *local_store;
219 loff_t pos = *ppos;
220 int ret;
221
222 if (pos > LS_SIZE)
223 return -EFBIG;
224
225 ret = spu_acquire(ctx);
226 if (ret)
227 return ret;
228
229 local_store = ctx->ops->get_ls(ctx);
230 size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
231 spu_release(ctx);
232
233 return size;
234 }
235
236 static int
237 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
238 {
239 struct spu_context *ctx = vma->vm_file->private_data;
240 unsigned long address = (unsigned long)vmf->virtual_address;
241 unsigned long pfn, offset;
242
243 #ifdef CONFIG_SPU_FS_64K_LS
244 struct spu_state *csa = &ctx->csa;
245 int psize;
246
247 /* Check what page size we are using */
248 psize = get_slice_psize(vma->vm_mm, address);
249
250 /* Some sanity checking */
251 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
252
253 /* Wow, 64K, cool, we need to align the address though */
254 if (csa->use_big_pages) {
255 BUG_ON(vma->vm_start & 0xffff);
256 address &= ~0xfffful;
257 }
258 #endif /* CONFIG_SPU_FS_64K_LS */
259
260 offset = vmf->pgoff << PAGE_SHIFT;
261 if (offset >= LS_SIZE)
262 return VM_FAULT_SIGBUS;
263
264 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
265 address, offset);
266
267 if (spu_acquire(ctx))
268 return VM_FAULT_NOPAGE;
269
270 if (ctx->state == SPU_STATE_SAVED) {
271 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
272 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
273 } else {
274 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
275 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
276 }
277 vm_insert_pfn(vma, address, pfn);
278
279 spu_release(ctx);
280
281 return VM_FAULT_NOPAGE;
282 }
283
284 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
285 unsigned long address,
286 void *buf, int len, int write)
287 {
288 struct spu_context *ctx = vma->vm_file->private_data;
289 unsigned long offset = address - vma->vm_start;
290 char *local_store;
291
292 if (write && !(vma->vm_flags & VM_WRITE))
293 return -EACCES;
294 if (spu_acquire(ctx))
295 return -EINTR;
296 if ((offset + len) > vma->vm_end)
297 len = vma->vm_end - offset;
298 local_store = ctx->ops->get_ls(ctx);
299 if (write)
300 memcpy_toio(local_store + offset, buf, len);
301 else
302 memcpy_fromio(buf, local_store + offset, len);
303 spu_release(ctx);
304 return len;
305 }
306
307 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
308 .fault = spufs_mem_mmap_fault,
309 .access = spufs_mem_mmap_access,
310 };
311
312 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
313 {
314 #ifdef CONFIG_SPU_FS_64K_LS
315 struct spu_context *ctx = file->private_data;
316 struct spu_state *csa = &ctx->csa;
317
318 /* Sanity check VMA alignment */
319 if (csa->use_big_pages) {
320 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
321 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
322 vma->vm_pgoff);
323 if (vma->vm_start & 0xffff)
324 return -EINVAL;
325 if (vma->vm_pgoff & 0xf)
326 return -EINVAL;
327 }
328 #endif /* CONFIG_SPU_FS_64K_LS */
329
330 if (!(vma->vm_flags & VM_SHARED))
331 return -EINVAL;
332
333 vma->vm_flags |= VM_IO | VM_PFNMAP;
334 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
335
336 vma->vm_ops = &spufs_mem_mmap_vmops;
337 return 0;
338 }
339
340 #ifdef CONFIG_SPU_FS_64K_LS
341 static unsigned long spufs_get_unmapped_area(struct file *file,
342 unsigned long addr, unsigned long len, unsigned long pgoff,
343 unsigned long flags)
344 {
345 struct spu_context *ctx = file->private_data;
346 struct spu_state *csa = &ctx->csa;
347
348 /* If not using big pages, fallback to normal MM g_u_a */
349 if (!csa->use_big_pages)
350 return current->mm->get_unmapped_area(file, addr, len,
351 pgoff, flags);
352
353 /* Else, try to obtain a 64K pages slice */
354 return slice_get_unmapped_area(addr, len, flags,
355 MMU_PAGE_64K, 1, 0);
356 }
357 #endif /* CONFIG_SPU_FS_64K_LS */
358
359 static const struct file_operations spufs_mem_fops = {
360 .open = spufs_mem_open,
361 .release = spufs_mem_release,
362 .read = spufs_mem_read,
363 .write = spufs_mem_write,
364 .llseek = generic_file_llseek,
365 .mmap = spufs_mem_mmap,
366 #ifdef CONFIG_SPU_FS_64K_LS
367 .get_unmapped_area = spufs_get_unmapped_area,
368 #endif
369 };
370
371 static int spufs_ps_fault(struct vm_area_struct *vma,
372 struct vm_fault *vmf,
373 unsigned long ps_offs,
374 unsigned long ps_size)
375 {
376 struct spu_context *ctx = vma->vm_file->private_data;
377 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
378 int ret = 0;
379
380 spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
381
382 if (offset >= ps_size)
383 return VM_FAULT_SIGBUS;
384
385 if (fatal_signal_pending(current))
386 return VM_FAULT_SIGBUS;
387
388 /*
389 * Because we release the mmap_sem, the context may be destroyed while
390 * we're in spu_wait. Grab an extra reference so it isn't destroyed
391 * in the meantime.
392 */
393 get_spu_context(ctx);
394
395 /*
396 * We have to wait for context to be loaded before we have
397 * pages to hand out to the user, but we don't want to wait
398 * with the mmap_sem held.
399 * It is possible to drop the mmap_sem here, but then we need
400 * to return VM_FAULT_NOPAGE because the mappings may have
401 * hanged.
402 */
403 if (spu_acquire(ctx))
404 goto refault;
405
406 if (ctx->state == SPU_STATE_SAVED) {
407 up_read(&current->mm->mmap_sem);
408 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
409 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
410 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
411 down_read(&current->mm->mmap_sem);
412 } else {
413 area = ctx->spu->problem_phys + ps_offs;
414 vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
415 (area + offset) >> PAGE_SHIFT);
416 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
417 }
418
419 if (!ret)
420 spu_release(ctx);
421
422 refault:
423 put_spu_context(ctx);
424 return VM_FAULT_NOPAGE;
425 }
426
427 #if SPUFS_MMAP_4K
428 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
429 struct vm_fault *vmf)
430 {
431 return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
432 }
433
434 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
435 .fault = spufs_cntl_mmap_fault,
436 };
437
438 /*
439 * mmap support for problem state control area [0x4000 - 0x4fff].
440 */
441 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
442 {
443 if (!(vma->vm_flags & VM_SHARED))
444 return -EINVAL;
445
446 vma->vm_flags |= VM_IO | VM_PFNMAP;
447 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
448
449 vma->vm_ops = &spufs_cntl_mmap_vmops;
450 return 0;
451 }
452 #else /* SPUFS_MMAP_4K */
453 #define spufs_cntl_mmap NULL
454 #endif /* !SPUFS_MMAP_4K */
455
456 static int spufs_cntl_get(void *data, u64 *val)
457 {
458 struct spu_context *ctx = data;
459 int ret;
460
461 ret = spu_acquire(ctx);
462 if (ret)
463 return ret;
464 *val = ctx->ops->status_read(ctx);
465 spu_release(ctx);
466
467 return 0;
468 }
469
470 static int spufs_cntl_set(void *data, u64 val)
471 {
472 struct spu_context *ctx = data;
473 int ret;
474
475 ret = spu_acquire(ctx);
476 if (ret)
477 return ret;
478 ctx->ops->runcntl_write(ctx, val);
479 spu_release(ctx);
480
481 return 0;
482 }
483
484 static int spufs_cntl_open(struct inode *inode, struct file *file)
485 {
486 struct spufs_inode_info *i = SPUFS_I(inode);
487 struct spu_context *ctx = i->i_ctx;
488
489 mutex_lock(&ctx->mapping_lock);
490 file->private_data = ctx;
491 if (!i->i_openers++)
492 ctx->cntl = inode->i_mapping;
493 mutex_unlock(&ctx->mapping_lock);
494 return simple_attr_open(inode, file, spufs_cntl_get,
495 spufs_cntl_set, "0x%08lx");
496 }
497
498 static int
499 spufs_cntl_release(struct inode *inode, struct file *file)
500 {
501 struct spufs_inode_info *i = SPUFS_I(inode);
502 struct spu_context *ctx = i->i_ctx;
503
504 simple_attr_release(inode, file);
505
506 mutex_lock(&ctx->mapping_lock);
507 if (!--i->i_openers)
508 ctx->cntl = NULL;
509 mutex_unlock(&ctx->mapping_lock);
510 return 0;
511 }
512
513 static const struct file_operations spufs_cntl_fops = {
514 .open = spufs_cntl_open,
515 .release = spufs_cntl_release,
516 .read = simple_attr_read,
517 .write = simple_attr_write,
518 .llseek = generic_file_llseek,
519 .mmap = spufs_cntl_mmap,
520 };
521
522 static int
523 spufs_regs_open(struct inode *inode, struct file *file)
524 {
525 struct spufs_inode_info *i = SPUFS_I(inode);
526 file->private_data = i->i_ctx;
527 return 0;
528 }
529
530 static ssize_t
531 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
532 size_t size, loff_t *pos)
533 {
534 struct spu_lscsa *lscsa = ctx->csa.lscsa;
535 return simple_read_from_buffer(buffer, size, pos,
536 lscsa->gprs, sizeof lscsa->gprs);
537 }
538
539 static ssize_t
540 spufs_regs_read(struct file *file, char __user *buffer,
541 size_t size, loff_t *pos)
542 {
543 int ret;
544 struct spu_context *ctx = file->private_data;
545
546 /* pre-check for file position: if we'd return EOF, there's no point
547 * causing a deschedule */
548 if (*pos >= sizeof(ctx->csa.lscsa->gprs))
549 return 0;
550
551 ret = spu_acquire_saved(ctx);
552 if (ret)
553 return ret;
554 ret = __spufs_regs_read(ctx, buffer, size, pos);
555 spu_release_saved(ctx);
556 return ret;
557 }
558
559 static ssize_t
560 spufs_regs_write(struct file *file, const char __user *buffer,
561 size_t size, loff_t *pos)
562 {
563 struct spu_context *ctx = file->private_data;
564 struct spu_lscsa *lscsa = ctx->csa.lscsa;
565 int ret;
566
567 if (*pos >= sizeof(lscsa->gprs))
568 return -EFBIG;
569
570 ret = spu_acquire_saved(ctx);
571 if (ret)
572 return ret;
573
574 size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
575 buffer, size);
576
577 spu_release_saved(ctx);
578 return size;
579 }
580
581 static const struct file_operations spufs_regs_fops = {
582 .open = spufs_regs_open,
583 .read = spufs_regs_read,
584 .write = spufs_regs_write,
585 .llseek = generic_file_llseek,
586 };
587
588 static ssize_t
589 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
590 size_t size, loff_t * pos)
591 {
592 struct spu_lscsa *lscsa = ctx->csa.lscsa;
593 return simple_read_from_buffer(buffer, size, pos,
594 &lscsa->fpcr, sizeof(lscsa->fpcr));
595 }
596
597 static ssize_t
598 spufs_fpcr_read(struct file *file, char __user * buffer,
599 size_t size, loff_t * pos)
600 {
601 int ret;
602 struct spu_context *ctx = file->private_data;
603
604 ret = spu_acquire_saved(ctx);
605 if (ret)
606 return ret;
607 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
608 spu_release_saved(ctx);
609 return ret;
610 }
611
612 static ssize_t
613 spufs_fpcr_write(struct file *file, const char __user * buffer,
614 size_t size, loff_t * pos)
615 {
616 struct spu_context *ctx = file->private_data;
617 struct spu_lscsa *lscsa = ctx->csa.lscsa;
618 int ret;
619
620 if (*pos >= sizeof(lscsa->fpcr))
621 return -EFBIG;
622
623 ret = spu_acquire_saved(ctx);
624 if (ret)
625 return ret;
626
627 size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
628 buffer, size);
629
630 spu_release_saved(ctx);
631 return size;
632 }
633
634 static const struct file_operations spufs_fpcr_fops = {
635 .open = spufs_regs_open,
636 .read = spufs_fpcr_read,
637 .write = spufs_fpcr_write,
638 .llseek = generic_file_llseek,
639 };
640
641 /* generic open function for all pipe-like files */
642 static int spufs_pipe_open(struct inode *inode, struct file *file)
643 {
644 struct spufs_inode_info *i = SPUFS_I(inode);
645 file->private_data = i->i_ctx;
646
647 return nonseekable_open(inode, file);
648 }
649
650 /*
651 * Read as many bytes from the mailbox as possible, until
652 * one of the conditions becomes true:
653 *
654 * - no more data available in the mailbox
655 * - end of the user provided buffer
656 * - end of the mapped area
657 */
658 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
659 size_t len, loff_t *pos)
660 {
661 struct spu_context *ctx = file->private_data;
662 u32 mbox_data, __user *udata;
663 ssize_t count;
664
665 if (len < 4)
666 return -EINVAL;
667
668 if (!access_ok(VERIFY_WRITE, buf, len))
669 return -EFAULT;
670
671 udata = (void __user *)buf;
672
673 count = spu_acquire(ctx);
674 if (count)
675 return count;
676
677 for (count = 0; (count + 4) <= len; count += 4, udata++) {
678 int ret;
679 ret = ctx->ops->mbox_read(ctx, &mbox_data);
680 if (ret == 0)
681 break;
682
683 /*
684 * at the end of the mapped area, we can fault
685 * but still need to return the data we have
686 * read successfully so far.
687 */
688 ret = __put_user(mbox_data, udata);
689 if (ret) {
690 if (!count)
691 count = -EFAULT;
692 break;
693 }
694 }
695 spu_release(ctx);
696
697 if (!count)
698 count = -EAGAIN;
699
700 return count;
701 }
702
703 static const struct file_operations spufs_mbox_fops = {
704 .open = spufs_pipe_open,
705 .read = spufs_mbox_read,
706 .llseek = no_llseek,
707 };
708
709 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
710 size_t len, loff_t *pos)
711 {
712 struct spu_context *ctx = file->private_data;
713 ssize_t ret;
714 u32 mbox_stat;
715
716 if (len < 4)
717 return -EINVAL;
718
719 ret = spu_acquire(ctx);
720 if (ret)
721 return ret;
722
723 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
724
725 spu_release(ctx);
726
727 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
728 return -EFAULT;
729
730 return 4;
731 }
732
733 static const struct file_operations spufs_mbox_stat_fops = {
734 .open = spufs_pipe_open,
735 .read = spufs_mbox_stat_read,
736 .llseek = no_llseek,
737 };
738
739 /* low-level ibox access function */
740 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
741 {
742 return ctx->ops->ibox_read(ctx, data);
743 }
744
745 static int spufs_ibox_fasync(int fd, struct file *file, int on)
746 {
747 struct spu_context *ctx = file->private_data;
748
749 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
750 }
751
752 /* interrupt-level ibox callback function. */
753 void spufs_ibox_callback(struct spu *spu)
754 {
755 struct spu_context *ctx = spu->ctx;
756
757 if (!ctx)
758 return;
759
760 wake_up_all(&ctx->ibox_wq);
761 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
762 }
763
764 /*
765 * Read as many bytes from the interrupt mailbox as possible, until
766 * one of the conditions becomes true:
767 *
768 * - no more data available in the mailbox
769 * - end of the user provided buffer
770 * - end of the mapped area
771 *
772 * If the file is opened without O_NONBLOCK, we wait here until
773 * any data is available, but return when we have been able to
774 * read something.
775 */
776 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
777 size_t len, loff_t *pos)
778 {
779 struct spu_context *ctx = file->private_data;
780 u32 ibox_data, __user *udata;
781 ssize_t count;
782
783 if (len < 4)
784 return -EINVAL;
785
786 if (!access_ok(VERIFY_WRITE, buf, len))
787 return -EFAULT;
788
789 udata = (void __user *)buf;
790
791 count = spu_acquire(ctx);
792 if (count)
793 goto out;
794
795 /* wait only for the first element */
796 count = 0;
797 if (file->f_flags & O_NONBLOCK) {
798 if (!spu_ibox_read(ctx, &ibox_data)) {
799 count = -EAGAIN;
800 goto out_unlock;
801 }
802 } else {
803 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
804 if (count)
805 goto out;
806 }
807
808 /* if we can't write at all, return -EFAULT */
809 count = __put_user(ibox_data, udata);
810 if (count)
811 goto out_unlock;
812
813 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
814 int ret;
815 ret = ctx->ops->ibox_read(ctx, &ibox_data);
816 if (ret == 0)
817 break;
818 /*
819 * at the end of the mapped area, we can fault
820 * but still need to return the data we have
821 * read successfully so far.
822 */
823 ret = __put_user(ibox_data, udata);
824 if (ret)
825 break;
826 }
827
828 out_unlock:
829 spu_release(ctx);
830 out:
831 return count;
832 }
833
834 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
835 {
836 struct spu_context *ctx = file->private_data;
837 unsigned int mask;
838
839 poll_wait(file, &ctx->ibox_wq, wait);
840
841 /*
842 * For now keep this uninterruptible and also ignore the rule
843 * that poll should not sleep. Will be fixed later.
844 */
845 mutex_lock(&ctx->state_mutex);
846 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
847 spu_release(ctx);
848
849 return mask;
850 }
851
852 static const struct file_operations spufs_ibox_fops = {
853 .open = spufs_pipe_open,
854 .read = spufs_ibox_read,
855 .poll = spufs_ibox_poll,
856 .fasync = spufs_ibox_fasync,
857 .llseek = no_llseek,
858 };
859
860 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
861 size_t len, loff_t *pos)
862 {
863 struct spu_context *ctx = file->private_data;
864 ssize_t ret;
865 u32 ibox_stat;
866
867 if (len < 4)
868 return -EINVAL;
869
870 ret = spu_acquire(ctx);
871 if (ret)
872 return ret;
873 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
874 spu_release(ctx);
875
876 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
877 return -EFAULT;
878
879 return 4;
880 }
881
882 static const struct file_operations spufs_ibox_stat_fops = {
883 .open = spufs_pipe_open,
884 .read = spufs_ibox_stat_read,
885 .llseek = no_llseek,
886 };
887
888 /* low-level mailbox write */
889 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
890 {
891 return ctx->ops->wbox_write(ctx, data);
892 }
893
894 static int spufs_wbox_fasync(int fd, struct file *file, int on)
895 {
896 struct spu_context *ctx = file->private_data;
897 int ret;
898
899 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
900
901 return ret;
902 }
903
904 /* interrupt-level wbox callback function. */
905 void spufs_wbox_callback(struct spu *spu)
906 {
907 struct spu_context *ctx = spu->ctx;
908
909 if (!ctx)
910 return;
911
912 wake_up_all(&ctx->wbox_wq);
913 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
914 }
915
916 /*
917 * Write as many bytes to the interrupt mailbox as possible, until
918 * one of the conditions becomes true:
919 *
920 * - the mailbox is full
921 * - end of the user provided buffer
922 * - end of the mapped area
923 *
924 * If the file is opened without O_NONBLOCK, we wait here until
925 * space is availabyl, but return when we have been able to
926 * write something.
927 */
928 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
929 size_t len, loff_t *pos)
930 {
931 struct spu_context *ctx = file->private_data;
932 u32 wbox_data, __user *udata;
933 ssize_t count;
934
935 if (len < 4)
936 return -EINVAL;
937
938 udata = (void __user *)buf;
939 if (!access_ok(VERIFY_READ, buf, len))
940 return -EFAULT;
941
942 if (__get_user(wbox_data, udata))
943 return -EFAULT;
944
945 count = spu_acquire(ctx);
946 if (count)
947 goto out;
948
949 /*
950 * make sure we can at least write one element, by waiting
951 * in case of !O_NONBLOCK
952 */
953 count = 0;
954 if (file->f_flags & O_NONBLOCK) {
955 if (!spu_wbox_write(ctx, wbox_data)) {
956 count = -EAGAIN;
957 goto out_unlock;
958 }
959 } else {
960 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
961 if (count)
962 goto out;
963 }
964
965
966 /* write as much as possible */
967 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
968 int ret;
969 ret = __get_user(wbox_data, udata);
970 if (ret)
971 break;
972
973 ret = spu_wbox_write(ctx, wbox_data);
974 if (ret == 0)
975 break;
976 }
977
978 out_unlock:
979 spu_release(ctx);
980 out:
981 return count;
982 }
983
984 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
985 {
986 struct spu_context *ctx = file->private_data;
987 unsigned int mask;
988
989 poll_wait(file, &ctx->wbox_wq, wait);
990
991 /*
992 * For now keep this uninterruptible and also ignore the rule
993 * that poll should not sleep. Will be fixed later.
994 */
995 mutex_lock(&ctx->state_mutex);
996 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
997 spu_release(ctx);
998
999 return mask;
1000 }
1001
1002 static const struct file_operations spufs_wbox_fops = {
1003 .open = spufs_pipe_open,
1004 .write = spufs_wbox_write,
1005 .poll = spufs_wbox_poll,
1006 .fasync = spufs_wbox_fasync,
1007 .llseek = no_llseek,
1008 };
1009
1010 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1011 size_t len, loff_t *pos)
1012 {
1013 struct spu_context *ctx = file->private_data;
1014 ssize_t ret;
1015 u32 wbox_stat;
1016
1017 if (len < 4)
1018 return -EINVAL;
1019
1020 ret = spu_acquire(ctx);
1021 if (ret)
1022 return ret;
1023 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1024 spu_release(ctx);
1025
1026 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1027 return -EFAULT;
1028
1029 return 4;
1030 }
1031
1032 static const struct file_operations spufs_wbox_stat_fops = {
1033 .open = spufs_pipe_open,
1034 .read = spufs_wbox_stat_read,
1035 .llseek = no_llseek,
1036 };
1037
1038 static int spufs_signal1_open(struct inode *inode, struct file *file)
1039 {
1040 struct spufs_inode_info *i = SPUFS_I(inode);
1041 struct spu_context *ctx = i->i_ctx;
1042
1043 mutex_lock(&ctx->mapping_lock);
1044 file->private_data = ctx;
1045 if (!i->i_openers++)
1046 ctx->signal1 = inode->i_mapping;
1047 mutex_unlock(&ctx->mapping_lock);
1048 return nonseekable_open(inode, file);
1049 }
1050
1051 static int
1052 spufs_signal1_release(struct inode *inode, struct file *file)
1053 {
1054 struct spufs_inode_info *i = SPUFS_I(inode);
1055 struct spu_context *ctx = i->i_ctx;
1056
1057 mutex_lock(&ctx->mapping_lock);
1058 if (!--i->i_openers)
1059 ctx->signal1 = NULL;
1060 mutex_unlock(&ctx->mapping_lock);
1061 return 0;
1062 }
1063
1064 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1065 size_t len, loff_t *pos)
1066 {
1067 int ret = 0;
1068 u32 data;
1069
1070 if (len < 4)
1071 return -EINVAL;
1072
1073 if (ctx->csa.spu_chnlcnt_RW[3]) {
1074 data = ctx->csa.spu_chnldata_RW[3];
1075 ret = 4;
1076 }
1077
1078 if (!ret)
1079 goto out;
1080
1081 if (copy_to_user(buf, &data, 4))
1082 return -EFAULT;
1083
1084 out:
1085 return ret;
1086 }
1087
1088 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1089 size_t len, loff_t *pos)
1090 {
1091 int ret;
1092 struct spu_context *ctx = file->private_data;
1093
1094 ret = spu_acquire_saved(ctx);
1095 if (ret)
1096 return ret;
1097 ret = __spufs_signal1_read(ctx, buf, len, pos);
1098 spu_release_saved(ctx);
1099
1100 return ret;
1101 }
1102
1103 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1104 size_t len, loff_t *pos)
1105 {
1106 struct spu_context *ctx;
1107 ssize_t ret;
1108 u32 data;
1109
1110 ctx = file->private_data;
1111
1112 if (len < 4)
1113 return -EINVAL;
1114
1115 if (copy_from_user(&data, buf, 4))
1116 return -EFAULT;
1117
1118 ret = spu_acquire(ctx);
1119 if (ret)
1120 return ret;
1121 ctx->ops->signal1_write(ctx, data);
1122 spu_release(ctx);
1123
1124 return 4;
1125 }
1126
1127 static int
1128 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1129 {
1130 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1131 return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1132 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1133 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1134 * signal 1 and 2 area
1135 */
1136 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1137 #else
1138 #error unsupported page size
1139 #endif
1140 }
1141
1142 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1143 .fault = spufs_signal1_mmap_fault,
1144 };
1145
1146 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1147 {
1148 if (!(vma->vm_flags & VM_SHARED))
1149 return -EINVAL;
1150
1151 vma->vm_flags |= VM_IO | VM_PFNMAP;
1152 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1153
1154 vma->vm_ops = &spufs_signal1_mmap_vmops;
1155 return 0;
1156 }
1157
1158 static const struct file_operations spufs_signal1_fops = {
1159 .open = spufs_signal1_open,
1160 .release = spufs_signal1_release,
1161 .read = spufs_signal1_read,
1162 .write = spufs_signal1_write,
1163 .mmap = spufs_signal1_mmap,
1164 .llseek = no_llseek,
1165 };
1166
1167 static const struct file_operations spufs_signal1_nosched_fops = {
1168 .open = spufs_signal1_open,
1169 .release = spufs_signal1_release,
1170 .write = spufs_signal1_write,
1171 .mmap = spufs_signal1_mmap,
1172 .llseek = no_llseek,
1173 };
1174
1175 static int spufs_signal2_open(struct inode *inode, struct file *file)
1176 {
1177 struct spufs_inode_info *i = SPUFS_I(inode);
1178 struct spu_context *ctx = i->i_ctx;
1179
1180 mutex_lock(&ctx->mapping_lock);
1181 file->private_data = ctx;
1182 if (!i->i_openers++)
1183 ctx->signal2 = inode->i_mapping;
1184 mutex_unlock(&ctx->mapping_lock);
1185 return nonseekable_open(inode, file);
1186 }
1187
1188 static int
1189 spufs_signal2_release(struct inode *inode, struct file *file)
1190 {
1191 struct spufs_inode_info *i = SPUFS_I(inode);
1192 struct spu_context *ctx = i->i_ctx;
1193
1194 mutex_lock(&ctx->mapping_lock);
1195 if (!--i->i_openers)
1196 ctx->signal2 = NULL;
1197 mutex_unlock(&ctx->mapping_lock);
1198 return 0;
1199 }
1200
1201 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1202 size_t len, loff_t *pos)
1203 {
1204 int ret = 0;
1205 u32 data;
1206
1207 if (len < 4)
1208 return -EINVAL;
1209
1210 if (ctx->csa.spu_chnlcnt_RW[4]) {
1211 data = ctx->csa.spu_chnldata_RW[4];
1212 ret = 4;
1213 }
1214
1215 if (!ret)
1216 goto out;
1217
1218 if (copy_to_user(buf, &data, 4))
1219 return -EFAULT;
1220
1221 out:
1222 return ret;
1223 }
1224
1225 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1226 size_t len, loff_t *pos)
1227 {
1228 struct spu_context *ctx = file->private_data;
1229 int ret;
1230
1231 ret = spu_acquire_saved(ctx);
1232 if (ret)
1233 return ret;
1234 ret = __spufs_signal2_read(ctx, buf, len, pos);
1235 spu_release_saved(ctx);
1236
1237 return ret;
1238 }
1239
1240 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1241 size_t len, loff_t *pos)
1242 {
1243 struct spu_context *ctx;
1244 ssize_t ret;
1245 u32 data;
1246
1247 ctx = file->private_data;
1248
1249 if (len < 4)
1250 return -EINVAL;
1251
1252 if (copy_from_user(&data, buf, 4))
1253 return -EFAULT;
1254
1255 ret = spu_acquire(ctx);
1256 if (ret)
1257 return ret;
1258 ctx->ops->signal2_write(ctx, data);
1259 spu_release(ctx);
1260
1261 return 4;
1262 }
1263
1264 #if SPUFS_MMAP_4K
1265 static int
1266 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1267 {
1268 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1269 return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1270 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1271 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1272 * signal 1 and 2 area
1273 */
1274 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1275 #else
1276 #error unsupported page size
1277 #endif
1278 }
1279
1280 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1281 .fault = spufs_signal2_mmap_fault,
1282 };
1283
1284 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1285 {
1286 if (!(vma->vm_flags & VM_SHARED))
1287 return -EINVAL;
1288
1289 vma->vm_flags |= VM_IO | VM_PFNMAP;
1290 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1291
1292 vma->vm_ops = &spufs_signal2_mmap_vmops;
1293 return 0;
1294 }
1295 #else /* SPUFS_MMAP_4K */
1296 #define spufs_signal2_mmap NULL
1297 #endif /* !SPUFS_MMAP_4K */
1298
1299 static const struct file_operations spufs_signal2_fops = {
1300 .open = spufs_signal2_open,
1301 .release = spufs_signal2_release,
1302 .read = spufs_signal2_read,
1303 .write = spufs_signal2_write,
1304 .mmap = spufs_signal2_mmap,
1305 .llseek = no_llseek,
1306 };
1307
1308 static const struct file_operations spufs_signal2_nosched_fops = {
1309 .open = spufs_signal2_open,
1310 .release = spufs_signal2_release,
1311 .write = spufs_signal2_write,
1312 .mmap = spufs_signal2_mmap,
1313 .llseek = no_llseek,
1314 };
1315
1316 /*
1317 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1318 * work of acquiring (or not) the SPU context before calling through
1319 * to the actual get routine. The set routine is called directly.
1320 */
1321 #define SPU_ATTR_NOACQUIRE 0
1322 #define SPU_ATTR_ACQUIRE 1
1323 #define SPU_ATTR_ACQUIRE_SAVED 2
1324
1325 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1326 static int __##__get(void *data, u64 *val) \
1327 { \
1328 struct spu_context *ctx = data; \
1329 int ret = 0; \
1330 \
1331 if (__acquire == SPU_ATTR_ACQUIRE) { \
1332 ret = spu_acquire(ctx); \
1333 if (ret) \
1334 return ret; \
1335 *val = __get(ctx); \
1336 spu_release(ctx); \
1337 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1338 ret = spu_acquire_saved(ctx); \
1339 if (ret) \
1340 return ret; \
1341 *val = __get(ctx); \
1342 spu_release_saved(ctx); \
1343 } else \
1344 *val = __get(ctx); \
1345 \
1346 return 0; \
1347 } \
1348 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1349
1350 static int spufs_signal1_type_set(void *data, u64 val)
1351 {
1352 struct spu_context *ctx = data;
1353 int ret;
1354
1355 ret = spu_acquire(ctx);
1356 if (ret)
1357 return ret;
1358 ctx->ops->signal1_type_set(ctx, val);
1359 spu_release(ctx);
1360
1361 return 0;
1362 }
1363
1364 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1365 {
1366 return ctx->ops->signal1_type_get(ctx);
1367 }
1368 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1369 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1370
1371
1372 static int spufs_signal2_type_set(void *data, u64 val)
1373 {
1374 struct spu_context *ctx = data;
1375 int ret;
1376
1377 ret = spu_acquire(ctx);
1378 if (ret)
1379 return ret;
1380 ctx->ops->signal2_type_set(ctx, val);
1381 spu_release(ctx);
1382
1383 return 0;
1384 }
1385
1386 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1387 {
1388 return ctx->ops->signal2_type_get(ctx);
1389 }
1390 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1391 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1392
1393 #if SPUFS_MMAP_4K
1394 static int
1395 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1396 {
1397 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1398 }
1399
1400 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1401 .fault = spufs_mss_mmap_fault,
1402 };
1403
1404 /*
1405 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1406 */
1407 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1408 {
1409 if (!(vma->vm_flags & VM_SHARED))
1410 return -EINVAL;
1411
1412 vma->vm_flags |= VM_IO | VM_PFNMAP;
1413 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1414
1415 vma->vm_ops = &spufs_mss_mmap_vmops;
1416 return 0;
1417 }
1418 #else /* SPUFS_MMAP_4K */
1419 #define spufs_mss_mmap NULL
1420 #endif /* !SPUFS_MMAP_4K */
1421
1422 static int spufs_mss_open(struct inode *inode, struct file *file)
1423 {
1424 struct spufs_inode_info *i = SPUFS_I(inode);
1425 struct spu_context *ctx = i->i_ctx;
1426
1427 file->private_data = i->i_ctx;
1428
1429 mutex_lock(&ctx->mapping_lock);
1430 if (!i->i_openers++)
1431 ctx->mss = inode->i_mapping;
1432 mutex_unlock(&ctx->mapping_lock);
1433 return nonseekable_open(inode, file);
1434 }
1435
1436 static int
1437 spufs_mss_release(struct inode *inode, struct file *file)
1438 {
1439 struct spufs_inode_info *i = SPUFS_I(inode);
1440 struct spu_context *ctx = i->i_ctx;
1441
1442 mutex_lock(&ctx->mapping_lock);
1443 if (!--i->i_openers)
1444 ctx->mss = NULL;
1445 mutex_unlock(&ctx->mapping_lock);
1446 return 0;
1447 }
1448
1449 static const struct file_operations spufs_mss_fops = {
1450 .open = spufs_mss_open,
1451 .release = spufs_mss_release,
1452 .mmap = spufs_mss_mmap,
1453 .llseek = no_llseek,
1454 };
1455
1456 static int
1457 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1458 {
1459 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1460 }
1461
1462 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1463 .fault = spufs_psmap_mmap_fault,
1464 };
1465
1466 /*
1467 * mmap support for full problem state area [0x00000 - 0x1ffff].
1468 */
1469 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1470 {
1471 if (!(vma->vm_flags & VM_SHARED))
1472 return -EINVAL;
1473
1474 vma->vm_flags |= VM_IO | VM_PFNMAP;
1475 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1476
1477 vma->vm_ops = &spufs_psmap_mmap_vmops;
1478 return 0;
1479 }
1480
1481 static int spufs_psmap_open(struct inode *inode, struct file *file)
1482 {
1483 struct spufs_inode_info *i = SPUFS_I(inode);
1484 struct spu_context *ctx = i->i_ctx;
1485
1486 mutex_lock(&ctx->mapping_lock);
1487 file->private_data = i->i_ctx;
1488 if (!i->i_openers++)
1489 ctx->psmap = inode->i_mapping;
1490 mutex_unlock(&ctx->mapping_lock);
1491 return nonseekable_open(inode, file);
1492 }
1493
1494 static int
1495 spufs_psmap_release(struct inode *inode, struct file *file)
1496 {
1497 struct spufs_inode_info *i = SPUFS_I(inode);
1498 struct spu_context *ctx = i->i_ctx;
1499
1500 mutex_lock(&ctx->mapping_lock);
1501 if (!--i->i_openers)
1502 ctx->psmap = NULL;
1503 mutex_unlock(&ctx->mapping_lock);
1504 return 0;
1505 }
1506
1507 static const struct file_operations spufs_psmap_fops = {
1508 .open = spufs_psmap_open,
1509 .release = spufs_psmap_release,
1510 .mmap = spufs_psmap_mmap,
1511 .llseek = no_llseek,
1512 };
1513
1514
1515 #if SPUFS_MMAP_4K
1516 static int
1517 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1518 {
1519 return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1520 }
1521
1522 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1523 .fault = spufs_mfc_mmap_fault,
1524 };
1525
1526 /*
1527 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1528 */
1529 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1530 {
1531 if (!(vma->vm_flags & VM_SHARED))
1532 return -EINVAL;
1533
1534 vma->vm_flags |= VM_IO | VM_PFNMAP;
1535 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1536
1537 vma->vm_ops = &spufs_mfc_mmap_vmops;
1538 return 0;
1539 }
1540 #else /* SPUFS_MMAP_4K */
1541 #define spufs_mfc_mmap NULL
1542 #endif /* !SPUFS_MMAP_4K */
1543
1544 static int spufs_mfc_open(struct inode *inode, struct file *file)
1545 {
1546 struct spufs_inode_info *i = SPUFS_I(inode);
1547 struct spu_context *ctx = i->i_ctx;
1548
1549 /* we don't want to deal with DMA into other processes */
1550 if (ctx->owner != current->mm)
1551 return -EINVAL;
1552
1553 if (atomic_read(&inode->i_count) != 1)
1554 return -EBUSY;
1555
1556 mutex_lock(&ctx->mapping_lock);
1557 file->private_data = ctx;
1558 if (!i->i_openers++)
1559 ctx->mfc = inode->i_mapping;
1560 mutex_unlock(&ctx->mapping_lock);
1561 return nonseekable_open(inode, file);
1562 }
1563
1564 static int
1565 spufs_mfc_release(struct inode *inode, struct file *file)
1566 {
1567 struct spufs_inode_info *i = SPUFS_I(inode);
1568 struct spu_context *ctx = i->i_ctx;
1569
1570 mutex_lock(&ctx->mapping_lock);
1571 if (!--i->i_openers)
1572 ctx->mfc = NULL;
1573 mutex_unlock(&ctx->mapping_lock);
1574 return 0;
1575 }
1576
1577 /* interrupt-level mfc callback function. */
1578 void spufs_mfc_callback(struct spu *spu)
1579 {
1580 struct spu_context *ctx = spu->ctx;
1581
1582 if (!ctx)
1583 return;
1584
1585 wake_up_all(&ctx->mfc_wq);
1586
1587 pr_debug("%s %s\n", __func__, spu->name);
1588 if (ctx->mfc_fasync) {
1589 u32 free_elements, tagstatus;
1590 unsigned int mask;
1591
1592 /* no need for spu_acquire in interrupt context */
1593 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1594 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1595
1596 mask = 0;
1597 if (free_elements & 0xffff)
1598 mask |= POLLOUT;
1599 if (tagstatus & ctx->tagwait)
1600 mask |= POLLIN;
1601
1602 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1603 }
1604 }
1605
1606 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1607 {
1608 /* See if there is one tag group is complete */
1609 /* FIXME we need locking around tagwait */
1610 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1611 ctx->tagwait &= ~*status;
1612 if (*status)
1613 return 1;
1614
1615 /* enable interrupt waiting for any tag group,
1616 may silently fail if interrupts are already enabled */
1617 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1618 return 0;
1619 }
1620
1621 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1622 size_t size, loff_t *pos)
1623 {
1624 struct spu_context *ctx = file->private_data;
1625 int ret = -EINVAL;
1626 u32 status;
1627
1628 if (size != 4)
1629 goto out;
1630
1631 ret = spu_acquire(ctx);
1632 if (ret)
1633 return ret;
1634
1635 ret = -EINVAL;
1636 if (file->f_flags & O_NONBLOCK) {
1637 status = ctx->ops->read_mfc_tagstatus(ctx);
1638 if (!(status & ctx->tagwait))
1639 ret = -EAGAIN;
1640 else
1641 /* XXX(hch): shouldn't we clear ret here? */
1642 ctx->tagwait &= ~status;
1643 } else {
1644 ret = spufs_wait(ctx->mfc_wq,
1645 spufs_read_mfc_tagstatus(ctx, &status));
1646 if (ret)
1647 goto out;
1648 }
1649 spu_release(ctx);
1650
1651 ret = 4;
1652 if (copy_to_user(buffer, &status, 4))
1653 ret = -EFAULT;
1654
1655 out:
1656 return ret;
1657 }
1658
1659 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1660 {
1661 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1662 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1663
1664 switch (cmd->cmd) {
1665 case MFC_PUT_CMD:
1666 case MFC_PUTF_CMD:
1667 case MFC_PUTB_CMD:
1668 case MFC_GET_CMD:
1669 case MFC_GETF_CMD:
1670 case MFC_GETB_CMD:
1671 break;
1672 default:
1673 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1674 return -EIO;
1675 }
1676
1677 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1678 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1679 cmd->ea, cmd->lsa);
1680 return -EIO;
1681 }
1682
1683 switch (cmd->size & 0xf) {
1684 case 1:
1685 break;
1686 case 2:
1687 if (cmd->lsa & 1)
1688 goto error;
1689 break;
1690 case 4:
1691 if (cmd->lsa & 3)
1692 goto error;
1693 break;
1694 case 8:
1695 if (cmd->lsa & 7)
1696 goto error;
1697 break;
1698 case 0:
1699 if (cmd->lsa & 15)
1700 goto error;
1701 break;
1702 error:
1703 default:
1704 pr_debug("invalid DMA alignment %x for size %x\n",
1705 cmd->lsa & 0xf, cmd->size);
1706 return -EIO;
1707 }
1708
1709 if (cmd->size > 16 * 1024) {
1710 pr_debug("invalid DMA size %x\n", cmd->size);
1711 return -EIO;
1712 }
1713
1714 if (cmd->tag & 0xfff0) {
1715 /* we reserve the higher tag numbers for kernel use */
1716 pr_debug("invalid DMA tag\n");
1717 return -EIO;
1718 }
1719
1720 if (cmd->class) {
1721 /* not supported in this version */
1722 pr_debug("invalid DMA class\n");
1723 return -EIO;
1724 }
1725
1726 return 0;
1727 }
1728
1729 static int spu_send_mfc_command(struct spu_context *ctx,
1730 struct mfc_dma_command cmd,
1731 int *error)
1732 {
1733 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1734 if (*error == -EAGAIN) {
1735 /* wait for any tag group to complete
1736 so we have space for the new command */
1737 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1738 /* try again, because the queue might be
1739 empty again */
1740 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1741 if (*error == -EAGAIN)
1742 return 0;
1743 }
1744 return 1;
1745 }
1746
1747 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1748 size_t size, loff_t *pos)
1749 {
1750 struct spu_context *ctx = file->private_data;
1751 struct mfc_dma_command cmd;
1752 int ret = -EINVAL;
1753
1754 if (size != sizeof cmd)
1755 goto out;
1756
1757 ret = -EFAULT;
1758 if (copy_from_user(&cmd, buffer, sizeof cmd))
1759 goto out;
1760
1761 ret = spufs_check_valid_dma(&cmd);
1762 if (ret)
1763 goto out;
1764
1765 ret = spu_acquire(ctx);
1766 if (ret)
1767 goto out;
1768
1769 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1770 if (ret)
1771 goto out;
1772
1773 if (file->f_flags & O_NONBLOCK) {
1774 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1775 } else {
1776 int status;
1777 ret = spufs_wait(ctx->mfc_wq,
1778 spu_send_mfc_command(ctx, cmd, &status));
1779 if (ret)
1780 goto out;
1781 if (status)
1782 ret = status;
1783 }
1784
1785 if (ret)
1786 goto out_unlock;
1787
1788 ctx->tagwait |= 1 << cmd.tag;
1789 ret = size;
1790
1791 out_unlock:
1792 spu_release(ctx);
1793 out:
1794 return ret;
1795 }
1796
1797 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1798 {
1799 struct spu_context *ctx = file->private_data;
1800 u32 free_elements, tagstatus;
1801 unsigned int mask;
1802
1803 poll_wait(file, &ctx->mfc_wq, wait);
1804
1805 /*
1806 * For now keep this uninterruptible and also ignore the rule
1807 * that poll should not sleep. Will be fixed later.
1808 */
1809 mutex_lock(&ctx->state_mutex);
1810 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1811 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1812 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1813 spu_release(ctx);
1814
1815 mask = 0;
1816 if (free_elements & 0xffff)
1817 mask |= POLLOUT | POLLWRNORM;
1818 if (tagstatus & ctx->tagwait)
1819 mask |= POLLIN | POLLRDNORM;
1820
1821 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1822 free_elements, tagstatus, ctx->tagwait);
1823
1824 return mask;
1825 }
1826
1827 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1828 {
1829 struct spu_context *ctx = file->private_data;
1830 int ret;
1831
1832 ret = spu_acquire(ctx);
1833 if (ret)
1834 goto out;
1835 #if 0
1836 /* this currently hangs */
1837 ret = spufs_wait(ctx->mfc_wq,
1838 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1839 if (ret)
1840 goto out;
1841 ret = spufs_wait(ctx->mfc_wq,
1842 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1843 if (ret)
1844 goto out;
1845 #else
1846 ret = 0;
1847 #endif
1848 spu_release(ctx);
1849 out:
1850 return ret;
1851 }
1852
1853 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1854 {
1855 struct inode *inode = file->f_path.dentry->d_inode;
1856 int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1857 if (!err) {
1858 mutex_lock(&inode->i_mutex);
1859 err = spufs_mfc_flush(file, NULL);
1860 mutex_unlock(&inode->i_mutex);
1861 }
1862 return err;
1863 }
1864
1865 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1866 {
1867 struct spu_context *ctx = file->private_data;
1868
1869 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1870 }
1871
1872 static const struct file_operations spufs_mfc_fops = {
1873 .open = spufs_mfc_open,
1874 .release = spufs_mfc_release,
1875 .read = spufs_mfc_read,
1876 .write = spufs_mfc_write,
1877 .poll = spufs_mfc_poll,
1878 .flush = spufs_mfc_flush,
1879 .fsync = spufs_mfc_fsync,
1880 .fasync = spufs_mfc_fasync,
1881 .mmap = spufs_mfc_mmap,
1882 .llseek = no_llseek,
1883 };
1884
1885 static int spufs_npc_set(void *data, u64 val)
1886 {
1887 struct spu_context *ctx = data;
1888 int ret;
1889
1890 ret = spu_acquire(ctx);
1891 if (ret)
1892 return ret;
1893 ctx->ops->npc_write(ctx, val);
1894 spu_release(ctx);
1895
1896 return 0;
1897 }
1898
1899 static u64 spufs_npc_get(struct spu_context *ctx)
1900 {
1901 return ctx->ops->npc_read(ctx);
1902 }
1903 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1904 "0x%llx\n", SPU_ATTR_ACQUIRE);
1905
1906 static int spufs_decr_set(void *data, u64 val)
1907 {
1908 struct spu_context *ctx = data;
1909 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1910 int ret;
1911
1912 ret = spu_acquire_saved(ctx);
1913 if (ret)
1914 return ret;
1915 lscsa->decr.slot[0] = (u32) val;
1916 spu_release_saved(ctx);
1917
1918 return 0;
1919 }
1920
1921 static u64 spufs_decr_get(struct spu_context *ctx)
1922 {
1923 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1924 return lscsa->decr.slot[0];
1925 }
1926 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1927 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1928
1929 static int spufs_decr_status_set(void *data, u64 val)
1930 {
1931 struct spu_context *ctx = data;
1932 int ret;
1933
1934 ret = spu_acquire_saved(ctx);
1935 if (ret)
1936 return ret;
1937 if (val)
1938 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1939 else
1940 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1941 spu_release_saved(ctx);
1942
1943 return 0;
1944 }
1945
1946 static u64 spufs_decr_status_get(struct spu_context *ctx)
1947 {
1948 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1949 return SPU_DECR_STATUS_RUNNING;
1950 else
1951 return 0;
1952 }
1953 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1954 spufs_decr_status_set, "0x%llx\n",
1955 SPU_ATTR_ACQUIRE_SAVED);
1956
1957 static int spufs_event_mask_set(void *data, u64 val)
1958 {
1959 struct spu_context *ctx = data;
1960 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1961 int ret;
1962
1963 ret = spu_acquire_saved(ctx);
1964 if (ret)
1965 return ret;
1966 lscsa->event_mask.slot[0] = (u32) val;
1967 spu_release_saved(ctx);
1968
1969 return 0;
1970 }
1971
1972 static u64 spufs_event_mask_get(struct spu_context *ctx)
1973 {
1974 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1975 return lscsa->event_mask.slot[0];
1976 }
1977
1978 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1979 spufs_event_mask_set, "0x%llx\n",
1980 SPU_ATTR_ACQUIRE_SAVED);
1981
1982 static u64 spufs_event_status_get(struct spu_context *ctx)
1983 {
1984 struct spu_state *state = &ctx->csa;
1985 u64 stat;
1986 stat = state->spu_chnlcnt_RW[0];
1987 if (stat)
1988 return state->spu_chnldata_RW[0];
1989 return 0;
1990 }
1991 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1992 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1993
1994 static int spufs_srr0_set(void *data, u64 val)
1995 {
1996 struct spu_context *ctx = data;
1997 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1998 int ret;
1999
2000 ret = spu_acquire_saved(ctx);
2001 if (ret)
2002 return ret;
2003 lscsa->srr0.slot[0] = (u32) val;
2004 spu_release_saved(ctx);
2005
2006 return 0;
2007 }
2008
2009 static u64 spufs_srr0_get(struct spu_context *ctx)
2010 {
2011 struct spu_lscsa *lscsa = ctx->csa.lscsa;
2012 return lscsa->srr0.slot[0];
2013 }
2014 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2015 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2016
2017 static u64 spufs_id_get(struct spu_context *ctx)
2018 {
2019 u64 num;
2020
2021 if (ctx->state == SPU_STATE_RUNNABLE)
2022 num = ctx->spu->number;
2023 else
2024 num = (unsigned int)-1;
2025
2026 return num;
2027 }
2028 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2029 SPU_ATTR_ACQUIRE)
2030
2031 static u64 spufs_object_id_get(struct spu_context *ctx)
2032 {
2033 /* FIXME: Should there really be no locking here? */
2034 return ctx->object_id;
2035 }
2036
2037 static int spufs_object_id_set(void *data, u64 id)
2038 {
2039 struct spu_context *ctx = data;
2040 ctx->object_id = id;
2041
2042 return 0;
2043 }
2044
2045 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2046 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2047
2048 static u64 spufs_lslr_get(struct spu_context *ctx)
2049 {
2050 return ctx->csa.priv2.spu_lslr_RW;
2051 }
2052 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2053 SPU_ATTR_ACQUIRE_SAVED);
2054
2055 static int spufs_info_open(struct inode *inode, struct file *file)
2056 {
2057 struct spufs_inode_info *i = SPUFS_I(inode);
2058 struct spu_context *ctx = i->i_ctx;
2059 file->private_data = ctx;
2060 return 0;
2061 }
2062
2063 static int spufs_caps_show(struct seq_file *s, void *private)
2064 {
2065 struct spu_context *ctx = s->private;
2066
2067 if (!(ctx->flags & SPU_CREATE_NOSCHED))
2068 seq_puts(s, "sched\n");
2069 if (!(ctx->flags & SPU_CREATE_ISOLATE))
2070 seq_puts(s, "step\n");
2071 return 0;
2072 }
2073
2074 static int spufs_caps_open(struct inode *inode, struct file *file)
2075 {
2076 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2077 }
2078
2079 static const struct file_operations spufs_caps_fops = {
2080 .open = spufs_caps_open,
2081 .read = seq_read,
2082 .llseek = seq_lseek,
2083 .release = single_release,
2084 };
2085
2086 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2087 char __user *buf, size_t len, loff_t *pos)
2088 {
2089 u32 data;
2090
2091 /* EOF if there's no entry in the mbox */
2092 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2093 return 0;
2094
2095 data = ctx->csa.prob.pu_mb_R;
2096
2097 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2098 }
2099
2100 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2101 size_t len, loff_t *pos)
2102 {
2103 int ret;
2104 struct spu_context *ctx = file->private_data;
2105
2106 if (!access_ok(VERIFY_WRITE, buf, len))
2107 return -EFAULT;
2108
2109 ret = spu_acquire_saved(ctx);
2110 if (ret)
2111 return ret;
2112 spin_lock(&ctx->csa.register_lock);
2113 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2114 spin_unlock(&ctx->csa.register_lock);
2115 spu_release_saved(ctx);
2116
2117 return ret;
2118 }
2119
2120 static const struct file_operations spufs_mbox_info_fops = {
2121 .open = spufs_info_open,
2122 .read = spufs_mbox_info_read,
2123 .llseek = generic_file_llseek,
2124 };
2125
2126 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2127 char __user *buf, size_t len, loff_t *pos)
2128 {
2129 u32 data;
2130
2131 /* EOF if there's no entry in the ibox */
2132 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2133 return 0;
2134
2135 data = ctx->csa.priv2.puint_mb_R;
2136
2137 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2138 }
2139
2140 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2141 size_t len, loff_t *pos)
2142 {
2143 struct spu_context *ctx = file->private_data;
2144 int ret;
2145
2146 if (!access_ok(VERIFY_WRITE, buf, len))
2147 return -EFAULT;
2148
2149 ret = spu_acquire_saved(ctx);
2150 if (ret)
2151 return ret;
2152 spin_lock(&ctx->csa.register_lock);
2153 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2154 spin_unlock(&ctx->csa.register_lock);
2155 spu_release_saved(ctx);
2156
2157 return ret;
2158 }
2159
2160 static const struct file_operations spufs_ibox_info_fops = {
2161 .open = spufs_info_open,
2162 .read = spufs_ibox_info_read,
2163 .llseek = generic_file_llseek,
2164 };
2165
2166 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2167 char __user *buf, size_t len, loff_t *pos)
2168 {
2169 int i, cnt;
2170 u32 data[4];
2171 u32 wbox_stat;
2172
2173 wbox_stat = ctx->csa.prob.mb_stat_R;
2174 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2175 for (i = 0; i < cnt; i++) {
2176 data[i] = ctx->csa.spu_mailbox_data[i];
2177 }
2178
2179 return simple_read_from_buffer(buf, len, pos, &data,
2180 cnt * sizeof(u32));
2181 }
2182
2183 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2184 size_t len, loff_t *pos)
2185 {
2186 struct spu_context *ctx = file->private_data;
2187 int ret;
2188
2189 if (!access_ok(VERIFY_WRITE, buf, len))
2190 return -EFAULT;
2191
2192 ret = spu_acquire_saved(ctx);
2193 if (ret)
2194 return ret;
2195 spin_lock(&ctx->csa.register_lock);
2196 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2197 spin_unlock(&ctx->csa.register_lock);
2198 spu_release_saved(ctx);
2199
2200 return ret;
2201 }
2202
2203 static const struct file_operations spufs_wbox_info_fops = {
2204 .open = spufs_info_open,
2205 .read = spufs_wbox_info_read,
2206 .llseek = generic_file_llseek,
2207 };
2208
2209 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2210 char __user *buf, size_t len, loff_t *pos)
2211 {
2212 struct spu_dma_info info;
2213 struct mfc_cq_sr *qp, *spuqp;
2214 int i;
2215
2216 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2217 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2218 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2219 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2220 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2221 for (i = 0; i < 16; i++) {
2222 qp = &info.dma_info_command_data[i];
2223 spuqp = &ctx->csa.priv2.spuq[i];
2224
2225 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2226 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2227 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2228 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2229 }
2230
2231 return simple_read_from_buffer(buf, len, pos, &info,
2232 sizeof info);
2233 }
2234
2235 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2236 size_t len, loff_t *pos)
2237 {
2238 struct spu_context *ctx = file->private_data;
2239 int ret;
2240
2241 if (!access_ok(VERIFY_WRITE, buf, len))
2242 return -EFAULT;
2243
2244 ret = spu_acquire_saved(ctx);
2245 if (ret)
2246 return ret;
2247 spin_lock(&ctx->csa.register_lock);
2248 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2249 spin_unlock(&ctx->csa.register_lock);
2250 spu_release_saved(ctx);
2251
2252 return ret;
2253 }
2254
2255 static const struct file_operations spufs_dma_info_fops = {
2256 .open = spufs_info_open,
2257 .read = spufs_dma_info_read,
2258 .llseek = no_llseek,
2259 };
2260
2261 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2262 char __user *buf, size_t len, loff_t *pos)
2263 {
2264 struct spu_proxydma_info info;
2265 struct mfc_cq_sr *qp, *puqp;
2266 int ret = sizeof info;
2267 int i;
2268
2269 if (len < ret)
2270 return -EINVAL;
2271
2272 if (!access_ok(VERIFY_WRITE, buf, len))
2273 return -EFAULT;
2274
2275 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2276 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2277 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2278 for (i = 0; i < 8; i++) {
2279 qp = &info.proxydma_info_command_data[i];
2280 puqp = &ctx->csa.priv2.puq[i];
2281
2282 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2283 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2284 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2285 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2286 }
2287
2288 return simple_read_from_buffer(buf, len, pos, &info,
2289 sizeof info);
2290 }
2291
2292 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2293 size_t len, loff_t *pos)
2294 {
2295 struct spu_context *ctx = file->private_data;
2296 int ret;
2297
2298 ret = spu_acquire_saved(ctx);
2299 if (ret)
2300 return ret;
2301 spin_lock(&ctx->csa.register_lock);
2302 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2303 spin_unlock(&ctx->csa.register_lock);
2304 spu_release_saved(ctx);
2305
2306 return ret;
2307 }
2308
2309 static const struct file_operations spufs_proxydma_info_fops = {
2310 .open = spufs_info_open,
2311 .read = spufs_proxydma_info_read,
2312 .llseek = no_llseek,
2313 };
2314
2315 static int spufs_show_tid(struct seq_file *s, void *private)
2316 {
2317 struct spu_context *ctx = s->private;
2318
2319 seq_printf(s, "%d\n", ctx->tid);
2320 return 0;
2321 }
2322
2323 static int spufs_tid_open(struct inode *inode, struct file *file)
2324 {
2325 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2326 }
2327
2328 static const struct file_operations spufs_tid_fops = {
2329 .open = spufs_tid_open,
2330 .read = seq_read,
2331 .llseek = seq_lseek,
2332 .release = single_release,
2333 };
2334
2335 static const char *ctx_state_names[] = {
2336 "user", "system", "iowait", "loaded"
2337 };
2338
2339 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2340 enum spu_utilization_state state)
2341 {
2342 struct timespec ts;
2343 unsigned long long time = ctx->stats.times[state];
2344
2345 /*
2346 * In general, utilization statistics are updated by the controlling
2347 * thread as the spu context moves through various well defined
2348 * state transitions, but if the context is lazily loaded its
2349 * utilization statistics are not updated as the controlling thread
2350 * is not tightly coupled with the execution of the spu context. We
2351 * calculate and apply the time delta from the last recorded state
2352 * of the spu context.
2353 */
2354 if (ctx->spu && ctx->stats.util_state == state) {
2355 ktime_get_ts(&ts);
2356 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2357 }
2358
2359 return time / NSEC_PER_MSEC;
2360 }
2361
2362 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2363 {
2364 unsigned long long slb_flts = ctx->stats.slb_flt;
2365
2366 if (ctx->state == SPU_STATE_RUNNABLE) {
2367 slb_flts += (ctx->spu->stats.slb_flt -
2368 ctx->stats.slb_flt_base);
2369 }
2370
2371 return slb_flts;
2372 }
2373
2374 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2375 {
2376 unsigned long long class2_intrs = ctx->stats.class2_intr;
2377
2378 if (ctx->state == SPU_STATE_RUNNABLE) {
2379 class2_intrs += (ctx->spu->stats.class2_intr -
2380 ctx->stats.class2_intr_base);
2381 }
2382
2383 return class2_intrs;
2384 }
2385
2386
2387 static int spufs_show_stat(struct seq_file *s, void *private)
2388 {
2389 struct spu_context *ctx = s->private;
2390 int ret;
2391
2392 ret = spu_acquire(ctx);
2393 if (ret)
2394 return ret;
2395
2396 seq_printf(s, "%s %llu %llu %llu %llu "
2397 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2398 ctx_state_names[ctx->stats.util_state],
2399 spufs_acct_time(ctx, SPU_UTIL_USER),
2400 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2401 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2402 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2403 ctx->stats.vol_ctx_switch,
2404 ctx->stats.invol_ctx_switch,
2405 spufs_slb_flts(ctx),
2406 ctx->stats.hash_flt,
2407 ctx->stats.min_flt,
2408 ctx->stats.maj_flt,
2409 spufs_class2_intrs(ctx),
2410 ctx->stats.libassist);
2411 spu_release(ctx);
2412 return 0;
2413 }
2414
2415 static int spufs_stat_open(struct inode *inode, struct file *file)
2416 {
2417 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2418 }
2419
2420 static const struct file_operations spufs_stat_fops = {
2421 .open = spufs_stat_open,
2422 .read = seq_read,
2423 .llseek = seq_lseek,
2424 .release = single_release,
2425 };
2426
2427 static inline int spufs_switch_log_used(struct spu_context *ctx)
2428 {
2429 return (ctx->switch_log->head - ctx->switch_log->tail) %
2430 SWITCH_LOG_BUFSIZE;
2431 }
2432
2433 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2434 {
2435 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2436 }
2437
2438 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2439 {
2440 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2441 int rc;
2442
2443 rc = spu_acquire(ctx);
2444 if (rc)
2445 return rc;
2446
2447 if (ctx->switch_log) {
2448 rc = -EBUSY;
2449 goto out;
2450 }
2451
2452 ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2453 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2454 GFP_KERNEL);
2455
2456 if (!ctx->switch_log) {
2457 rc = -ENOMEM;
2458 goto out;
2459 }
2460
2461 ctx->switch_log->head = ctx->switch_log->tail = 0;
2462 init_waitqueue_head(&ctx->switch_log->wait);
2463 rc = 0;
2464
2465 out:
2466 spu_release(ctx);
2467 return rc;
2468 }
2469
2470 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2471 {
2472 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2473 int rc;
2474
2475 rc = spu_acquire(ctx);
2476 if (rc)
2477 return rc;
2478
2479 kfree(ctx->switch_log);
2480 ctx->switch_log = NULL;
2481 spu_release(ctx);
2482
2483 return 0;
2484 }
2485
2486 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2487 {
2488 struct switch_log_entry *p;
2489
2490 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2491
2492 return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2493 (unsigned int) p->tstamp.tv_sec,
2494 (unsigned int) p->tstamp.tv_nsec,
2495 p->spu_id,
2496 (unsigned int) p->type,
2497 (unsigned int) p->val,
2498 (unsigned long long) p->timebase);
2499 }
2500
2501 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2502 size_t len, loff_t *ppos)
2503 {
2504 struct inode *inode = file->f_path.dentry->d_inode;
2505 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2506 int error = 0, cnt = 0;
2507
2508 if (!buf)
2509 return -EINVAL;
2510
2511 error = spu_acquire(ctx);
2512 if (error)
2513 return error;
2514
2515 while (cnt < len) {
2516 char tbuf[128];
2517 int width;
2518
2519 if (spufs_switch_log_used(ctx) == 0) {
2520 if (cnt > 0) {
2521 /* If there's data ready to go, we can
2522 * just return straight away */
2523 break;
2524
2525 } else if (file->f_flags & O_NONBLOCK) {
2526 error = -EAGAIN;
2527 break;
2528
2529 } else {
2530 /* spufs_wait will drop the mutex and
2531 * re-acquire, but since we're in read(), the
2532 * file cannot be _released (and so
2533 * ctx->switch_log is stable).
2534 */
2535 error = spufs_wait(ctx->switch_log->wait,
2536 spufs_switch_log_used(ctx) > 0);
2537
2538 /* On error, spufs_wait returns without the
2539 * state mutex held */
2540 if (error)
2541 return error;
2542
2543 /* We may have had entries read from underneath
2544 * us while we dropped the mutex in spufs_wait,
2545 * so re-check */
2546 if (spufs_switch_log_used(ctx) == 0)
2547 continue;
2548 }
2549 }
2550
2551 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2552 if (width < len)
2553 ctx->switch_log->tail =
2554 (ctx->switch_log->tail + 1) %
2555 SWITCH_LOG_BUFSIZE;
2556 else
2557 /* If the record is greater than space available return
2558 * partial buffer (so far) */
2559 break;
2560
2561 error = copy_to_user(buf + cnt, tbuf, width);
2562 if (error)
2563 break;
2564 cnt += width;
2565 }
2566
2567 spu_release(ctx);
2568
2569 return cnt == 0 ? error : cnt;
2570 }
2571
2572 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2573 {
2574 struct inode *inode = file->f_path.dentry->d_inode;
2575 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2576 unsigned int mask = 0;
2577 int rc;
2578
2579 poll_wait(file, &ctx->switch_log->wait, wait);
2580
2581 rc = spu_acquire(ctx);
2582 if (rc)
2583 return rc;
2584
2585 if (spufs_switch_log_used(ctx) > 0)
2586 mask |= POLLIN;
2587
2588 spu_release(ctx);
2589
2590 return mask;
2591 }
2592
2593 static const struct file_operations spufs_switch_log_fops = {
2594 .owner = THIS_MODULE,
2595 .open = spufs_switch_log_open,
2596 .read = spufs_switch_log_read,
2597 .poll = spufs_switch_log_poll,
2598 .release = spufs_switch_log_release,
2599 .llseek = no_llseek,
2600 };
2601
2602 /**
2603 * Log a context switch event to a switch log reader.
2604 *
2605 * Must be called with ctx->state_mutex held.
2606 */
2607 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2608 u32 type, u32 val)
2609 {
2610 if (!ctx->switch_log)
2611 return;
2612
2613 if (spufs_switch_log_avail(ctx) > 1) {
2614 struct switch_log_entry *p;
2615
2616 p = ctx->switch_log->log + ctx->switch_log->head;
2617 ktime_get_ts(&p->tstamp);
2618 p->timebase = get_tb();
2619 p->spu_id = spu ? spu->number : -1;
2620 p->type = type;
2621 p->val = val;
2622
2623 ctx->switch_log->head =
2624 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2625 }
2626
2627 wake_up(&ctx->switch_log->wait);
2628 }
2629
2630 static int spufs_show_ctx(struct seq_file *s, void *private)
2631 {
2632 struct spu_context *ctx = s->private;
2633 u64 mfc_control_RW;
2634
2635 mutex_lock(&ctx->state_mutex);
2636 if (ctx->spu) {
2637 struct spu *spu = ctx->spu;
2638 struct spu_priv2 __iomem *priv2 = spu->priv2;
2639
2640 spin_lock_irq(&spu->register_lock);
2641 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2642 spin_unlock_irq(&spu->register_lock);
2643 } else {
2644 struct spu_state *csa = &ctx->csa;
2645
2646 mfc_control_RW = csa->priv2.mfc_control_RW;
2647 }
2648
2649 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2650 " %c %llx %llx %llx %llx %x %x\n",
2651 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2652 ctx->flags,
2653 ctx->sched_flags,
2654 ctx->prio,
2655 ctx->time_slice,
2656 ctx->spu ? ctx->spu->number : -1,
2657 !list_empty(&ctx->rq) ? 'q' : ' ',
2658 ctx->csa.class_0_pending,
2659 ctx->csa.class_0_dar,
2660 ctx->csa.class_1_dsisr,
2661 mfc_control_RW,
2662 ctx->ops->runcntl_read(ctx),
2663 ctx->ops->status_read(ctx));
2664
2665 mutex_unlock(&ctx->state_mutex);
2666
2667 return 0;
2668 }
2669
2670 static int spufs_ctx_open(struct inode *inode, struct file *file)
2671 {
2672 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2673 }
2674
2675 static const struct file_operations spufs_ctx_fops = {
2676 .open = spufs_ctx_open,
2677 .read = seq_read,
2678 .llseek = seq_lseek,
2679 .release = single_release,
2680 };
2681
2682 const struct spufs_tree_descr spufs_dir_contents[] = {
2683 { "capabilities", &spufs_caps_fops, 0444, },
2684 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2685 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
2686 { "mbox", &spufs_mbox_fops, 0444, },
2687 { "ibox", &spufs_ibox_fops, 0444, },
2688 { "wbox", &spufs_wbox_fops, 0222, },
2689 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2690 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2691 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2692 { "signal1", &spufs_signal1_fops, 0666, },
2693 { "signal2", &spufs_signal2_fops, 0666, },
2694 { "signal1_type", &spufs_signal1_type, 0666, },
2695 { "signal2_type", &spufs_signal2_type, 0666, },
2696 { "cntl", &spufs_cntl_fops, 0666, },
2697 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2698 { "lslr", &spufs_lslr_ops, 0444, },
2699 { "mfc", &spufs_mfc_fops, 0666, },
2700 { "mss", &spufs_mss_fops, 0666, },
2701 { "npc", &spufs_npc_ops, 0666, },
2702 { "srr0", &spufs_srr0_ops, 0666, },
2703 { "decr", &spufs_decr_ops, 0666, },
2704 { "decr_status", &spufs_decr_status_ops, 0666, },
2705 { "event_mask", &spufs_event_mask_ops, 0666, },
2706 { "event_status", &spufs_event_status_ops, 0444, },
2707 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2708 { "phys-id", &spufs_id_ops, 0666, },
2709 { "object-id", &spufs_object_id_ops, 0666, },
2710 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2711 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2712 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2713 { "dma_info", &spufs_dma_info_fops, 0444,
2714 sizeof(struct spu_dma_info), },
2715 { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2716 sizeof(struct spu_proxydma_info)},
2717 { "tid", &spufs_tid_fops, 0444, },
2718 { "stat", &spufs_stat_fops, 0444, },
2719 { "switch_log", &spufs_switch_log_fops, 0444 },
2720 {},
2721 };
2722
2723 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2724 { "capabilities", &spufs_caps_fops, 0444, },
2725 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2726 { "mbox", &spufs_mbox_fops, 0444, },
2727 { "ibox", &spufs_ibox_fops, 0444, },
2728 { "wbox", &spufs_wbox_fops, 0222, },
2729 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2730 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2731 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2732 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2733 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2734 { "signal1_type", &spufs_signal1_type, 0666, },
2735 { "signal2_type", &spufs_signal2_type, 0666, },
2736 { "mss", &spufs_mss_fops, 0666, },
2737 { "mfc", &spufs_mfc_fops, 0666, },
2738 { "cntl", &spufs_cntl_fops, 0666, },
2739 { "npc", &spufs_npc_ops, 0666, },
2740 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2741 { "phys-id", &spufs_id_ops, 0666, },
2742 { "object-id", &spufs_object_id_ops, 0666, },
2743 { "tid", &spufs_tid_fops, 0444, },
2744 { "stat", &spufs_stat_fops, 0444, },
2745 {},
2746 };
2747
2748 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2749 { ".ctx", &spufs_ctx_fops, 0444, },
2750 {},
2751 };
2752
2753 const struct spufs_coredump_reader spufs_coredump_read[] = {
2754 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2755 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2756 { "lslr", NULL, spufs_lslr_get, 19 },
2757 { "decr", NULL, spufs_decr_get, 19 },
2758 { "decr_status", NULL, spufs_decr_status_get, 19 },
2759 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2760 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2761 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2762 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2763 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2764 { "event_mask", NULL, spufs_event_mask_get, 19 },
2765 { "event_status", NULL, spufs_event_status_get, 19 },
2766 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2767 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2768 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2769 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2770 { "proxydma_info", __spufs_proxydma_info_read,
2771 NULL, sizeof(struct spu_proxydma_info)},
2772 { "object-id", NULL, spufs_object_id_get, 19 },
2773 { "npc", NULL, spufs_npc_get, 19 },
2774 { NULL },
2775 };