1a40da92154c99cab1568cf80d743eca5fab4d2c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / cell / spufs / file.c
1 /*
2 * SPU file system -- file contents
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39
40 #include "spufs.h"
41 #include "sputrace.h"
42
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44
45 /* Simple attribute files */
46 struct spufs_attr {
47 int (*get)(void *, u64 *);
48 int (*set)(void *, u64);
49 char get_buf[24]; /* enough to store a u64 and "\n\0" */
50 char set_buf[24];
51 void *data;
52 const char *fmt; /* format for read operation */
53 struct mutex mutex; /* protects access to these buffers */
54 };
55
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 int (*get)(void *, u64 *), int (*set)(void *, u64),
58 const char *fmt)
59 {
60 struct spufs_attr *attr;
61
62 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 if (!attr)
64 return -ENOMEM;
65
66 attr->get = get;
67 attr->set = set;
68 attr->data = inode->i_private;
69 attr->fmt = fmt;
70 mutex_init(&attr->mutex);
71 file->private_data = attr;
72
73 return nonseekable_open(inode, file);
74 }
75
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78 kfree(file->private_data);
79 return 0;
80 }
81
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 size_t len, loff_t *ppos)
84 {
85 struct spufs_attr *attr;
86 size_t size;
87 ssize_t ret;
88
89 attr = file->private_data;
90 if (!attr->get)
91 return -EACCES;
92
93 ret = mutex_lock_interruptible(&attr->mutex);
94 if (ret)
95 return ret;
96
97 if (*ppos) { /* continued read */
98 size = strlen(attr->get_buf);
99 } else { /* first read */
100 u64 val;
101 ret = attr->get(attr->data, &val);
102 if (ret)
103 goto out;
104
105 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 attr->fmt, (unsigned long long)val);
107 }
108
109 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 mutex_unlock(&attr->mutex);
112 return ret;
113 }
114
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 size_t len, loff_t *ppos)
117 {
118 struct spufs_attr *attr;
119 u64 val;
120 size_t size;
121 ssize_t ret;
122
123 attr = file->private_data;
124 if (!attr->set)
125 return -EACCES;
126
127 ret = mutex_lock_interruptible(&attr->mutex);
128 if (ret)
129 return ret;
130
131 ret = -EFAULT;
132 size = min(sizeof(attr->set_buf) - 1, len);
133 if (copy_from_user(attr->set_buf, buf, size))
134 goto out;
135
136 ret = len; /* claim we got the whole input */
137 attr->set_buf[size] = '\0';
138 val = simple_strtol(attr->set_buf, NULL, 0);
139 attr->set(attr->data, val);
140 out:
141 mutex_unlock(&attr->mutex);
142 return ret;
143 }
144
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
146 static int __fops ## _open(struct inode *inode, struct file *file) \
147 { \
148 __simple_attr_check_format(__fmt, 0ull); \
149 return spufs_attr_open(inode, file, __get, __set, __fmt); \
150 } \
151 static const struct file_operations __fops = { \
152 .owner = THIS_MODULE, \
153 .open = __fops ## _open, \
154 .release = spufs_attr_release, \
155 .read = spufs_attr_read, \
156 .write = spufs_attr_write, \
157 };
158
159
160 static int
161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163 struct spufs_inode_info *i = SPUFS_I(inode);
164 struct spu_context *ctx = i->i_ctx;
165
166 mutex_lock(&ctx->mapping_lock);
167 file->private_data = ctx;
168 if (!i->i_openers++)
169 ctx->local_store = inode->i_mapping;
170 mutex_unlock(&ctx->mapping_lock);
171 return 0;
172 }
173
174 static int
175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177 struct spufs_inode_info *i = SPUFS_I(inode);
178 struct spu_context *ctx = i->i_ctx;
179
180 mutex_lock(&ctx->mapping_lock);
181 if (!--i->i_openers)
182 ctx->local_store = NULL;
183 mutex_unlock(&ctx->mapping_lock);
184 return 0;
185 }
186
187 static ssize_t
188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189 size_t size, loff_t *pos)
190 {
191 char *local_store = ctx->ops->get_ls(ctx);
192 return simple_read_from_buffer(buffer, size, pos, local_store,
193 LS_SIZE);
194 }
195
196 static ssize_t
197 spufs_mem_read(struct file *file, char __user *buffer,
198 size_t size, loff_t *pos)
199 {
200 struct spu_context *ctx = file->private_data;
201 ssize_t ret;
202
203 ret = spu_acquire(ctx);
204 if (ret)
205 return ret;
206 ret = __spufs_mem_read(ctx, buffer, size, pos);
207 spu_release(ctx);
208
209 return ret;
210 }
211
212 static ssize_t
213 spufs_mem_write(struct file *file, const char __user *buffer,
214 size_t size, loff_t *ppos)
215 {
216 struct spu_context *ctx = file->private_data;
217 char *local_store;
218 loff_t pos = *ppos;
219 int ret;
220
221 if (pos < 0)
222 return -EINVAL;
223 if (pos > LS_SIZE)
224 return -EFBIG;
225 if (size > LS_SIZE - pos)
226 size = LS_SIZE - pos;
227
228 ret = spu_acquire(ctx);
229 if (ret)
230 return ret;
231
232 local_store = ctx->ops->get_ls(ctx);
233 ret = copy_from_user(local_store + pos, buffer, size);
234 spu_release(ctx);
235
236 if (ret)
237 return -EFAULT;
238 *ppos = pos + size;
239 return size;
240 }
241
242 static int
243 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
244 {
245 struct spu_context *ctx = vma->vm_file->private_data;
246 unsigned long address = (unsigned long)vmf->virtual_address;
247 unsigned long pfn, offset;
248
249 #ifdef CONFIG_SPU_FS_64K_LS
250 struct spu_state *csa = &ctx->csa;
251 int psize;
252
253 /* Check what page size we are using */
254 psize = get_slice_psize(vma->vm_mm, address);
255
256 /* Some sanity checking */
257 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
258
259 /* Wow, 64K, cool, we need to align the address though */
260 if (csa->use_big_pages) {
261 BUG_ON(vma->vm_start & 0xffff);
262 address &= ~0xfffful;
263 }
264 #endif /* CONFIG_SPU_FS_64K_LS */
265
266 offset = vmf->pgoff << PAGE_SHIFT;
267 if (offset >= LS_SIZE)
268 return VM_FAULT_SIGBUS;
269
270 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
271 address, offset);
272
273 if (spu_acquire(ctx))
274 return VM_FAULT_NOPAGE;
275
276 if (ctx->state == SPU_STATE_SAVED) {
277 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
278 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
279 } else {
280 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
281 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
282 }
283 vm_insert_pfn(vma, address, pfn);
284
285 spu_release(ctx);
286
287 return VM_FAULT_NOPAGE;
288 }
289
290 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
291 unsigned long address,
292 void *buf, int len, int write)
293 {
294 struct spu_context *ctx = vma->vm_file->private_data;
295 unsigned long offset = address - vma->vm_start;
296 char *local_store;
297
298 if (write && !(vma->vm_flags & VM_WRITE))
299 return -EACCES;
300 if (spu_acquire(ctx))
301 return -EINTR;
302 if ((offset + len) > vma->vm_end)
303 len = vma->vm_end - offset;
304 local_store = ctx->ops->get_ls(ctx);
305 if (write)
306 memcpy_toio(local_store + offset, buf, len);
307 else
308 memcpy_fromio(buf, local_store + offset, len);
309 spu_release(ctx);
310 return len;
311 }
312
313 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
314 .fault = spufs_mem_mmap_fault,
315 .access = spufs_mem_mmap_access,
316 };
317
318 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
319 {
320 #ifdef CONFIG_SPU_FS_64K_LS
321 struct spu_context *ctx = file->private_data;
322 struct spu_state *csa = &ctx->csa;
323
324 /* Sanity check VMA alignment */
325 if (csa->use_big_pages) {
326 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
327 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
328 vma->vm_pgoff);
329 if (vma->vm_start & 0xffff)
330 return -EINVAL;
331 if (vma->vm_pgoff & 0xf)
332 return -EINVAL;
333 }
334 #endif /* CONFIG_SPU_FS_64K_LS */
335
336 if (!(vma->vm_flags & VM_SHARED))
337 return -EINVAL;
338
339 vma->vm_flags |= VM_IO | VM_PFNMAP;
340 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
341
342 vma->vm_ops = &spufs_mem_mmap_vmops;
343 return 0;
344 }
345
346 #ifdef CONFIG_SPU_FS_64K_LS
347 static unsigned long spufs_get_unmapped_area(struct file *file,
348 unsigned long addr, unsigned long len, unsigned long pgoff,
349 unsigned long flags)
350 {
351 struct spu_context *ctx = file->private_data;
352 struct spu_state *csa = &ctx->csa;
353
354 /* If not using big pages, fallback to normal MM g_u_a */
355 if (!csa->use_big_pages)
356 return current->mm->get_unmapped_area(file, addr, len,
357 pgoff, flags);
358
359 /* Else, try to obtain a 64K pages slice */
360 return slice_get_unmapped_area(addr, len, flags,
361 MMU_PAGE_64K, 1, 0);
362 }
363 #endif /* CONFIG_SPU_FS_64K_LS */
364
365 static const struct file_operations spufs_mem_fops = {
366 .open = spufs_mem_open,
367 .release = spufs_mem_release,
368 .read = spufs_mem_read,
369 .write = spufs_mem_write,
370 .llseek = generic_file_llseek,
371 .mmap = spufs_mem_mmap,
372 #ifdef CONFIG_SPU_FS_64K_LS
373 .get_unmapped_area = spufs_get_unmapped_area,
374 #endif
375 };
376
377 static int spufs_ps_fault(struct vm_area_struct *vma,
378 struct vm_fault *vmf,
379 unsigned long ps_offs,
380 unsigned long ps_size)
381 {
382 struct spu_context *ctx = vma->vm_file->private_data;
383 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
384 int ret = 0;
385
386 spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
387
388 if (offset >= ps_size)
389 return VM_FAULT_SIGBUS;
390
391 if (fatal_signal_pending(current))
392 return VM_FAULT_SIGBUS;
393
394 /*
395 * Because we release the mmap_sem, the context may be destroyed while
396 * we're in spu_wait. Grab an extra reference so it isn't destroyed
397 * in the meantime.
398 */
399 get_spu_context(ctx);
400
401 /*
402 * We have to wait for context to be loaded before we have
403 * pages to hand out to the user, but we don't want to wait
404 * with the mmap_sem held.
405 * It is possible to drop the mmap_sem here, but then we need
406 * to return VM_FAULT_NOPAGE because the mappings may have
407 * hanged.
408 */
409 if (spu_acquire(ctx))
410 goto refault;
411
412 if (ctx->state == SPU_STATE_SAVED) {
413 up_read(&current->mm->mmap_sem);
414 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
415 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
416 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
417 down_read(&current->mm->mmap_sem);
418 } else {
419 area = ctx->spu->problem_phys + ps_offs;
420 vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
421 (area + offset) >> PAGE_SHIFT);
422 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
423 }
424
425 if (!ret)
426 spu_release(ctx);
427
428 refault:
429 put_spu_context(ctx);
430 return VM_FAULT_NOPAGE;
431 }
432
433 #if SPUFS_MMAP_4K
434 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
435 struct vm_fault *vmf)
436 {
437 return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
438 }
439
440 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
441 .fault = spufs_cntl_mmap_fault,
442 };
443
444 /*
445 * mmap support for problem state control area [0x4000 - 0x4fff].
446 */
447 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
448 {
449 if (!(vma->vm_flags & VM_SHARED))
450 return -EINVAL;
451
452 vma->vm_flags |= VM_IO | VM_PFNMAP;
453 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
454
455 vma->vm_ops = &spufs_cntl_mmap_vmops;
456 return 0;
457 }
458 #else /* SPUFS_MMAP_4K */
459 #define spufs_cntl_mmap NULL
460 #endif /* !SPUFS_MMAP_4K */
461
462 static int spufs_cntl_get(void *data, u64 *val)
463 {
464 struct spu_context *ctx = data;
465 int ret;
466
467 ret = spu_acquire(ctx);
468 if (ret)
469 return ret;
470 *val = ctx->ops->status_read(ctx);
471 spu_release(ctx);
472
473 return 0;
474 }
475
476 static int spufs_cntl_set(void *data, u64 val)
477 {
478 struct spu_context *ctx = data;
479 int ret;
480
481 ret = spu_acquire(ctx);
482 if (ret)
483 return ret;
484 ctx->ops->runcntl_write(ctx, val);
485 spu_release(ctx);
486
487 return 0;
488 }
489
490 static int spufs_cntl_open(struct inode *inode, struct file *file)
491 {
492 struct spufs_inode_info *i = SPUFS_I(inode);
493 struct spu_context *ctx = i->i_ctx;
494
495 mutex_lock(&ctx->mapping_lock);
496 file->private_data = ctx;
497 if (!i->i_openers++)
498 ctx->cntl = inode->i_mapping;
499 mutex_unlock(&ctx->mapping_lock);
500 return simple_attr_open(inode, file, spufs_cntl_get,
501 spufs_cntl_set, "0x%08lx");
502 }
503
504 static int
505 spufs_cntl_release(struct inode *inode, struct file *file)
506 {
507 struct spufs_inode_info *i = SPUFS_I(inode);
508 struct spu_context *ctx = i->i_ctx;
509
510 simple_attr_release(inode, file);
511
512 mutex_lock(&ctx->mapping_lock);
513 if (!--i->i_openers)
514 ctx->cntl = NULL;
515 mutex_unlock(&ctx->mapping_lock);
516 return 0;
517 }
518
519 static const struct file_operations spufs_cntl_fops = {
520 .open = spufs_cntl_open,
521 .release = spufs_cntl_release,
522 .read = simple_attr_read,
523 .write = simple_attr_write,
524 .mmap = spufs_cntl_mmap,
525 };
526
527 static int
528 spufs_regs_open(struct inode *inode, struct file *file)
529 {
530 struct spufs_inode_info *i = SPUFS_I(inode);
531 file->private_data = i->i_ctx;
532 return 0;
533 }
534
535 static ssize_t
536 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
537 size_t size, loff_t *pos)
538 {
539 struct spu_lscsa *lscsa = ctx->csa.lscsa;
540 return simple_read_from_buffer(buffer, size, pos,
541 lscsa->gprs, sizeof lscsa->gprs);
542 }
543
544 static ssize_t
545 spufs_regs_read(struct file *file, char __user *buffer,
546 size_t size, loff_t *pos)
547 {
548 int ret;
549 struct spu_context *ctx = file->private_data;
550
551 /* pre-check for file position: if we'd return EOF, there's no point
552 * causing a deschedule */
553 if (*pos >= sizeof(ctx->csa.lscsa->gprs))
554 return 0;
555
556 ret = spu_acquire_saved(ctx);
557 if (ret)
558 return ret;
559 ret = __spufs_regs_read(ctx, buffer, size, pos);
560 spu_release_saved(ctx);
561 return ret;
562 }
563
564 static ssize_t
565 spufs_regs_write(struct file *file, const char __user *buffer,
566 size_t size, loff_t *pos)
567 {
568 struct spu_context *ctx = file->private_data;
569 struct spu_lscsa *lscsa = ctx->csa.lscsa;
570 int ret;
571
572 if (*pos >= sizeof(lscsa->gprs))
573 return -EFBIG;
574
575 size = min_t(ssize_t, sizeof(lscsa->gprs) - *pos, size);
576 *pos += size;
577
578 ret = spu_acquire_saved(ctx);
579 if (ret)
580 return ret;
581
582 ret = copy_from_user((char *)lscsa->gprs + *pos - size,
583 buffer, size) ? -EFAULT : size;
584
585 spu_release_saved(ctx);
586 return ret;
587 }
588
589 static const struct file_operations spufs_regs_fops = {
590 .open = spufs_regs_open,
591 .read = spufs_regs_read,
592 .write = spufs_regs_write,
593 .llseek = generic_file_llseek,
594 };
595
596 static ssize_t
597 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
598 size_t size, loff_t * pos)
599 {
600 struct spu_lscsa *lscsa = ctx->csa.lscsa;
601 return simple_read_from_buffer(buffer, size, pos,
602 &lscsa->fpcr, sizeof(lscsa->fpcr));
603 }
604
605 static ssize_t
606 spufs_fpcr_read(struct file *file, char __user * buffer,
607 size_t size, loff_t * pos)
608 {
609 int ret;
610 struct spu_context *ctx = file->private_data;
611
612 ret = spu_acquire_saved(ctx);
613 if (ret)
614 return ret;
615 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
616 spu_release_saved(ctx);
617 return ret;
618 }
619
620 static ssize_t
621 spufs_fpcr_write(struct file *file, const char __user * buffer,
622 size_t size, loff_t * pos)
623 {
624 struct spu_context *ctx = file->private_data;
625 struct spu_lscsa *lscsa = ctx->csa.lscsa;
626 int ret;
627
628 if (*pos >= sizeof(lscsa->fpcr))
629 return -EFBIG;
630
631 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
632
633 ret = spu_acquire_saved(ctx);
634 if (ret)
635 return ret;
636
637 *pos += size;
638 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
639 buffer, size) ? -EFAULT : size;
640
641 spu_release_saved(ctx);
642 return ret;
643 }
644
645 static const struct file_operations spufs_fpcr_fops = {
646 .open = spufs_regs_open,
647 .read = spufs_fpcr_read,
648 .write = spufs_fpcr_write,
649 .llseek = generic_file_llseek,
650 };
651
652 /* generic open function for all pipe-like files */
653 static int spufs_pipe_open(struct inode *inode, struct file *file)
654 {
655 struct spufs_inode_info *i = SPUFS_I(inode);
656 file->private_data = i->i_ctx;
657
658 return nonseekable_open(inode, file);
659 }
660
661 /*
662 * Read as many bytes from the mailbox as possible, until
663 * one of the conditions becomes true:
664 *
665 * - no more data available in the mailbox
666 * - end of the user provided buffer
667 * - end of the mapped area
668 */
669 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
670 size_t len, loff_t *pos)
671 {
672 struct spu_context *ctx = file->private_data;
673 u32 mbox_data, __user *udata;
674 ssize_t count;
675
676 if (len < 4)
677 return -EINVAL;
678
679 if (!access_ok(VERIFY_WRITE, buf, len))
680 return -EFAULT;
681
682 udata = (void __user *)buf;
683
684 count = spu_acquire(ctx);
685 if (count)
686 return count;
687
688 for (count = 0; (count + 4) <= len; count += 4, udata++) {
689 int ret;
690 ret = ctx->ops->mbox_read(ctx, &mbox_data);
691 if (ret == 0)
692 break;
693
694 /*
695 * at the end of the mapped area, we can fault
696 * but still need to return the data we have
697 * read successfully so far.
698 */
699 ret = __put_user(mbox_data, udata);
700 if (ret) {
701 if (!count)
702 count = -EFAULT;
703 break;
704 }
705 }
706 spu_release(ctx);
707
708 if (!count)
709 count = -EAGAIN;
710
711 return count;
712 }
713
714 static const struct file_operations spufs_mbox_fops = {
715 .open = spufs_pipe_open,
716 .read = spufs_mbox_read,
717 };
718
719 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
720 size_t len, loff_t *pos)
721 {
722 struct spu_context *ctx = file->private_data;
723 ssize_t ret;
724 u32 mbox_stat;
725
726 if (len < 4)
727 return -EINVAL;
728
729 ret = spu_acquire(ctx);
730 if (ret)
731 return ret;
732
733 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
734
735 spu_release(ctx);
736
737 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
738 return -EFAULT;
739
740 return 4;
741 }
742
743 static const struct file_operations spufs_mbox_stat_fops = {
744 .open = spufs_pipe_open,
745 .read = spufs_mbox_stat_read,
746 };
747
748 /* low-level ibox access function */
749 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
750 {
751 return ctx->ops->ibox_read(ctx, data);
752 }
753
754 static int spufs_ibox_fasync(int fd, struct file *file, int on)
755 {
756 struct spu_context *ctx = file->private_data;
757
758 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
759 }
760
761 /* interrupt-level ibox callback function. */
762 void spufs_ibox_callback(struct spu *spu)
763 {
764 struct spu_context *ctx = spu->ctx;
765
766 if (!ctx)
767 return;
768
769 wake_up_all(&ctx->ibox_wq);
770 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
771 }
772
773 /*
774 * Read as many bytes from the interrupt mailbox as possible, until
775 * one of the conditions becomes true:
776 *
777 * - no more data available in the mailbox
778 * - end of the user provided buffer
779 * - end of the mapped area
780 *
781 * If the file is opened without O_NONBLOCK, we wait here until
782 * any data is available, but return when we have been able to
783 * read something.
784 */
785 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
786 size_t len, loff_t *pos)
787 {
788 struct spu_context *ctx = file->private_data;
789 u32 ibox_data, __user *udata;
790 ssize_t count;
791
792 if (len < 4)
793 return -EINVAL;
794
795 if (!access_ok(VERIFY_WRITE, buf, len))
796 return -EFAULT;
797
798 udata = (void __user *)buf;
799
800 count = spu_acquire(ctx);
801 if (count)
802 goto out;
803
804 /* wait only for the first element */
805 count = 0;
806 if (file->f_flags & O_NONBLOCK) {
807 if (!spu_ibox_read(ctx, &ibox_data)) {
808 count = -EAGAIN;
809 goto out_unlock;
810 }
811 } else {
812 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
813 if (count)
814 goto out;
815 }
816
817 /* if we can't write at all, return -EFAULT */
818 count = __put_user(ibox_data, udata);
819 if (count)
820 goto out_unlock;
821
822 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
823 int ret;
824 ret = ctx->ops->ibox_read(ctx, &ibox_data);
825 if (ret == 0)
826 break;
827 /*
828 * at the end of the mapped area, we can fault
829 * but still need to return the data we have
830 * read successfully so far.
831 */
832 ret = __put_user(ibox_data, udata);
833 if (ret)
834 break;
835 }
836
837 out_unlock:
838 spu_release(ctx);
839 out:
840 return count;
841 }
842
843 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
844 {
845 struct spu_context *ctx = file->private_data;
846 unsigned int mask;
847
848 poll_wait(file, &ctx->ibox_wq, wait);
849
850 /*
851 * For now keep this uninterruptible and also ignore the rule
852 * that poll should not sleep. Will be fixed later.
853 */
854 mutex_lock(&ctx->state_mutex);
855 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
856 spu_release(ctx);
857
858 return mask;
859 }
860
861 static const struct file_operations spufs_ibox_fops = {
862 .open = spufs_pipe_open,
863 .read = spufs_ibox_read,
864 .poll = spufs_ibox_poll,
865 .fasync = spufs_ibox_fasync,
866 };
867
868 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
869 size_t len, loff_t *pos)
870 {
871 struct spu_context *ctx = file->private_data;
872 ssize_t ret;
873 u32 ibox_stat;
874
875 if (len < 4)
876 return -EINVAL;
877
878 ret = spu_acquire(ctx);
879 if (ret)
880 return ret;
881 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
882 spu_release(ctx);
883
884 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
885 return -EFAULT;
886
887 return 4;
888 }
889
890 static const struct file_operations spufs_ibox_stat_fops = {
891 .open = spufs_pipe_open,
892 .read = spufs_ibox_stat_read,
893 };
894
895 /* low-level mailbox write */
896 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
897 {
898 return ctx->ops->wbox_write(ctx, data);
899 }
900
901 static int spufs_wbox_fasync(int fd, struct file *file, int on)
902 {
903 struct spu_context *ctx = file->private_data;
904 int ret;
905
906 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
907
908 return ret;
909 }
910
911 /* interrupt-level wbox callback function. */
912 void spufs_wbox_callback(struct spu *spu)
913 {
914 struct spu_context *ctx = spu->ctx;
915
916 if (!ctx)
917 return;
918
919 wake_up_all(&ctx->wbox_wq);
920 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
921 }
922
923 /*
924 * Write as many bytes to the interrupt mailbox as possible, until
925 * one of the conditions becomes true:
926 *
927 * - the mailbox is full
928 * - end of the user provided buffer
929 * - end of the mapped area
930 *
931 * If the file is opened without O_NONBLOCK, we wait here until
932 * space is availabyl, but return when we have been able to
933 * write something.
934 */
935 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
936 size_t len, loff_t *pos)
937 {
938 struct spu_context *ctx = file->private_data;
939 u32 wbox_data, __user *udata;
940 ssize_t count;
941
942 if (len < 4)
943 return -EINVAL;
944
945 udata = (void __user *)buf;
946 if (!access_ok(VERIFY_READ, buf, len))
947 return -EFAULT;
948
949 if (__get_user(wbox_data, udata))
950 return -EFAULT;
951
952 count = spu_acquire(ctx);
953 if (count)
954 goto out;
955
956 /*
957 * make sure we can at least write one element, by waiting
958 * in case of !O_NONBLOCK
959 */
960 count = 0;
961 if (file->f_flags & O_NONBLOCK) {
962 if (!spu_wbox_write(ctx, wbox_data)) {
963 count = -EAGAIN;
964 goto out_unlock;
965 }
966 } else {
967 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
968 if (count)
969 goto out;
970 }
971
972
973 /* write as much as possible */
974 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
975 int ret;
976 ret = __get_user(wbox_data, udata);
977 if (ret)
978 break;
979
980 ret = spu_wbox_write(ctx, wbox_data);
981 if (ret == 0)
982 break;
983 }
984
985 out_unlock:
986 spu_release(ctx);
987 out:
988 return count;
989 }
990
991 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
992 {
993 struct spu_context *ctx = file->private_data;
994 unsigned int mask;
995
996 poll_wait(file, &ctx->wbox_wq, wait);
997
998 /*
999 * For now keep this uninterruptible and also ignore the rule
1000 * that poll should not sleep. Will be fixed later.
1001 */
1002 mutex_lock(&ctx->state_mutex);
1003 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
1004 spu_release(ctx);
1005
1006 return mask;
1007 }
1008
1009 static const struct file_operations spufs_wbox_fops = {
1010 .open = spufs_pipe_open,
1011 .write = spufs_wbox_write,
1012 .poll = spufs_wbox_poll,
1013 .fasync = spufs_wbox_fasync,
1014 };
1015
1016 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1017 size_t len, loff_t *pos)
1018 {
1019 struct spu_context *ctx = file->private_data;
1020 ssize_t ret;
1021 u32 wbox_stat;
1022
1023 if (len < 4)
1024 return -EINVAL;
1025
1026 ret = spu_acquire(ctx);
1027 if (ret)
1028 return ret;
1029 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1030 spu_release(ctx);
1031
1032 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1033 return -EFAULT;
1034
1035 return 4;
1036 }
1037
1038 static const struct file_operations spufs_wbox_stat_fops = {
1039 .open = spufs_pipe_open,
1040 .read = spufs_wbox_stat_read,
1041 };
1042
1043 static int spufs_signal1_open(struct inode *inode, struct file *file)
1044 {
1045 struct spufs_inode_info *i = SPUFS_I(inode);
1046 struct spu_context *ctx = i->i_ctx;
1047
1048 mutex_lock(&ctx->mapping_lock);
1049 file->private_data = ctx;
1050 if (!i->i_openers++)
1051 ctx->signal1 = inode->i_mapping;
1052 mutex_unlock(&ctx->mapping_lock);
1053 return nonseekable_open(inode, file);
1054 }
1055
1056 static int
1057 spufs_signal1_release(struct inode *inode, struct file *file)
1058 {
1059 struct spufs_inode_info *i = SPUFS_I(inode);
1060 struct spu_context *ctx = i->i_ctx;
1061
1062 mutex_lock(&ctx->mapping_lock);
1063 if (!--i->i_openers)
1064 ctx->signal1 = NULL;
1065 mutex_unlock(&ctx->mapping_lock);
1066 return 0;
1067 }
1068
1069 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1070 size_t len, loff_t *pos)
1071 {
1072 int ret = 0;
1073 u32 data;
1074
1075 if (len < 4)
1076 return -EINVAL;
1077
1078 if (ctx->csa.spu_chnlcnt_RW[3]) {
1079 data = ctx->csa.spu_chnldata_RW[3];
1080 ret = 4;
1081 }
1082
1083 if (!ret)
1084 goto out;
1085
1086 if (copy_to_user(buf, &data, 4))
1087 return -EFAULT;
1088
1089 out:
1090 return ret;
1091 }
1092
1093 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1094 size_t len, loff_t *pos)
1095 {
1096 int ret;
1097 struct spu_context *ctx = file->private_data;
1098
1099 ret = spu_acquire_saved(ctx);
1100 if (ret)
1101 return ret;
1102 ret = __spufs_signal1_read(ctx, buf, len, pos);
1103 spu_release_saved(ctx);
1104
1105 return ret;
1106 }
1107
1108 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1109 size_t len, loff_t *pos)
1110 {
1111 struct spu_context *ctx;
1112 ssize_t ret;
1113 u32 data;
1114
1115 ctx = file->private_data;
1116
1117 if (len < 4)
1118 return -EINVAL;
1119
1120 if (copy_from_user(&data, buf, 4))
1121 return -EFAULT;
1122
1123 ret = spu_acquire(ctx);
1124 if (ret)
1125 return ret;
1126 ctx->ops->signal1_write(ctx, data);
1127 spu_release(ctx);
1128
1129 return 4;
1130 }
1131
1132 static int
1133 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1134 {
1135 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1136 return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1137 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1138 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1139 * signal 1 and 2 area
1140 */
1141 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1142 #else
1143 #error unsupported page size
1144 #endif
1145 }
1146
1147 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1148 .fault = spufs_signal1_mmap_fault,
1149 };
1150
1151 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1152 {
1153 if (!(vma->vm_flags & VM_SHARED))
1154 return -EINVAL;
1155
1156 vma->vm_flags |= VM_IO | VM_PFNMAP;
1157 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1158
1159 vma->vm_ops = &spufs_signal1_mmap_vmops;
1160 return 0;
1161 }
1162
1163 static const struct file_operations spufs_signal1_fops = {
1164 .open = spufs_signal1_open,
1165 .release = spufs_signal1_release,
1166 .read = spufs_signal1_read,
1167 .write = spufs_signal1_write,
1168 .mmap = spufs_signal1_mmap,
1169 };
1170
1171 static const struct file_operations spufs_signal1_nosched_fops = {
1172 .open = spufs_signal1_open,
1173 .release = spufs_signal1_release,
1174 .write = spufs_signal1_write,
1175 .mmap = spufs_signal1_mmap,
1176 };
1177
1178 static int spufs_signal2_open(struct inode *inode, struct file *file)
1179 {
1180 struct spufs_inode_info *i = SPUFS_I(inode);
1181 struct spu_context *ctx = i->i_ctx;
1182
1183 mutex_lock(&ctx->mapping_lock);
1184 file->private_data = ctx;
1185 if (!i->i_openers++)
1186 ctx->signal2 = inode->i_mapping;
1187 mutex_unlock(&ctx->mapping_lock);
1188 return nonseekable_open(inode, file);
1189 }
1190
1191 static int
1192 spufs_signal2_release(struct inode *inode, struct file *file)
1193 {
1194 struct spufs_inode_info *i = SPUFS_I(inode);
1195 struct spu_context *ctx = i->i_ctx;
1196
1197 mutex_lock(&ctx->mapping_lock);
1198 if (!--i->i_openers)
1199 ctx->signal2 = NULL;
1200 mutex_unlock(&ctx->mapping_lock);
1201 return 0;
1202 }
1203
1204 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1205 size_t len, loff_t *pos)
1206 {
1207 int ret = 0;
1208 u32 data;
1209
1210 if (len < 4)
1211 return -EINVAL;
1212
1213 if (ctx->csa.spu_chnlcnt_RW[4]) {
1214 data = ctx->csa.spu_chnldata_RW[4];
1215 ret = 4;
1216 }
1217
1218 if (!ret)
1219 goto out;
1220
1221 if (copy_to_user(buf, &data, 4))
1222 return -EFAULT;
1223
1224 out:
1225 return ret;
1226 }
1227
1228 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1229 size_t len, loff_t *pos)
1230 {
1231 struct spu_context *ctx = file->private_data;
1232 int ret;
1233
1234 ret = spu_acquire_saved(ctx);
1235 if (ret)
1236 return ret;
1237 ret = __spufs_signal2_read(ctx, buf, len, pos);
1238 spu_release_saved(ctx);
1239
1240 return ret;
1241 }
1242
1243 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1244 size_t len, loff_t *pos)
1245 {
1246 struct spu_context *ctx;
1247 ssize_t ret;
1248 u32 data;
1249
1250 ctx = file->private_data;
1251
1252 if (len < 4)
1253 return -EINVAL;
1254
1255 if (copy_from_user(&data, buf, 4))
1256 return -EFAULT;
1257
1258 ret = spu_acquire(ctx);
1259 if (ret)
1260 return ret;
1261 ctx->ops->signal2_write(ctx, data);
1262 spu_release(ctx);
1263
1264 return 4;
1265 }
1266
1267 #if SPUFS_MMAP_4K
1268 static int
1269 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1270 {
1271 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1272 return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1273 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1274 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1275 * signal 1 and 2 area
1276 */
1277 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1278 #else
1279 #error unsupported page size
1280 #endif
1281 }
1282
1283 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1284 .fault = spufs_signal2_mmap_fault,
1285 };
1286
1287 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1288 {
1289 if (!(vma->vm_flags & VM_SHARED))
1290 return -EINVAL;
1291
1292 vma->vm_flags |= VM_IO | VM_PFNMAP;
1293 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1294
1295 vma->vm_ops = &spufs_signal2_mmap_vmops;
1296 return 0;
1297 }
1298 #else /* SPUFS_MMAP_4K */
1299 #define spufs_signal2_mmap NULL
1300 #endif /* !SPUFS_MMAP_4K */
1301
1302 static const struct file_operations spufs_signal2_fops = {
1303 .open = spufs_signal2_open,
1304 .release = spufs_signal2_release,
1305 .read = spufs_signal2_read,
1306 .write = spufs_signal2_write,
1307 .mmap = spufs_signal2_mmap,
1308 };
1309
1310 static const struct file_operations spufs_signal2_nosched_fops = {
1311 .open = spufs_signal2_open,
1312 .release = spufs_signal2_release,
1313 .write = spufs_signal2_write,
1314 .mmap = spufs_signal2_mmap,
1315 };
1316
1317 /*
1318 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1319 * work of acquiring (or not) the SPU context before calling through
1320 * to the actual get routine. The set routine is called directly.
1321 */
1322 #define SPU_ATTR_NOACQUIRE 0
1323 #define SPU_ATTR_ACQUIRE 1
1324 #define SPU_ATTR_ACQUIRE_SAVED 2
1325
1326 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1327 static int __##__get(void *data, u64 *val) \
1328 { \
1329 struct spu_context *ctx = data; \
1330 int ret = 0; \
1331 \
1332 if (__acquire == SPU_ATTR_ACQUIRE) { \
1333 ret = spu_acquire(ctx); \
1334 if (ret) \
1335 return ret; \
1336 *val = __get(ctx); \
1337 spu_release(ctx); \
1338 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1339 ret = spu_acquire_saved(ctx); \
1340 if (ret) \
1341 return ret; \
1342 *val = __get(ctx); \
1343 spu_release_saved(ctx); \
1344 } else \
1345 *val = __get(ctx); \
1346 \
1347 return 0; \
1348 } \
1349 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1350
1351 static int spufs_signal1_type_set(void *data, u64 val)
1352 {
1353 struct spu_context *ctx = data;
1354 int ret;
1355
1356 ret = spu_acquire(ctx);
1357 if (ret)
1358 return ret;
1359 ctx->ops->signal1_type_set(ctx, val);
1360 spu_release(ctx);
1361
1362 return 0;
1363 }
1364
1365 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1366 {
1367 return ctx->ops->signal1_type_get(ctx);
1368 }
1369 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1370 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1371
1372
1373 static int spufs_signal2_type_set(void *data, u64 val)
1374 {
1375 struct spu_context *ctx = data;
1376 int ret;
1377
1378 ret = spu_acquire(ctx);
1379 if (ret)
1380 return ret;
1381 ctx->ops->signal2_type_set(ctx, val);
1382 spu_release(ctx);
1383
1384 return 0;
1385 }
1386
1387 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1388 {
1389 return ctx->ops->signal2_type_get(ctx);
1390 }
1391 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1392 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1393
1394 #if SPUFS_MMAP_4K
1395 static int
1396 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1397 {
1398 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1399 }
1400
1401 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1402 .fault = spufs_mss_mmap_fault,
1403 };
1404
1405 /*
1406 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1407 */
1408 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1409 {
1410 if (!(vma->vm_flags & VM_SHARED))
1411 return -EINVAL;
1412
1413 vma->vm_flags |= VM_IO | VM_PFNMAP;
1414 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1415
1416 vma->vm_ops = &spufs_mss_mmap_vmops;
1417 return 0;
1418 }
1419 #else /* SPUFS_MMAP_4K */
1420 #define spufs_mss_mmap NULL
1421 #endif /* !SPUFS_MMAP_4K */
1422
1423 static int spufs_mss_open(struct inode *inode, struct file *file)
1424 {
1425 struct spufs_inode_info *i = SPUFS_I(inode);
1426 struct spu_context *ctx = i->i_ctx;
1427
1428 file->private_data = i->i_ctx;
1429
1430 mutex_lock(&ctx->mapping_lock);
1431 if (!i->i_openers++)
1432 ctx->mss = inode->i_mapping;
1433 mutex_unlock(&ctx->mapping_lock);
1434 return nonseekable_open(inode, file);
1435 }
1436
1437 static int
1438 spufs_mss_release(struct inode *inode, struct file *file)
1439 {
1440 struct spufs_inode_info *i = SPUFS_I(inode);
1441 struct spu_context *ctx = i->i_ctx;
1442
1443 mutex_lock(&ctx->mapping_lock);
1444 if (!--i->i_openers)
1445 ctx->mss = NULL;
1446 mutex_unlock(&ctx->mapping_lock);
1447 return 0;
1448 }
1449
1450 static const struct file_operations spufs_mss_fops = {
1451 .open = spufs_mss_open,
1452 .release = spufs_mss_release,
1453 .mmap = spufs_mss_mmap,
1454 };
1455
1456 static int
1457 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1458 {
1459 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1460 }
1461
1462 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1463 .fault = spufs_psmap_mmap_fault,
1464 };
1465
1466 /*
1467 * mmap support for full problem state area [0x00000 - 0x1ffff].
1468 */
1469 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1470 {
1471 if (!(vma->vm_flags & VM_SHARED))
1472 return -EINVAL;
1473
1474 vma->vm_flags |= VM_IO | VM_PFNMAP;
1475 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1476
1477 vma->vm_ops = &spufs_psmap_mmap_vmops;
1478 return 0;
1479 }
1480
1481 static int spufs_psmap_open(struct inode *inode, struct file *file)
1482 {
1483 struct spufs_inode_info *i = SPUFS_I(inode);
1484 struct spu_context *ctx = i->i_ctx;
1485
1486 mutex_lock(&ctx->mapping_lock);
1487 file->private_data = i->i_ctx;
1488 if (!i->i_openers++)
1489 ctx->psmap = inode->i_mapping;
1490 mutex_unlock(&ctx->mapping_lock);
1491 return nonseekable_open(inode, file);
1492 }
1493
1494 static int
1495 spufs_psmap_release(struct inode *inode, struct file *file)
1496 {
1497 struct spufs_inode_info *i = SPUFS_I(inode);
1498 struct spu_context *ctx = i->i_ctx;
1499
1500 mutex_lock(&ctx->mapping_lock);
1501 if (!--i->i_openers)
1502 ctx->psmap = NULL;
1503 mutex_unlock(&ctx->mapping_lock);
1504 return 0;
1505 }
1506
1507 static const struct file_operations spufs_psmap_fops = {
1508 .open = spufs_psmap_open,
1509 .release = spufs_psmap_release,
1510 .mmap = spufs_psmap_mmap,
1511 };
1512
1513
1514 #if SPUFS_MMAP_4K
1515 static int
1516 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1517 {
1518 return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1519 }
1520
1521 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1522 .fault = spufs_mfc_mmap_fault,
1523 };
1524
1525 /*
1526 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1527 */
1528 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1529 {
1530 if (!(vma->vm_flags & VM_SHARED))
1531 return -EINVAL;
1532
1533 vma->vm_flags |= VM_IO | VM_PFNMAP;
1534 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1535
1536 vma->vm_ops = &spufs_mfc_mmap_vmops;
1537 return 0;
1538 }
1539 #else /* SPUFS_MMAP_4K */
1540 #define spufs_mfc_mmap NULL
1541 #endif /* !SPUFS_MMAP_4K */
1542
1543 static int spufs_mfc_open(struct inode *inode, struct file *file)
1544 {
1545 struct spufs_inode_info *i = SPUFS_I(inode);
1546 struct spu_context *ctx = i->i_ctx;
1547
1548 /* we don't want to deal with DMA into other processes */
1549 if (ctx->owner != current->mm)
1550 return -EINVAL;
1551
1552 if (atomic_read(&inode->i_count) != 1)
1553 return -EBUSY;
1554
1555 mutex_lock(&ctx->mapping_lock);
1556 file->private_data = ctx;
1557 if (!i->i_openers++)
1558 ctx->mfc = inode->i_mapping;
1559 mutex_unlock(&ctx->mapping_lock);
1560 return nonseekable_open(inode, file);
1561 }
1562
1563 static int
1564 spufs_mfc_release(struct inode *inode, struct file *file)
1565 {
1566 struct spufs_inode_info *i = SPUFS_I(inode);
1567 struct spu_context *ctx = i->i_ctx;
1568
1569 mutex_lock(&ctx->mapping_lock);
1570 if (!--i->i_openers)
1571 ctx->mfc = NULL;
1572 mutex_unlock(&ctx->mapping_lock);
1573 return 0;
1574 }
1575
1576 /* interrupt-level mfc callback function. */
1577 void spufs_mfc_callback(struct spu *spu)
1578 {
1579 struct spu_context *ctx = spu->ctx;
1580
1581 if (!ctx)
1582 return;
1583
1584 wake_up_all(&ctx->mfc_wq);
1585
1586 pr_debug("%s %s\n", __func__, spu->name);
1587 if (ctx->mfc_fasync) {
1588 u32 free_elements, tagstatus;
1589 unsigned int mask;
1590
1591 /* no need for spu_acquire in interrupt context */
1592 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1593 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1594
1595 mask = 0;
1596 if (free_elements & 0xffff)
1597 mask |= POLLOUT;
1598 if (tagstatus & ctx->tagwait)
1599 mask |= POLLIN;
1600
1601 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1602 }
1603 }
1604
1605 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1606 {
1607 /* See if there is one tag group is complete */
1608 /* FIXME we need locking around tagwait */
1609 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1610 ctx->tagwait &= ~*status;
1611 if (*status)
1612 return 1;
1613
1614 /* enable interrupt waiting for any tag group,
1615 may silently fail if interrupts are already enabled */
1616 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1617 return 0;
1618 }
1619
1620 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1621 size_t size, loff_t *pos)
1622 {
1623 struct spu_context *ctx = file->private_data;
1624 int ret = -EINVAL;
1625 u32 status;
1626
1627 if (size != 4)
1628 goto out;
1629
1630 ret = spu_acquire(ctx);
1631 if (ret)
1632 return ret;
1633
1634 ret = -EINVAL;
1635 if (file->f_flags & O_NONBLOCK) {
1636 status = ctx->ops->read_mfc_tagstatus(ctx);
1637 if (!(status & ctx->tagwait))
1638 ret = -EAGAIN;
1639 else
1640 /* XXX(hch): shouldn't we clear ret here? */
1641 ctx->tagwait &= ~status;
1642 } else {
1643 ret = spufs_wait(ctx->mfc_wq,
1644 spufs_read_mfc_tagstatus(ctx, &status));
1645 if (ret)
1646 goto out;
1647 }
1648 spu_release(ctx);
1649
1650 ret = 4;
1651 if (copy_to_user(buffer, &status, 4))
1652 ret = -EFAULT;
1653
1654 out:
1655 return ret;
1656 }
1657
1658 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1659 {
1660 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1661 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1662
1663 switch (cmd->cmd) {
1664 case MFC_PUT_CMD:
1665 case MFC_PUTF_CMD:
1666 case MFC_PUTB_CMD:
1667 case MFC_GET_CMD:
1668 case MFC_GETF_CMD:
1669 case MFC_GETB_CMD:
1670 break;
1671 default:
1672 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1673 return -EIO;
1674 }
1675
1676 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1677 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1678 cmd->ea, cmd->lsa);
1679 return -EIO;
1680 }
1681
1682 switch (cmd->size & 0xf) {
1683 case 1:
1684 break;
1685 case 2:
1686 if (cmd->lsa & 1)
1687 goto error;
1688 break;
1689 case 4:
1690 if (cmd->lsa & 3)
1691 goto error;
1692 break;
1693 case 8:
1694 if (cmd->lsa & 7)
1695 goto error;
1696 break;
1697 case 0:
1698 if (cmd->lsa & 15)
1699 goto error;
1700 break;
1701 error:
1702 default:
1703 pr_debug("invalid DMA alignment %x for size %x\n",
1704 cmd->lsa & 0xf, cmd->size);
1705 return -EIO;
1706 }
1707
1708 if (cmd->size > 16 * 1024) {
1709 pr_debug("invalid DMA size %x\n", cmd->size);
1710 return -EIO;
1711 }
1712
1713 if (cmd->tag & 0xfff0) {
1714 /* we reserve the higher tag numbers for kernel use */
1715 pr_debug("invalid DMA tag\n");
1716 return -EIO;
1717 }
1718
1719 if (cmd->class) {
1720 /* not supported in this version */
1721 pr_debug("invalid DMA class\n");
1722 return -EIO;
1723 }
1724
1725 return 0;
1726 }
1727
1728 static int spu_send_mfc_command(struct spu_context *ctx,
1729 struct mfc_dma_command cmd,
1730 int *error)
1731 {
1732 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1733 if (*error == -EAGAIN) {
1734 /* wait for any tag group to complete
1735 so we have space for the new command */
1736 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1737 /* try again, because the queue might be
1738 empty again */
1739 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1740 if (*error == -EAGAIN)
1741 return 0;
1742 }
1743 return 1;
1744 }
1745
1746 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1747 size_t size, loff_t *pos)
1748 {
1749 struct spu_context *ctx = file->private_data;
1750 struct mfc_dma_command cmd;
1751 int ret = -EINVAL;
1752
1753 if (size != sizeof cmd)
1754 goto out;
1755
1756 ret = -EFAULT;
1757 if (copy_from_user(&cmd, buffer, sizeof cmd))
1758 goto out;
1759
1760 ret = spufs_check_valid_dma(&cmd);
1761 if (ret)
1762 goto out;
1763
1764 ret = spu_acquire(ctx);
1765 if (ret)
1766 goto out;
1767
1768 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1769 if (ret)
1770 goto out;
1771
1772 if (file->f_flags & O_NONBLOCK) {
1773 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1774 } else {
1775 int status;
1776 ret = spufs_wait(ctx->mfc_wq,
1777 spu_send_mfc_command(ctx, cmd, &status));
1778 if (ret)
1779 goto out;
1780 if (status)
1781 ret = status;
1782 }
1783
1784 if (ret)
1785 goto out_unlock;
1786
1787 ctx->tagwait |= 1 << cmd.tag;
1788 ret = size;
1789
1790 out_unlock:
1791 spu_release(ctx);
1792 out:
1793 return ret;
1794 }
1795
1796 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1797 {
1798 struct spu_context *ctx = file->private_data;
1799 u32 free_elements, tagstatus;
1800 unsigned int mask;
1801
1802 poll_wait(file, &ctx->mfc_wq, wait);
1803
1804 /*
1805 * For now keep this uninterruptible and also ignore the rule
1806 * that poll should not sleep. Will be fixed later.
1807 */
1808 mutex_lock(&ctx->state_mutex);
1809 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1810 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1811 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1812 spu_release(ctx);
1813
1814 mask = 0;
1815 if (free_elements & 0xffff)
1816 mask |= POLLOUT | POLLWRNORM;
1817 if (tagstatus & ctx->tagwait)
1818 mask |= POLLIN | POLLRDNORM;
1819
1820 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1821 free_elements, tagstatus, ctx->tagwait);
1822
1823 return mask;
1824 }
1825
1826 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1827 {
1828 struct spu_context *ctx = file->private_data;
1829 int ret;
1830
1831 ret = spu_acquire(ctx);
1832 if (ret)
1833 goto out;
1834 #if 0
1835 /* this currently hangs */
1836 ret = spufs_wait(ctx->mfc_wq,
1837 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1838 if (ret)
1839 goto out;
1840 ret = spufs_wait(ctx->mfc_wq,
1841 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1842 if (ret)
1843 goto out;
1844 #else
1845 ret = 0;
1846 #endif
1847 spu_release(ctx);
1848 out:
1849 return ret;
1850 }
1851
1852 static int spufs_mfc_fsync(struct file *file, int datasync)
1853 {
1854 return spufs_mfc_flush(file, NULL);
1855 }
1856
1857 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1858 {
1859 struct spu_context *ctx = file->private_data;
1860
1861 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1862 }
1863
1864 static const struct file_operations spufs_mfc_fops = {
1865 .open = spufs_mfc_open,
1866 .release = spufs_mfc_release,
1867 .read = spufs_mfc_read,
1868 .write = spufs_mfc_write,
1869 .poll = spufs_mfc_poll,
1870 .flush = spufs_mfc_flush,
1871 .fsync = spufs_mfc_fsync,
1872 .fasync = spufs_mfc_fasync,
1873 .mmap = spufs_mfc_mmap,
1874 };
1875
1876 static int spufs_npc_set(void *data, u64 val)
1877 {
1878 struct spu_context *ctx = data;
1879 int ret;
1880
1881 ret = spu_acquire(ctx);
1882 if (ret)
1883 return ret;
1884 ctx->ops->npc_write(ctx, val);
1885 spu_release(ctx);
1886
1887 return 0;
1888 }
1889
1890 static u64 spufs_npc_get(struct spu_context *ctx)
1891 {
1892 return ctx->ops->npc_read(ctx);
1893 }
1894 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1895 "0x%llx\n", SPU_ATTR_ACQUIRE);
1896
1897 static int spufs_decr_set(void *data, u64 val)
1898 {
1899 struct spu_context *ctx = data;
1900 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1901 int ret;
1902
1903 ret = spu_acquire_saved(ctx);
1904 if (ret)
1905 return ret;
1906 lscsa->decr.slot[0] = (u32) val;
1907 spu_release_saved(ctx);
1908
1909 return 0;
1910 }
1911
1912 static u64 spufs_decr_get(struct spu_context *ctx)
1913 {
1914 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1915 return lscsa->decr.slot[0];
1916 }
1917 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1918 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1919
1920 static int spufs_decr_status_set(void *data, u64 val)
1921 {
1922 struct spu_context *ctx = data;
1923 int ret;
1924
1925 ret = spu_acquire_saved(ctx);
1926 if (ret)
1927 return ret;
1928 if (val)
1929 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1930 else
1931 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1932 spu_release_saved(ctx);
1933
1934 return 0;
1935 }
1936
1937 static u64 spufs_decr_status_get(struct spu_context *ctx)
1938 {
1939 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1940 return SPU_DECR_STATUS_RUNNING;
1941 else
1942 return 0;
1943 }
1944 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1945 spufs_decr_status_set, "0x%llx\n",
1946 SPU_ATTR_ACQUIRE_SAVED);
1947
1948 static int spufs_event_mask_set(void *data, u64 val)
1949 {
1950 struct spu_context *ctx = data;
1951 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1952 int ret;
1953
1954 ret = spu_acquire_saved(ctx);
1955 if (ret)
1956 return ret;
1957 lscsa->event_mask.slot[0] = (u32) val;
1958 spu_release_saved(ctx);
1959
1960 return 0;
1961 }
1962
1963 static u64 spufs_event_mask_get(struct spu_context *ctx)
1964 {
1965 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1966 return lscsa->event_mask.slot[0];
1967 }
1968
1969 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1970 spufs_event_mask_set, "0x%llx\n",
1971 SPU_ATTR_ACQUIRE_SAVED);
1972
1973 static u64 spufs_event_status_get(struct spu_context *ctx)
1974 {
1975 struct spu_state *state = &ctx->csa;
1976 u64 stat;
1977 stat = state->spu_chnlcnt_RW[0];
1978 if (stat)
1979 return state->spu_chnldata_RW[0];
1980 return 0;
1981 }
1982 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1983 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1984
1985 static int spufs_srr0_set(void *data, u64 val)
1986 {
1987 struct spu_context *ctx = data;
1988 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1989 int ret;
1990
1991 ret = spu_acquire_saved(ctx);
1992 if (ret)
1993 return ret;
1994 lscsa->srr0.slot[0] = (u32) val;
1995 spu_release_saved(ctx);
1996
1997 return 0;
1998 }
1999
2000 static u64 spufs_srr0_get(struct spu_context *ctx)
2001 {
2002 struct spu_lscsa *lscsa = ctx->csa.lscsa;
2003 return lscsa->srr0.slot[0];
2004 }
2005 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2006 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2007
2008 static u64 spufs_id_get(struct spu_context *ctx)
2009 {
2010 u64 num;
2011
2012 if (ctx->state == SPU_STATE_RUNNABLE)
2013 num = ctx->spu->number;
2014 else
2015 num = (unsigned int)-1;
2016
2017 return num;
2018 }
2019 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2020 SPU_ATTR_ACQUIRE)
2021
2022 static u64 spufs_object_id_get(struct spu_context *ctx)
2023 {
2024 /* FIXME: Should there really be no locking here? */
2025 return ctx->object_id;
2026 }
2027
2028 static int spufs_object_id_set(void *data, u64 id)
2029 {
2030 struct spu_context *ctx = data;
2031 ctx->object_id = id;
2032
2033 return 0;
2034 }
2035
2036 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2037 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2038
2039 static u64 spufs_lslr_get(struct spu_context *ctx)
2040 {
2041 return ctx->csa.priv2.spu_lslr_RW;
2042 }
2043 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2044 SPU_ATTR_ACQUIRE_SAVED);
2045
2046 static int spufs_info_open(struct inode *inode, struct file *file)
2047 {
2048 struct spufs_inode_info *i = SPUFS_I(inode);
2049 struct spu_context *ctx = i->i_ctx;
2050 file->private_data = ctx;
2051 return 0;
2052 }
2053
2054 static int spufs_caps_show(struct seq_file *s, void *private)
2055 {
2056 struct spu_context *ctx = s->private;
2057
2058 if (!(ctx->flags & SPU_CREATE_NOSCHED))
2059 seq_puts(s, "sched\n");
2060 if (!(ctx->flags & SPU_CREATE_ISOLATE))
2061 seq_puts(s, "step\n");
2062 return 0;
2063 }
2064
2065 static int spufs_caps_open(struct inode *inode, struct file *file)
2066 {
2067 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2068 }
2069
2070 static const struct file_operations spufs_caps_fops = {
2071 .open = spufs_caps_open,
2072 .read = seq_read,
2073 .llseek = seq_lseek,
2074 .release = single_release,
2075 };
2076
2077 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2078 char __user *buf, size_t len, loff_t *pos)
2079 {
2080 u32 data;
2081
2082 /* EOF if there's no entry in the mbox */
2083 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2084 return 0;
2085
2086 data = ctx->csa.prob.pu_mb_R;
2087
2088 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2089 }
2090
2091 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2092 size_t len, loff_t *pos)
2093 {
2094 int ret;
2095 struct spu_context *ctx = file->private_data;
2096
2097 if (!access_ok(VERIFY_WRITE, buf, len))
2098 return -EFAULT;
2099
2100 ret = spu_acquire_saved(ctx);
2101 if (ret)
2102 return ret;
2103 spin_lock(&ctx->csa.register_lock);
2104 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2105 spin_unlock(&ctx->csa.register_lock);
2106 spu_release_saved(ctx);
2107
2108 return ret;
2109 }
2110
2111 static const struct file_operations spufs_mbox_info_fops = {
2112 .open = spufs_info_open,
2113 .read = spufs_mbox_info_read,
2114 .llseek = generic_file_llseek,
2115 };
2116
2117 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2118 char __user *buf, size_t len, loff_t *pos)
2119 {
2120 u32 data;
2121
2122 /* EOF if there's no entry in the ibox */
2123 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2124 return 0;
2125
2126 data = ctx->csa.priv2.puint_mb_R;
2127
2128 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2129 }
2130
2131 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2132 size_t len, loff_t *pos)
2133 {
2134 struct spu_context *ctx = file->private_data;
2135 int ret;
2136
2137 if (!access_ok(VERIFY_WRITE, buf, len))
2138 return -EFAULT;
2139
2140 ret = spu_acquire_saved(ctx);
2141 if (ret)
2142 return ret;
2143 spin_lock(&ctx->csa.register_lock);
2144 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2145 spin_unlock(&ctx->csa.register_lock);
2146 spu_release_saved(ctx);
2147
2148 return ret;
2149 }
2150
2151 static const struct file_operations spufs_ibox_info_fops = {
2152 .open = spufs_info_open,
2153 .read = spufs_ibox_info_read,
2154 .llseek = generic_file_llseek,
2155 };
2156
2157 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2158 char __user *buf, size_t len, loff_t *pos)
2159 {
2160 int i, cnt;
2161 u32 data[4];
2162 u32 wbox_stat;
2163
2164 wbox_stat = ctx->csa.prob.mb_stat_R;
2165 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2166 for (i = 0; i < cnt; i++) {
2167 data[i] = ctx->csa.spu_mailbox_data[i];
2168 }
2169
2170 return simple_read_from_buffer(buf, len, pos, &data,
2171 cnt * sizeof(u32));
2172 }
2173
2174 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2175 size_t len, loff_t *pos)
2176 {
2177 struct spu_context *ctx = file->private_data;
2178 int ret;
2179
2180 if (!access_ok(VERIFY_WRITE, buf, len))
2181 return -EFAULT;
2182
2183 ret = spu_acquire_saved(ctx);
2184 if (ret)
2185 return ret;
2186 spin_lock(&ctx->csa.register_lock);
2187 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2188 spin_unlock(&ctx->csa.register_lock);
2189 spu_release_saved(ctx);
2190
2191 return ret;
2192 }
2193
2194 static const struct file_operations spufs_wbox_info_fops = {
2195 .open = spufs_info_open,
2196 .read = spufs_wbox_info_read,
2197 .llseek = generic_file_llseek,
2198 };
2199
2200 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2201 char __user *buf, size_t len, loff_t *pos)
2202 {
2203 struct spu_dma_info info;
2204 struct mfc_cq_sr *qp, *spuqp;
2205 int i;
2206
2207 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2208 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2209 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2210 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2211 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2212 for (i = 0; i < 16; i++) {
2213 qp = &info.dma_info_command_data[i];
2214 spuqp = &ctx->csa.priv2.spuq[i];
2215
2216 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2217 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2218 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2219 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2220 }
2221
2222 return simple_read_from_buffer(buf, len, pos, &info,
2223 sizeof info);
2224 }
2225
2226 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2227 size_t len, loff_t *pos)
2228 {
2229 struct spu_context *ctx = file->private_data;
2230 int ret;
2231
2232 if (!access_ok(VERIFY_WRITE, buf, len))
2233 return -EFAULT;
2234
2235 ret = spu_acquire_saved(ctx);
2236 if (ret)
2237 return ret;
2238 spin_lock(&ctx->csa.register_lock);
2239 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2240 spin_unlock(&ctx->csa.register_lock);
2241 spu_release_saved(ctx);
2242
2243 return ret;
2244 }
2245
2246 static const struct file_operations spufs_dma_info_fops = {
2247 .open = spufs_info_open,
2248 .read = spufs_dma_info_read,
2249 };
2250
2251 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2252 char __user *buf, size_t len, loff_t *pos)
2253 {
2254 struct spu_proxydma_info info;
2255 struct mfc_cq_sr *qp, *puqp;
2256 int ret = sizeof info;
2257 int i;
2258
2259 if (len < ret)
2260 return -EINVAL;
2261
2262 if (!access_ok(VERIFY_WRITE, buf, len))
2263 return -EFAULT;
2264
2265 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2266 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2267 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2268 for (i = 0; i < 8; i++) {
2269 qp = &info.proxydma_info_command_data[i];
2270 puqp = &ctx->csa.priv2.puq[i];
2271
2272 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2273 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2274 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2275 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2276 }
2277
2278 return simple_read_from_buffer(buf, len, pos, &info,
2279 sizeof info);
2280 }
2281
2282 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2283 size_t len, loff_t *pos)
2284 {
2285 struct spu_context *ctx = file->private_data;
2286 int ret;
2287
2288 ret = spu_acquire_saved(ctx);
2289 if (ret)
2290 return ret;
2291 spin_lock(&ctx->csa.register_lock);
2292 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2293 spin_unlock(&ctx->csa.register_lock);
2294 spu_release_saved(ctx);
2295
2296 return ret;
2297 }
2298
2299 static const struct file_operations spufs_proxydma_info_fops = {
2300 .open = spufs_info_open,
2301 .read = spufs_proxydma_info_read,
2302 };
2303
2304 static int spufs_show_tid(struct seq_file *s, void *private)
2305 {
2306 struct spu_context *ctx = s->private;
2307
2308 seq_printf(s, "%d\n", ctx->tid);
2309 return 0;
2310 }
2311
2312 static int spufs_tid_open(struct inode *inode, struct file *file)
2313 {
2314 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2315 }
2316
2317 static const struct file_operations spufs_tid_fops = {
2318 .open = spufs_tid_open,
2319 .read = seq_read,
2320 .llseek = seq_lseek,
2321 .release = single_release,
2322 };
2323
2324 static const char *ctx_state_names[] = {
2325 "user", "system", "iowait", "loaded"
2326 };
2327
2328 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2329 enum spu_utilization_state state)
2330 {
2331 struct timespec ts;
2332 unsigned long long time = ctx->stats.times[state];
2333
2334 /*
2335 * In general, utilization statistics are updated by the controlling
2336 * thread as the spu context moves through various well defined
2337 * state transitions, but if the context is lazily loaded its
2338 * utilization statistics are not updated as the controlling thread
2339 * is not tightly coupled with the execution of the spu context. We
2340 * calculate and apply the time delta from the last recorded state
2341 * of the spu context.
2342 */
2343 if (ctx->spu && ctx->stats.util_state == state) {
2344 ktime_get_ts(&ts);
2345 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2346 }
2347
2348 return time / NSEC_PER_MSEC;
2349 }
2350
2351 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2352 {
2353 unsigned long long slb_flts = ctx->stats.slb_flt;
2354
2355 if (ctx->state == SPU_STATE_RUNNABLE) {
2356 slb_flts += (ctx->spu->stats.slb_flt -
2357 ctx->stats.slb_flt_base);
2358 }
2359
2360 return slb_flts;
2361 }
2362
2363 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2364 {
2365 unsigned long long class2_intrs = ctx->stats.class2_intr;
2366
2367 if (ctx->state == SPU_STATE_RUNNABLE) {
2368 class2_intrs += (ctx->spu->stats.class2_intr -
2369 ctx->stats.class2_intr_base);
2370 }
2371
2372 return class2_intrs;
2373 }
2374
2375
2376 static int spufs_show_stat(struct seq_file *s, void *private)
2377 {
2378 struct spu_context *ctx = s->private;
2379 int ret;
2380
2381 ret = spu_acquire(ctx);
2382 if (ret)
2383 return ret;
2384
2385 seq_printf(s, "%s %llu %llu %llu %llu "
2386 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2387 ctx_state_names[ctx->stats.util_state],
2388 spufs_acct_time(ctx, SPU_UTIL_USER),
2389 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2390 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2391 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2392 ctx->stats.vol_ctx_switch,
2393 ctx->stats.invol_ctx_switch,
2394 spufs_slb_flts(ctx),
2395 ctx->stats.hash_flt,
2396 ctx->stats.min_flt,
2397 ctx->stats.maj_flt,
2398 spufs_class2_intrs(ctx),
2399 ctx->stats.libassist);
2400 spu_release(ctx);
2401 return 0;
2402 }
2403
2404 static int spufs_stat_open(struct inode *inode, struct file *file)
2405 {
2406 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2407 }
2408
2409 static const struct file_operations spufs_stat_fops = {
2410 .open = spufs_stat_open,
2411 .read = seq_read,
2412 .llseek = seq_lseek,
2413 .release = single_release,
2414 };
2415
2416 static inline int spufs_switch_log_used(struct spu_context *ctx)
2417 {
2418 return (ctx->switch_log->head - ctx->switch_log->tail) %
2419 SWITCH_LOG_BUFSIZE;
2420 }
2421
2422 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2423 {
2424 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2425 }
2426
2427 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2428 {
2429 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2430 int rc;
2431
2432 rc = spu_acquire(ctx);
2433 if (rc)
2434 return rc;
2435
2436 if (ctx->switch_log) {
2437 rc = -EBUSY;
2438 goto out;
2439 }
2440
2441 ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2442 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2443 GFP_KERNEL);
2444
2445 if (!ctx->switch_log) {
2446 rc = -ENOMEM;
2447 goto out;
2448 }
2449
2450 ctx->switch_log->head = ctx->switch_log->tail = 0;
2451 init_waitqueue_head(&ctx->switch_log->wait);
2452 rc = 0;
2453
2454 out:
2455 spu_release(ctx);
2456 return rc;
2457 }
2458
2459 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2460 {
2461 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2462 int rc;
2463
2464 rc = spu_acquire(ctx);
2465 if (rc)
2466 return rc;
2467
2468 kfree(ctx->switch_log);
2469 ctx->switch_log = NULL;
2470 spu_release(ctx);
2471
2472 return 0;
2473 }
2474
2475 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2476 {
2477 struct switch_log_entry *p;
2478
2479 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2480
2481 return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2482 (unsigned int) p->tstamp.tv_sec,
2483 (unsigned int) p->tstamp.tv_nsec,
2484 p->spu_id,
2485 (unsigned int) p->type,
2486 (unsigned int) p->val,
2487 (unsigned long long) p->timebase);
2488 }
2489
2490 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2491 size_t len, loff_t *ppos)
2492 {
2493 struct inode *inode = file->f_path.dentry->d_inode;
2494 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2495 int error = 0, cnt = 0;
2496
2497 if (!buf)
2498 return -EINVAL;
2499
2500 error = spu_acquire(ctx);
2501 if (error)
2502 return error;
2503
2504 while (cnt < len) {
2505 char tbuf[128];
2506 int width;
2507
2508 if (spufs_switch_log_used(ctx) == 0) {
2509 if (cnt > 0) {
2510 /* If there's data ready to go, we can
2511 * just return straight away */
2512 break;
2513
2514 } else if (file->f_flags & O_NONBLOCK) {
2515 error = -EAGAIN;
2516 break;
2517
2518 } else {
2519 /* spufs_wait will drop the mutex and
2520 * re-acquire, but since we're in read(), the
2521 * file cannot be _released (and so
2522 * ctx->switch_log is stable).
2523 */
2524 error = spufs_wait(ctx->switch_log->wait,
2525 spufs_switch_log_used(ctx) > 0);
2526
2527 /* On error, spufs_wait returns without the
2528 * state mutex held */
2529 if (error)
2530 return error;
2531
2532 /* We may have had entries read from underneath
2533 * us while we dropped the mutex in spufs_wait,
2534 * so re-check */
2535 if (spufs_switch_log_used(ctx) == 0)
2536 continue;
2537 }
2538 }
2539
2540 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2541 if (width < len)
2542 ctx->switch_log->tail =
2543 (ctx->switch_log->tail + 1) %
2544 SWITCH_LOG_BUFSIZE;
2545 else
2546 /* If the record is greater than space available return
2547 * partial buffer (so far) */
2548 break;
2549
2550 error = copy_to_user(buf + cnt, tbuf, width);
2551 if (error)
2552 break;
2553 cnt += width;
2554 }
2555
2556 spu_release(ctx);
2557
2558 return cnt == 0 ? error : cnt;
2559 }
2560
2561 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2562 {
2563 struct inode *inode = file->f_path.dentry->d_inode;
2564 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2565 unsigned int mask = 0;
2566 int rc;
2567
2568 poll_wait(file, &ctx->switch_log->wait, wait);
2569
2570 rc = spu_acquire(ctx);
2571 if (rc)
2572 return rc;
2573
2574 if (spufs_switch_log_used(ctx) > 0)
2575 mask |= POLLIN;
2576
2577 spu_release(ctx);
2578
2579 return mask;
2580 }
2581
2582 static const struct file_operations spufs_switch_log_fops = {
2583 .owner = THIS_MODULE,
2584 .open = spufs_switch_log_open,
2585 .read = spufs_switch_log_read,
2586 .poll = spufs_switch_log_poll,
2587 .release = spufs_switch_log_release,
2588 };
2589
2590 /**
2591 * Log a context switch event to a switch log reader.
2592 *
2593 * Must be called with ctx->state_mutex held.
2594 */
2595 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2596 u32 type, u32 val)
2597 {
2598 if (!ctx->switch_log)
2599 return;
2600
2601 if (spufs_switch_log_avail(ctx) > 1) {
2602 struct switch_log_entry *p;
2603
2604 p = ctx->switch_log->log + ctx->switch_log->head;
2605 ktime_get_ts(&p->tstamp);
2606 p->timebase = get_tb();
2607 p->spu_id = spu ? spu->number : -1;
2608 p->type = type;
2609 p->val = val;
2610
2611 ctx->switch_log->head =
2612 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2613 }
2614
2615 wake_up(&ctx->switch_log->wait);
2616 }
2617
2618 static int spufs_show_ctx(struct seq_file *s, void *private)
2619 {
2620 struct spu_context *ctx = s->private;
2621 u64 mfc_control_RW;
2622
2623 mutex_lock(&ctx->state_mutex);
2624 if (ctx->spu) {
2625 struct spu *spu = ctx->spu;
2626 struct spu_priv2 __iomem *priv2 = spu->priv2;
2627
2628 spin_lock_irq(&spu->register_lock);
2629 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2630 spin_unlock_irq(&spu->register_lock);
2631 } else {
2632 struct spu_state *csa = &ctx->csa;
2633
2634 mfc_control_RW = csa->priv2.mfc_control_RW;
2635 }
2636
2637 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2638 " %c %llx %llx %llx %llx %x %x\n",
2639 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2640 ctx->flags,
2641 ctx->sched_flags,
2642 ctx->prio,
2643 ctx->time_slice,
2644 ctx->spu ? ctx->spu->number : -1,
2645 !list_empty(&ctx->rq) ? 'q' : ' ',
2646 ctx->csa.class_0_pending,
2647 ctx->csa.class_0_dar,
2648 ctx->csa.class_1_dsisr,
2649 mfc_control_RW,
2650 ctx->ops->runcntl_read(ctx),
2651 ctx->ops->status_read(ctx));
2652
2653 mutex_unlock(&ctx->state_mutex);
2654
2655 return 0;
2656 }
2657
2658 static int spufs_ctx_open(struct inode *inode, struct file *file)
2659 {
2660 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2661 }
2662
2663 static const struct file_operations spufs_ctx_fops = {
2664 .open = spufs_ctx_open,
2665 .read = seq_read,
2666 .llseek = seq_lseek,
2667 .release = single_release,
2668 };
2669
2670 const struct spufs_tree_descr spufs_dir_contents[] = {
2671 { "capabilities", &spufs_caps_fops, 0444, },
2672 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2673 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
2674 { "mbox", &spufs_mbox_fops, 0444, },
2675 { "ibox", &spufs_ibox_fops, 0444, },
2676 { "wbox", &spufs_wbox_fops, 0222, },
2677 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2678 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2679 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2680 { "signal1", &spufs_signal1_fops, 0666, },
2681 { "signal2", &spufs_signal2_fops, 0666, },
2682 { "signal1_type", &spufs_signal1_type, 0666, },
2683 { "signal2_type", &spufs_signal2_type, 0666, },
2684 { "cntl", &spufs_cntl_fops, 0666, },
2685 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2686 { "lslr", &spufs_lslr_ops, 0444, },
2687 { "mfc", &spufs_mfc_fops, 0666, },
2688 { "mss", &spufs_mss_fops, 0666, },
2689 { "npc", &spufs_npc_ops, 0666, },
2690 { "srr0", &spufs_srr0_ops, 0666, },
2691 { "decr", &spufs_decr_ops, 0666, },
2692 { "decr_status", &spufs_decr_status_ops, 0666, },
2693 { "event_mask", &spufs_event_mask_ops, 0666, },
2694 { "event_status", &spufs_event_status_ops, 0444, },
2695 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2696 { "phys-id", &spufs_id_ops, 0666, },
2697 { "object-id", &spufs_object_id_ops, 0666, },
2698 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2699 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2700 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2701 { "dma_info", &spufs_dma_info_fops, 0444,
2702 sizeof(struct spu_dma_info), },
2703 { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2704 sizeof(struct spu_proxydma_info)},
2705 { "tid", &spufs_tid_fops, 0444, },
2706 { "stat", &spufs_stat_fops, 0444, },
2707 { "switch_log", &spufs_switch_log_fops, 0444 },
2708 {},
2709 };
2710
2711 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2712 { "capabilities", &spufs_caps_fops, 0444, },
2713 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2714 { "mbox", &spufs_mbox_fops, 0444, },
2715 { "ibox", &spufs_ibox_fops, 0444, },
2716 { "wbox", &spufs_wbox_fops, 0222, },
2717 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2718 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2719 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2720 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2721 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2722 { "signal1_type", &spufs_signal1_type, 0666, },
2723 { "signal2_type", &spufs_signal2_type, 0666, },
2724 { "mss", &spufs_mss_fops, 0666, },
2725 { "mfc", &spufs_mfc_fops, 0666, },
2726 { "cntl", &spufs_cntl_fops, 0666, },
2727 { "npc", &spufs_npc_ops, 0666, },
2728 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2729 { "phys-id", &spufs_id_ops, 0666, },
2730 { "object-id", &spufs_object_id_ops, 0666, },
2731 { "tid", &spufs_tid_fops, 0444, },
2732 { "stat", &spufs_stat_fops, 0444, },
2733 {},
2734 };
2735
2736 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2737 { ".ctx", &spufs_ctx_fops, 0444, },
2738 {},
2739 };
2740
2741 const struct spufs_coredump_reader spufs_coredump_read[] = {
2742 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2743 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2744 { "lslr", NULL, spufs_lslr_get, 19 },
2745 { "decr", NULL, spufs_decr_get, 19 },
2746 { "decr_status", NULL, spufs_decr_status_get, 19 },
2747 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2748 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2749 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2750 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2751 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2752 { "event_mask", NULL, spufs_event_mask_get, 19 },
2753 { "event_status", NULL, spufs_event_status_get, 19 },
2754 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2755 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2756 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2757 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2758 { "proxydma_info", __spufs_proxydma_info_read,
2759 NULL, sizeof(struct spu_proxydma_info)},
2760 { "object-id", NULL, spufs_object_id_get, 19 },
2761 { "npc", NULL, spufs_npc_get, 19 },
2762 { NULL },
2763 };