Merge branch 'driver-core-next' into Linux 3.2
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / arch / powerpc / platforms / cell / spu_base.c
1 /*
2 * Low-level SPU handling
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/wait.h>
31 #include <linux/mm.h>
32 #include <linux/io.h>
33 #include <linux/mutex.h>
34 #include <linux/linux_logo.h>
35 #include <linux/syscore_ops.h>
36 #include <asm/spu.h>
37 #include <asm/spu_priv1.h>
38 #include <asm/spu_csa.h>
39 #include <asm/xmon.h>
40 #include <asm/prom.h>
41 #include <asm/kexec.h>
42
43 const struct spu_management_ops *spu_management_ops;
44 EXPORT_SYMBOL_GPL(spu_management_ops);
45
46 const struct spu_priv1_ops *spu_priv1_ops;
47 EXPORT_SYMBOL_GPL(spu_priv1_ops);
48
49 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
50 EXPORT_SYMBOL_GPL(cbe_spu_info);
51
52 /*
53 * The spufs fault-handling code needs to call force_sig_info to raise signals
54 * on DMA errors. Export it here to avoid general kernel-wide access to this
55 * function
56 */
57 EXPORT_SYMBOL_GPL(force_sig_info);
58
59 /*
60 * Protects cbe_spu_info and spu->number.
61 */
62 static DEFINE_SPINLOCK(spu_lock);
63
64 /*
65 * List of all spus in the system.
66 *
67 * This list is iterated by callers from irq context and callers that
68 * want to sleep. Thus modifications need to be done with both
69 * spu_full_list_lock and spu_full_list_mutex held, while iterating
70 * through it requires either of these locks.
71 *
72 * In addition spu_full_list_lock protects all assignmens to
73 * spu->mm.
74 */
75 static LIST_HEAD(spu_full_list);
76 static DEFINE_SPINLOCK(spu_full_list_lock);
77 static DEFINE_MUTEX(spu_full_list_mutex);
78
79 struct spu_slb {
80 u64 esid, vsid;
81 };
82
83 void spu_invalidate_slbs(struct spu *spu)
84 {
85 struct spu_priv2 __iomem *priv2 = spu->priv2;
86 unsigned long flags;
87
88 spin_lock_irqsave(&spu->register_lock, flags);
89 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
90 out_be64(&priv2->slb_invalidate_all_W, 0UL);
91 spin_unlock_irqrestore(&spu->register_lock, flags);
92 }
93 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
94
95 /* This is called by the MM core when a segment size is changed, to
96 * request a flush of all the SPEs using a given mm
97 */
98 void spu_flush_all_slbs(struct mm_struct *mm)
99 {
100 struct spu *spu;
101 unsigned long flags;
102
103 spin_lock_irqsave(&spu_full_list_lock, flags);
104 list_for_each_entry(spu, &spu_full_list, full_list) {
105 if (spu->mm == mm)
106 spu_invalidate_slbs(spu);
107 }
108 spin_unlock_irqrestore(&spu_full_list_lock, flags);
109 }
110
111 /* The hack below stinks... try to do something better one of
112 * these days... Does it even work properly with NR_CPUS == 1 ?
113 */
114 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
115 {
116 int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
117
118 /* Global TLBIE broadcast required with SPEs. */
119 bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
120 }
121
122 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
123 {
124 unsigned long flags;
125
126 spin_lock_irqsave(&spu_full_list_lock, flags);
127 spu->mm = mm;
128 spin_unlock_irqrestore(&spu_full_list_lock, flags);
129 if (mm)
130 mm_needs_global_tlbie(mm);
131 }
132 EXPORT_SYMBOL_GPL(spu_associate_mm);
133
134 int spu_64k_pages_available(void)
135 {
136 return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
137 }
138 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
139
140 static void spu_restart_dma(struct spu *spu)
141 {
142 struct spu_priv2 __iomem *priv2 = spu->priv2;
143
144 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
145 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
146 else {
147 set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
148 mb();
149 }
150 }
151
152 static inline void spu_load_slb(struct spu *spu, int slbe, struct spu_slb *slb)
153 {
154 struct spu_priv2 __iomem *priv2 = spu->priv2;
155
156 pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
157 __func__, slbe, slb->vsid, slb->esid);
158
159 out_be64(&priv2->slb_index_W, slbe);
160 /* set invalid before writing vsid */
161 out_be64(&priv2->slb_esid_RW, 0);
162 /* now it's safe to write the vsid */
163 out_be64(&priv2->slb_vsid_RW, slb->vsid);
164 /* setting the new esid makes the entry valid again */
165 out_be64(&priv2->slb_esid_RW, slb->esid);
166 }
167
168 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
169 {
170 struct mm_struct *mm = spu->mm;
171 struct spu_slb slb;
172 int psize;
173
174 pr_debug("%s\n", __func__);
175
176 slb.esid = (ea & ESID_MASK) | SLB_ESID_V;
177
178 switch(REGION_ID(ea)) {
179 case USER_REGION_ID:
180 #ifdef CONFIG_PPC_MM_SLICES
181 psize = get_slice_psize(mm, ea);
182 #else
183 psize = mm->context.user_psize;
184 #endif
185 slb.vsid = (get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M)
186 << SLB_VSID_SHIFT) | SLB_VSID_USER;
187 break;
188 case VMALLOC_REGION_ID:
189 if (ea < VMALLOC_END)
190 psize = mmu_vmalloc_psize;
191 else
192 psize = mmu_io_psize;
193 slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M)
194 << SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
195 break;
196 case KERNEL_REGION_ID:
197 psize = mmu_linear_psize;
198 slb.vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M)
199 << SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
200 break;
201 default:
202 /* Future: support kernel segments so that drivers
203 * can use SPUs.
204 */
205 pr_debug("invalid region access at %016lx\n", ea);
206 return 1;
207 }
208 slb.vsid |= mmu_psize_defs[psize].sllp;
209
210 spu_load_slb(spu, spu->slb_replace, &slb);
211
212 spu->slb_replace++;
213 if (spu->slb_replace >= 8)
214 spu->slb_replace = 0;
215
216 spu_restart_dma(spu);
217 spu->stats.slb_flt++;
218 return 0;
219 }
220
221 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX
222 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
223 {
224 int ret;
225
226 pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
227
228 /*
229 * Handle kernel space hash faults immediately. User hash
230 * faults need to be deferred to process context.
231 */
232 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
233 (REGION_ID(ea) != USER_REGION_ID)) {
234
235 spin_unlock(&spu->register_lock);
236 ret = hash_page(ea, _PAGE_PRESENT, 0x300);
237 spin_lock(&spu->register_lock);
238
239 if (!ret) {
240 spu_restart_dma(spu);
241 return 0;
242 }
243 }
244
245 spu->class_1_dar = ea;
246 spu->class_1_dsisr = dsisr;
247
248 spu->stop_callback(spu, 1);
249
250 spu->class_1_dar = 0;
251 spu->class_1_dsisr = 0;
252
253 return 0;
254 }
255
256 static void __spu_kernel_slb(void *addr, struct spu_slb *slb)
257 {
258 unsigned long ea = (unsigned long)addr;
259 u64 llp;
260
261 if (REGION_ID(ea) == KERNEL_REGION_ID)
262 llp = mmu_psize_defs[mmu_linear_psize].sllp;
263 else
264 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
265
266 slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
267 SLB_VSID_KERNEL | llp;
268 slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
269 }
270
271 /**
272 * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
273 * address @new_addr is present.
274 */
275 static inline int __slb_present(struct spu_slb *slbs, int nr_slbs,
276 void *new_addr)
277 {
278 unsigned long ea = (unsigned long)new_addr;
279 int i;
280
281 for (i = 0; i < nr_slbs; i++)
282 if (!((slbs[i].esid ^ ea) & ESID_MASK))
283 return 1;
284
285 return 0;
286 }
287
288 /**
289 * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
290 * need to map both the context save area, and the save/restore code.
291 *
292 * Because the lscsa and code may cross segment boundaires, we check to see
293 * if mappings are required for the start and end of each range. We currently
294 * assume that the mappings are smaller that one segment - if not, something
295 * is seriously wrong.
296 */
297 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
298 void *code, int code_size)
299 {
300 struct spu_slb slbs[4];
301 int i, nr_slbs = 0;
302 /* start and end addresses of both mappings */
303 void *addrs[] = {
304 lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
305 code, code + code_size - 1
306 };
307
308 /* check the set of addresses, and create a new entry in the slbs array
309 * if there isn't already a SLB for that address */
310 for (i = 0; i < ARRAY_SIZE(addrs); i++) {
311 if (__slb_present(slbs, nr_slbs, addrs[i]))
312 continue;
313
314 __spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
315 nr_slbs++;
316 }
317
318 spin_lock_irq(&spu->register_lock);
319 /* Add the set of SLBs */
320 for (i = 0; i < nr_slbs; i++)
321 spu_load_slb(spu, i, &slbs[i]);
322 spin_unlock_irq(&spu->register_lock);
323 }
324 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
325
326 static irqreturn_t
327 spu_irq_class_0(int irq, void *data)
328 {
329 struct spu *spu;
330 unsigned long stat, mask;
331
332 spu = data;
333
334 spin_lock(&spu->register_lock);
335 mask = spu_int_mask_get(spu, 0);
336 stat = spu_int_stat_get(spu, 0) & mask;
337
338 spu->class_0_pending |= stat;
339 spu->class_0_dar = spu_mfc_dar_get(spu);
340 spu->stop_callback(spu, 0);
341 spu->class_0_pending = 0;
342 spu->class_0_dar = 0;
343
344 spu_int_stat_clear(spu, 0, stat);
345 spin_unlock(&spu->register_lock);
346
347 return IRQ_HANDLED;
348 }
349
350 static irqreturn_t
351 spu_irq_class_1(int irq, void *data)
352 {
353 struct spu *spu;
354 unsigned long stat, mask, dar, dsisr;
355
356 spu = data;
357
358 /* atomically read & clear class1 status. */
359 spin_lock(&spu->register_lock);
360 mask = spu_int_mask_get(spu, 1);
361 stat = spu_int_stat_get(spu, 1) & mask;
362 dar = spu_mfc_dar_get(spu);
363 dsisr = spu_mfc_dsisr_get(spu);
364 if (stat & CLASS1_STORAGE_FAULT_INTR)
365 spu_mfc_dsisr_set(spu, 0ul);
366 spu_int_stat_clear(spu, 1, stat);
367
368 pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
369 dar, dsisr);
370
371 if (stat & CLASS1_SEGMENT_FAULT_INTR)
372 __spu_trap_data_seg(spu, dar);
373
374 if (stat & CLASS1_STORAGE_FAULT_INTR)
375 __spu_trap_data_map(spu, dar, dsisr);
376
377 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
378 ;
379
380 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
381 ;
382
383 spu->class_1_dsisr = 0;
384 spu->class_1_dar = 0;
385
386 spin_unlock(&spu->register_lock);
387
388 return stat ? IRQ_HANDLED : IRQ_NONE;
389 }
390
391 static irqreturn_t
392 spu_irq_class_2(int irq, void *data)
393 {
394 struct spu *spu;
395 unsigned long stat;
396 unsigned long mask;
397 const int mailbox_intrs =
398 CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
399
400 spu = data;
401 spin_lock(&spu->register_lock);
402 stat = spu_int_stat_get(spu, 2);
403 mask = spu_int_mask_get(spu, 2);
404 /* ignore interrupts we're not waiting for */
405 stat &= mask;
406 /* mailbox interrupts are level triggered. mask them now before
407 * acknowledging */
408 if (stat & mailbox_intrs)
409 spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
410 /* acknowledge all interrupts before the callbacks */
411 spu_int_stat_clear(spu, 2, stat);
412
413 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
414
415 if (stat & CLASS2_MAILBOX_INTR)
416 spu->ibox_callback(spu);
417
418 if (stat & CLASS2_SPU_STOP_INTR)
419 spu->stop_callback(spu, 2);
420
421 if (stat & CLASS2_SPU_HALT_INTR)
422 spu->stop_callback(spu, 2);
423
424 if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
425 spu->mfc_callback(spu);
426
427 if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
428 spu->wbox_callback(spu);
429
430 spu->stats.class2_intr++;
431
432 spin_unlock(&spu->register_lock);
433
434 return stat ? IRQ_HANDLED : IRQ_NONE;
435 }
436
437 static int spu_request_irqs(struct spu *spu)
438 {
439 int ret = 0;
440
441 if (spu->irqs[0] != NO_IRQ) {
442 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
443 spu->number);
444 ret = request_irq(spu->irqs[0], spu_irq_class_0,
445 0, spu->irq_c0, spu);
446 if (ret)
447 goto bail0;
448 }
449 if (spu->irqs[1] != NO_IRQ) {
450 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
451 spu->number);
452 ret = request_irq(spu->irqs[1], spu_irq_class_1,
453 0, spu->irq_c1, spu);
454 if (ret)
455 goto bail1;
456 }
457 if (spu->irqs[2] != NO_IRQ) {
458 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
459 spu->number);
460 ret = request_irq(spu->irqs[2], spu_irq_class_2,
461 0, spu->irq_c2, spu);
462 if (ret)
463 goto bail2;
464 }
465 return 0;
466
467 bail2:
468 if (spu->irqs[1] != NO_IRQ)
469 free_irq(spu->irqs[1], spu);
470 bail1:
471 if (spu->irqs[0] != NO_IRQ)
472 free_irq(spu->irqs[0], spu);
473 bail0:
474 return ret;
475 }
476
477 static void spu_free_irqs(struct spu *spu)
478 {
479 if (spu->irqs[0] != NO_IRQ)
480 free_irq(spu->irqs[0], spu);
481 if (spu->irqs[1] != NO_IRQ)
482 free_irq(spu->irqs[1], spu);
483 if (spu->irqs[2] != NO_IRQ)
484 free_irq(spu->irqs[2], spu);
485 }
486
487 void spu_init_channels(struct spu *spu)
488 {
489 static const struct {
490 unsigned channel;
491 unsigned count;
492 } zero_list[] = {
493 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
494 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
495 }, count_list[] = {
496 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
497 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
498 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
499 };
500 struct spu_priv2 __iomem *priv2;
501 int i;
502
503 priv2 = spu->priv2;
504
505 /* initialize all channel data to zero */
506 for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
507 int count;
508
509 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
510 for (count = 0; count < zero_list[i].count; count++)
511 out_be64(&priv2->spu_chnldata_RW, 0);
512 }
513
514 /* initialize channel counts to meaningful values */
515 for (i = 0; i < ARRAY_SIZE(count_list); i++) {
516 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
517 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
518 }
519 }
520 EXPORT_SYMBOL_GPL(spu_init_channels);
521
522 static struct bus_type spu_subsys = {
523 .name = "spu",
524 .dev_name = "spu",
525 };
526
527 int spu_add_dev_attr(struct device_attribute *attr)
528 {
529 struct spu *spu;
530
531 mutex_lock(&spu_full_list_mutex);
532 list_for_each_entry(spu, &spu_full_list, full_list)
533 device_create_file(&spu->dev, attr);
534 mutex_unlock(&spu_full_list_mutex);
535
536 return 0;
537 }
538 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
539
540 int spu_add_dev_attr_group(struct attribute_group *attrs)
541 {
542 struct spu *spu;
543 int rc = 0;
544
545 mutex_lock(&spu_full_list_mutex);
546 list_for_each_entry(spu, &spu_full_list, full_list) {
547 rc = sysfs_create_group(&spu->dev.kobj, attrs);
548
549 /* we're in trouble here, but try unwinding anyway */
550 if (rc) {
551 printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
552 __func__, attrs->name);
553
554 list_for_each_entry_continue_reverse(spu,
555 &spu_full_list, full_list)
556 sysfs_remove_group(&spu->dev.kobj, attrs);
557 break;
558 }
559 }
560
561 mutex_unlock(&spu_full_list_mutex);
562
563 return rc;
564 }
565 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
566
567
568 void spu_remove_dev_attr(struct device_attribute *attr)
569 {
570 struct spu *spu;
571
572 mutex_lock(&spu_full_list_mutex);
573 list_for_each_entry(spu, &spu_full_list, full_list)
574 device_remove_file(&spu->dev, attr);
575 mutex_unlock(&spu_full_list_mutex);
576 }
577 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
578
579 void spu_remove_dev_attr_group(struct attribute_group *attrs)
580 {
581 struct spu *spu;
582
583 mutex_lock(&spu_full_list_mutex);
584 list_for_each_entry(spu, &spu_full_list, full_list)
585 sysfs_remove_group(&spu->dev.kobj, attrs);
586 mutex_unlock(&spu_full_list_mutex);
587 }
588 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
589
590 static int spu_create_dev(struct spu *spu)
591 {
592 int ret;
593
594 spu->dev.id = spu->number;
595 spu->dev.bus = &spu_subsys;
596 ret = device_register(&spu->dev);
597 if (ret) {
598 printk(KERN_ERR "Can't register SPU %d with sysfs\n",
599 spu->number);
600 return ret;
601 }
602
603 sysfs_add_device_to_node(&spu->dev, spu->node);
604
605 return 0;
606 }
607
608 static int __init create_spu(void *data)
609 {
610 struct spu *spu;
611 int ret;
612 static int number;
613 unsigned long flags;
614 struct timespec ts;
615
616 ret = -ENOMEM;
617 spu = kzalloc(sizeof (*spu), GFP_KERNEL);
618 if (!spu)
619 goto out;
620
621 spu->alloc_state = SPU_FREE;
622
623 spin_lock_init(&spu->register_lock);
624 spin_lock(&spu_lock);
625 spu->number = number++;
626 spin_unlock(&spu_lock);
627
628 ret = spu_create_spu(spu, data);
629
630 if (ret)
631 goto out_free;
632
633 spu_mfc_sdr_setup(spu);
634 spu_mfc_sr1_set(spu, 0x33);
635 ret = spu_request_irqs(spu);
636 if (ret)
637 goto out_destroy;
638
639 ret = spu_create_dev(spu);
640 if (ret)
641 goto out_free_irqs;
642
643 mutex_lock(&cbe_spu_info[spu->node].list_mutex);
644 list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
645 cbe_spu_info[spu->node].n_spus++;
646 mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
647
648 mutex_lock(&spu_full_list_mutex);
649 spin_lock_irqsave(&spu_full_list_lock, flags);
650 list_add(&spu->full_list, &spu_full_list);
651 spin_unlock_irqrestore(&spu_full_list_lock, flags);
652 mutex_unlock(&spu_full_list_mutex);
653
654 spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
655 ktime_get_ts(&ts);
656 spu->stats.tstamp = timespec_to_ns(&ts);
657
658 INIT_LIST_HEAD(&spu->aff_list);
659
660 goto out;
661
662 out_free_irqs:
663 spu_free_irqs(spu);
664 out_destroy:
665 spu_destroy_spu(spu);
666 out_free:
667 kfree(spu);
668 out:
669 return ret;
670 }
671
672 static const char *spu_state_names[] = {
673 "user", "system", "iowait", "idle"
674 };
675
676 static unsigned long long spu_acct_time(struct spu *spu,
677 enum spu_utilization_state state)
678 {
679 struct timespec ts;
680 unsigned long long time = spu->stats.times[state];
681
682 /*
683 * If the spu is idle or the context is stopped, utilization
684 * statistics are not updated. Apply the time delta from the
685 * last recorded state of the spu.
686 */
687 if (spu->stats.util_state == state) {
688 ktime_get_ts(&ts);
689 time += timespec_to_ns(&ts) - spu->stats.tstamp;
690 }
691
692 return time / NSEC_PER_MSEC;
693 }
694
695
696 static ssize_t spu_stat_show(struct device *dev,
697 struct device_attribute *attr, char *buf)
698 {
699 struct spu *spu = container_of(dev, struct spu, dev);
700
701 return sprintf(buf, "%s %llu %llu %llu %llu "
702 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
703 spu_state_names[spu->stats.util_state],
704 spu_acct_time(spu, SPU_UTIL_USER),
705 spu_acct_time(spu, SPU_UTIL_SYSTEM),
706 spu_acct_time(spu, SPU_UTIL_IOWAIT),
707 spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
708 spu->stats.vol_ctx_switch,
709 spu->stats.invol_ctx_switch,
710 spu->stats.slb_flt,
711 spu->stats.hash_flt,
712 spu->stats.min_flt,
713 spu->stats.maj_flt,
714 spu->stats.class2_intr,
715 spu->stats.libassist);
716 }
717
718 static DEVICE_ATTR(stat, 0644, spu_stat_show, NULL);
719
720 #ifdef CONFIG_KEXEC
721
722 struct crash_spu_info {
723 struct spu *spu;
724 u32 saved_spu_runcntl_RW;
725 u32 saved_spu_status_R;
726 u32 saved_spu_npc_RW;
727 u64 saved_mfc_sr1_RW;
728 u64 saved_mfc_dar;
729 u64 saved_mfc_dsisr;
730 };
731
732 #define CRASH_NUM_SPUS 16 /* Enough for current hardware */
733 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
734
735 static void crash_kexec_stop_spus(void)
736 {
737 struct spu *spu;
738 int i;
739 u64 tmp;
740
741 for (i = 0; i < CRASH_NUM_SPUS; i++) {
742 if (!crash_spu_info[i].spu)
743 continue;
744
745 spu = crash_spu_info[i].spu;
746
747 crash_spu_info[i].saved_spu_runcntl_RW =
748 in_be32(&spu->problem->spu_runcntl_RW);
749 crash_spu_info[i].saved_spu_status_R =
750 in_be32(&spu->problem->spu_status_R);
751 crash_spu_info[i].saved_spu_npc_RW =
752 in_be32(&spu->problem->spu_npc_RW);
753
754 crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu);
755 crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu);
756 tmp = spu_mfc_sr1_get(spu);
757 crash_spu_info[i].saved_mfc_sr1_RW = tmp;
758
759 tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
760 spu_mfc_sr1_set(spu, tmp);
761
762 __delay(200);
763 }
764 }
765
766 static void crash_register_spus(struct list_head *list)
767 {
768 struct spu *spu;
769 int ret;
770
771 list_for_each_entry(spu, list, full_list) {
772 if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
773 continue;
774
775 crash_spu_info[spu->number].spu = spu;
776 }
777
778 ret = crash_shutdown_register(&crash_kexec_stop_spus);
779 if (ret)
780 printk(KERN_ERR "Could not register SPU crash handler");
781 }
782
783 #else
784 static inline void crash_register_spus(struct list_head *list)
785 {
786 }
787 #endif
788
789 static void spu_shutdown(void)
790 {
791 struct spu *spu;
792
793 mutex_lock(&spu_full_list_mutex);
794 list_for_each_entry(spu, &spu_full_list, full_list) {
795 spu_free_irqs(spu);
796 spu_destroy_spu(spu);
797 }
798 mutex_unlock(&spu_full_list_mutex);
799 }
800
801 static struct syscore_ops spu_syscore_ops = {
802 .shutdown = spu_shutdown,
803 };
804
805 static int __init init_spu_base(void)
806 {
807 int i, ret = 0;
808
809 for (i = 0; i < MAX_NUMNODES; i++) {
810 mutex_init(&cbe_spu_info[i].list_mutex);
811 INIT_LIST_HEAD(&cbe_spu_info[i].spus);
812 }
813
814 if (!spu_management_ops)
815 goto out;
816
817 /* create system subsystem for spus */
818 ret = subsys_system_register(&spu_subsys, NULL);
819 if (ret)
820 goto out;
821
822 ret = spu_enumerate_spus(create_spu);
823
824 if (ret < 0) {
825 printk(KERN_WARNING "%s: Error initializing spus\n",
826 __func__);
827 goto out_unregister_subsys;
828 }
829
830 if (ret > 0)
831 fb_append_extra_logo(&logo_spe_clut224, ret);
832
833 mutex_lock(&spu_full_list_mutex);
834 xmon_register_spus(&spu_full_list);
835 crash_register_spus(&spu_full_list);
836 mutex_unlock(&spu_full_list_mutex);
837 spu_add_dev_attr(&dev_attr_stat);
838 register_syscore_ops(&spu_syscore_ops);
839
840 spu_init_affinity();
841
842 return 0;
843
844 out_unregister_subsys:
845 bus_unregister(&spu_subsys);
846 out:
847 return ret;
848 }
849 module_init(init_spu_base);
850
851 MODULE_LICENSE("GPL");
852 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");