x86/irq, trace: Add __irq_entry annotation to x86's platform IRQ handlers
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / powerpc / perf / core-book3s.c
1 /*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
28
29 struct cpu_hw_events {
30 int n_events;
31 int n_percpu;
32 int disabled;
33 int n_added;
34 int n_limited;
35 u8 pmcs_enabled;
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
39 /*
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
43 */
44 unsigned long mmcr[4];
45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50
51 unsigned int txn_flags;
52 int n_txn_start;
53
54 /* BHRB bits */
55 u64 bhrb_filter; /* BHRB HW branch filter */
56 unsigned int bhrb_users;
57 void *bhrb_context;
58 struct perf_branch_stack bhrb_stack;
59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
60 };
61
62 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
63
64 static struct power_pmu *ppmu;
65
66 /*
67 * Normally, to ignore kernel events we set the FCS (freeze counters
68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69 * hypervisor bit set in the MSR, or if we are running on a processor
70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71 * then we need to use the FCHV bit to ignore kernel events.
72 */
73 static unsigned int freeze_events_kernel = MMCR0_FCS;
74
75 /*
76 * 32-bit doesn't have MMCRA but does have an MMCR2,
77 * and a few other names are different.
78 */
79 #ifdef CONFIG_PPC32
80
81 #define MMCR0_FCHV 0
82 #define MMCR0_PMCjCE MMCR0_PMCnCE
83 #define MMCR0_FC56 0
84 #define MMCR0_PMAO 0
85 #define MMCR0_EBE 0
86 #define MMCR0_BHRBA 0
87 #define MMCR0_PMCC 0
88 #define MMCR0_PMCC_U6 0
89
90 #define SPRN_MMCRA SPRN_MMCR2
91 #define MMCRA_SAMPLE_ENABLE 0
92
93 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
94 {
95 return 0;
96 }
97 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
98 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
99 {
100 return 0;
101 }
102 static inline void perf_read_regs(struct pt_regs *regs)
103 {
104 regs->result = 0;
105 }
106 static inline int perf_intr_is_nmi(struct pt_regs *regs)
107 {
108 return 0;
109 }
110
111 static inline int siar_valid(struct pt_regs *regs)
112 {
113 return 1;
114 }
115
116 static bool is_ebb_event(struct perf_event *event) { return false; }
117 static int ebb_event_check(struct perf_event *event) { return 0; }
118 static void ebb_event_add(struct perf_event *event) { }
119 static void ebb_switch_out(unsigned long mmcr0) { }
120 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
121 {
122 return cpuhw->mmcr[0];
123 }
124
125 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
126 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
127 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
128 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
129 static void pmao_restore_workaround(bool ebb) { }
130 #endif /* CONFIG_PPC32 */
131
132 static bool regs_use_siar(struct pt_regs *regs)
133 {
134 /*
135 * When we take a performance monitor exception the regs are setup
136 * using perf_read_regs() which overloads some fields, in particular
137 * regs->result to tell us whether to use SIAR.
138 *
139 * However if the regs are from another exception, eg. a syscall, then
140 * they have not been setup using perf_read_regs() and so regs->result
141 * is something random.
142 */
143 return ((TRAP(regs) == 0xf00) && regs->result);
144 }
145
146 /*
147 * Things that are specific to 64-bit implementations.
148 */
149 #ifdef CONFIG_PPC64
150
151 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
152 {
153 unsigned long mmcra = regs->dsisr;
154
155 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
156 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
157 if (slot > 1)
158 return 4 * (slot - 1);
159 }
160
161 return 0;
162 }
163
164 /*
165 * The user wants a data address recorded.
166 * If we're not doing instruction sampling, give them the SDAR
167 * (sampled data address). If we are doing instruction sampling, then
168 * only give them the SDAR if it corresponds to the instruction
169 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
170 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
171 */
172 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
173 {
174 unsigned long mmcra = regs->dsisr;
175 bool sdar_valid;
176
177 if (ppmu->flags & PPMU_HAS_SIER)
178 sdar_valid = regs->dar & SIER_SDAR_VALID;
179 else {
180 unsigned long sdsync;
181
182 if (ppmu->flags & PPMU_SIAR_VALID)
183 sdsync = POWER7P_MMCRA_SDAR_VALID;
184 else if (ppmu->flags & PPMU_ALT_SIPR)
185 sdsync = POWER6_MMCRA_SDSYNC;
186 else
187 sdsync = MMCRA_SDSYNC;
188
189 sdar_valid = mmcra & sdsync;
190 }
191
192 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
193 *addrp = mfspr(SPRN_SDAR);
194 }
195
196 static bool regs_sihv(struct pt_regs *regs)
197 {
198 unsigned long sihv = MMCRA_SIHV;
199
200 if (ppmu->flags & PPMU_HAS_SIER)
201 return !!(regs->dar & SIER_SIHV);
202
203 if (ppmu->flags & PPMU_ALT_SIPR)
204 sihv = POWER6_MMCRA_SIHV;
205
206 return !!(regs->dsisr & sihv);
207 }
208
209 static bool regs_sipr(struct pt_regs *regs)
210 {
211 unsigned long sipr = MMCRA_SIPR;
212
213 if (ppmu->flags & PPMU_HAS_SIER)
214 return !!(regs->dar & SIER_SIPR);
215
216 if (ppmu->flags & PPMU_ALT_SIPR)
217 sipr = POWER6_MMCRA_SIPR;
218
219 return !!(regs->dsisr & sipr);
220 }
221
222 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
223 {
224 if (regs->msr & MSR_PR)
225 return PERF_RECORD_MISC_USER;
226 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
227 return PERF_RECORD_MISC_HYPERVISOR;
228 return PERF_RECORD_MISC_KERNEL;
229 }
230
231 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
232 {
233 bool use_siar = regs_use_siar(regs);
234
235 if (!use_siar)
236 return perf_flags_from_msr(regs);
237
238 /*
239 * If we don't have flags in MMCRA, rather than using
240 * the MSR, we intuit the flags from the address in
241 * SIAR which should give slightly more reliable
242 * results
243 */
244 if (ppmu->flags & PPMU_NO_SIPR) {
245 unsigned long siar = mfspr(SPRN_SIAR);
246 if (siar >= PAGE_OFFSET)
247 return PERF_RECORD_MISC_KERNEL;
248 return PERF_RECORD_MISC_USER;
249 }
250
251 /* PR has priority over HV, so order below is important */
252 if (regs_sipr(regs))
253 return PERF_RECORD_MISC_USER;
254
255 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
256 return PERF_RECORD_MISC_HYPERVISOR;
257
258 return PERF_RECORD_MISC_KERNEL;
259 }
260
261 /*
262 * Overload regs->dsisr to store MMCRA so we only need to read it once
263 * on each interrupt.
264 * Overload regs->dar to store SIER if we have it.
265 * Overload regs->result to specify whether we should use the MSR (result
266 * is zero) or the SIAR (result is non zero).
267 */
268 static inline void perf_read_regs(struct pt_regs *regs)
269 {
270 unsigned long mmcra = mfspr(SPRN_MMCRA);
271 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
272 int use_siar;
273
274 regs->dsisr = mmcra;
275
276 if (ppmu->flags & PPMU_HAS_SIER)
277 regs->dar = mfspr(SPRN_SIER);
278
279 /*
280 * If this isn't a PMU exception (eg a software event) the SIAR is
281 * not valid. Use pt_regs.
282 *
283 * If it is a marked event use the SIAR.
284 *
285 * If the PMU doesn't update the SIAR for non marked events use
286 * pt_regs.
287 *
288 * If the PMU has HV/PR flags then check to see if they
289 * place the exception in userspace. If so, use pt_regs. In
290 * continuous sampling mode the SIAR and the PMU exception are
291 * not synchronised, so they may be many instructions apart.
292 * This can result in confusing backtraces. We still want
293 * hypervisor samples as well as samples in the kernel with
294 * interrupts off hence the userspace check.
295 */
296 if (TRAP(regs) != 0xf00)
297 use_siar = 0;
298 else if (marked)
299 use_siar = 1;
300 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
301 use_siar = 0;
302 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
303 use_siar = 0;
304 else
305 use_siar = 1;
306
307 regs->result = use_siar;
308 }
309
310 /*
311 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
312 * it as an NMI.
313 */
314 static inline int perf_intr_is_nmi(struct pt_regs *regs)
315 {
316 return !regs->softe;
317 }
318
319 /*
320 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
321 * must be sampled only if the SIAR-valid bit is set.
322 *
323 * For unmarked instructions and for processors that don't have the SIAR-Valid
324 * bit, assume that SIAR is valid.
325 */
326 static inline int siar_valid(struct pt_regs *regs)
327 {
328 unsigned long mmcra = regs->dsisr;
329 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
330
331 if (marked) {
332 if (ppmu->flags & PPMU_HAS_SIER)
333 return regs->dar & SIER_SIAR_VALID;
334
335 if (ppmu->flags & PPMU_SIAR_VALID)
336 return mmcra & POWER7P_MMCRA_SIAR_VALID;
337 }
338
339 return 1;
340 }
341
342
343 /* Reset all possible BHRB entries */
344 static void power_pmu_bhrb_reset(void)
345 {
346 asm volatile(PPC_CLRBHRB);
347 }
348
349 static void power_pmu_bhrb_enable(struct perf_event *event)
350 {
351 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
352
353 if (!ppmu->bhrb_nr)
354 return;
355
356 /* Clear BHRB if we changed task context to avoid data leaks */
357 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
358 power_pmu_bhrb_reset();
359 cpuhw->bhrb_context = event->ctx;
360 }
361 cpuhw->bhrb_users++;
362 perf_sched_cb_inc(event->ctx->pmu);
363 }
364
365 static void power_pmu_bhrb_disable(struct perf_event *event)
366 {
367 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
368
369 if (!ppmu->bhrb_nr)
370 return;
371
372 WARN_ON_ONCE(!cpuhw->bhrb_users);
373 cpuhw->bhrb_users--;
374 perf_sched_cb_dec(event->ctx->pmu);
375
376 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
377 /* BHRB cannot be turned off when other
378 * events are active on the PMU.
379 */
380
381 /* avoid stale pointer */
382 cpuhw->bhrb_context = NULL;
383 }
384 }
385
386 /* Called from ctxsw to prevent one process's branch entries to
387 * mingle with the other process's entries during context switch.
388 */
389 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
390 {
391 if (!ppmu->bhrb_nr)
392 return;
393
394 if (sched_in)
395 power_pmu_bhrb_reset();
396 }
397 /* Calculate the to address for a branch */
398 static __u64 power_pmu_bhrb_to(u64 addr)
399 {
400 unsigned int instr;
401 int ret;
402 __u64 target;
403
404 if (is_kernel_addr(addr))
405 return branch_target((unsigned int *)addr);
406
407 /* Userspace: need copy instruction here then translate it */
408 pagefault_disable();
409 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
410 if (ret) {
411 pagefault_enable();
412 return 0;
413 }
414 pagefault_enable();
415
416 target = branch_target(&instr);
417 if ((!target) || (instr & BRANCH_ABSOLUTE))
418 return target;
419
420 /* Translate relative branch target from kernel to user address */
421 return target - (unsigned long)&instr + addr;
422 }
423
424 /* Processing BHRB entries */
425 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
426 {
427 u64 val;
428 u64 addr;
429 int r_index, u_index, pred;
430
431 r_index = 0;
432 u_index = 0;
433 while (r_index < ppmu->bhrb_nr) {
434 /* Assembly read function */
435 val = read_bhrb(r_index++);
436 if (!val)
437 /* Terminal marker: End of valid BHRB entries */
438 break;
439 else {
440 addr = val & BHRB_EA;
441 pred = val & BHRB_PREDICTION;
442
443 if (!addr)
444 /* invalid entry */
445 continue;
446
447 /* Branches are read most recent first (ie. mfbhrb 0 is
448 * the most recent branch).
449 * There are two types of valid entries:
450 * 1) a target entry which is the to address of a
451 * computed goto like a blr,bctr,btar. The next
452 * entry read from the bhrb will be branch
453 * corresponding to this target (ie. the actual
454 * blr/bctr/btar instruction).
455 * 2) a from address which is an actual branch. If a
456 * target entry proceeds this, then this is the
457 * matching branch for that target. If this is not
458 * following a target entry, then this is a branch
459 * where the target is given as an immediate field
460 * in the instruction (ie. an i or b form branch).
461 * In this case we need to read the instruction from
462 * memory to determine the target/to address.
463 */
464
465 if (val & BHRB_TARGET) {
466 /* Target branches use two entries
467 * (ie. computed gotos/XL form)
468 */
469 cpuhw->bhrb_entries[u_index].to = addr;
470 cpuhw->bhrb_entries[u_index].mispred = pred;
471 cpuhw->bhrb_entries[u_index].predicted = ~pred;
472
473 /* Get from address in next entry */
474 val = read_bhrb(r_index++);
475 addr = val & BHRB_EA;
476 if (val & BHRB_TARGET) {
477 /* Shouldn't have two targets in a
478 row.. Reset index and try again */
479 r_index--;
480 addr = 0;
481 }
482 cpuhw->bhrb_entries[u_index].from = addr;
483 } else {
484 /* Branches to immediate field
485 (ie I or B form) */
486 cpuhw->bhrb_entries[u_index].from = addr;
487 cpuhw->bhrb_entries[u_index].to =
488 power_pmu_bhrb_to(addr);
489 cpuhw->bhrb_entries[u_index].mispred = pred;
490 cpuhw->bhrb_entries[u_index].predicted = ~pred;
491 }
492 u_index++;
493
494 }
495 }
496 cpuhw->bhrb_stack.nr = u_index;
497 return;
498 }
499
500 static bool is_ebb_event(struct perf_event *event)
501 {
502 /*
503 * This could be a per-PMU callback, but we'd rather avoid the cost. We
504 * check that the PMU supports EBB, meaning those that don't can still
505 * use bit 63 of the event code for something else if they wish.
506 */
507 return (ppmu->flags & PPMU_ARCH_207S) &&
508 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
509 }
510
511 static int ebb_event_check(struct perf_event *event)
512 {
513 struct perf_event *leader = event->group_leader;
514
515 /* Event and group leader must agree on EBB */
516 if (is_ebb_event(leader) != is_ebb_event(event))
517 return -EINVAL;
518
519 if (is_ebb_event(event)) {
520 if (!(event->attach_state & PERF_ATTACH_TASK))
521 return -EINVAL;
522
523 if (!leader->attr.pinned || !leader->attr.exclusive)
524 return -EINVAL;
525
526 if (event->attr.freq ||
527 event->attr.inherit ||
528 event->attr.sample_type ||
529 event->attr.sample_period ||
530 event->attr.enable_on_exec)
531 return -EINVAL;
532 }
533
534 return 0;
535 }
536
537 static void ebb_event_add(struct perf_event *event)
538 {
539 if (!is_ebb_event(event) || current->thread.used_ebb)
540 return;
541
542 /*
543 * IFF this is the first time we've added an EBB event, set
544 * PMXE in the user MMCR0 so we can detect when it's cleared by
545 * userspace. We need this so that we can context switch while
546 * userspace is in the EBB handler (where PMXE is 0).
547 */
548 current->thread.used_ebb = 1;
549 current->thread.mmcr0 |= MMCR0_PMXE;
550 }
551
552 static void ebb_switch_out(unsigned long mmcr0)
553 {
554 if (!(mmcr0 & MMCR0_EBE))
555 return;
556
557 current->thread.siar = mfspr(SPRN_SIAR);
558 current->thread.sier = mfspr(SPRN_SIER);
559 current->thread.sdar = mfspr(SPRN_SDAR);
560 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
561 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
562 }
563
564 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
565 {
566 unsigned long mmcr0 = cpuhw->mmcr[0];
567
568 if (!ebb)
569 goto out;
570
571 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
572 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
573
574 /*
575 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
576 * with pmao_restore_workaround() because we may add PMAO but we never
577 * clear it here.
578 */
579 mmcr0 |= current->thread.mmcr0;
580
581 /*
582 * Be careful not to set PMXE if userspace had it cleared. This is also
583 * compatible with pmao_restore_workaround() because it has already
584 * cleared PMXE and we leave PMAO alone.
585 */
586 if (!(current->thread.mmcr0 & MMCR0_PMXE))
587 mmcr0 &= ~MMCR0_PMXE;
588
589 mtspr(SPRN_SIAR, current->thread.siar);
590 mtspr(SPRN_SIER, current->thread.sier);
591 mtspr(SPRN_SDAR, current->thread.sdar);
592
593 /*
594 * Merge the kernel & user values of MMCR2. The semantics we implement
595 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
596 * but not clear bits. If a task wants to be able to clear bits, ie.
597 * unfreeze counters, it should not set exclude_xxx in its events and
598 * instead manage the MMCR2 entirely by itself.
599 */
600 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
601 out:
602 return mmcr0;
603 }
604
605 static void pmao_restore_workaround(bool ebb)
606 {
607 unsigned pmcs[6];
608
609 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
610 return;
611
612 /*
613 * On POWER8E there is a hardware defect which affects the PMU context
614 * switch logic, ie. power_pmu_disable/enable().
615 *
616 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
617 * by the hardware. Sometime later the actual PMU exception is
618 * delivered.
619 *
620 * If we context switch, or simply disable/enable, the PMU prior to the
621 * exception arriving, the exception will be lost when we clear PMAO.
622 *
623 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
624 * set, and this _should_ generate an exception. However because of the
625 * defect no exception is generated when we write PMAO, and we get
626 * stuck with no counters counting but no exception delivered.
627 *
628 * The workaround is to detect this case and tweak the hardware to
629 * create another pending PMU exception.
630 *
631 * We do that by setting up PMC6 (cycles) for an imminent overflow and
632 * enabling the PMU. That causes a new exception to be generated in the
633 * chip, but we don't take it yet because we have interrupts hard
634 * disabled. We then write back the PMU state as we want it to be seen
635 * by the exception handler. When we reenable interrupts the exception
636 * handler will be called and see the correct state.
637 *
638 * The logic is the same for EBB, except that the exception is gated by
639 * us having interrupts hard disabled as well as the fact that we are
640 * not in userspace. The exception is finally delivered when we return
641 * to userspace.
642 */
643
644 /* Only if PMAO is set and PMAO_SYNC is clear */
645 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
646 return;
647
648 /* If we're doing EBB, only if BESCR[GE] is set */
649 if (ebb && !(current->thread.bescr & BESCR_GE))
650 return;
651
652 /*
653 * We are already soft-disabled in power_pmu_enable(). We need to hard
654 * disable to actually prevent the PMU exception from firing.
655 */
656 hard_irq_disable();
657
658 /*
659 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
660 * Using read/write_pmc() in a for loop adds 12 function calls and
661 * almost doubles our code size.
662 */
663 pmcs[0] = mfspr(SPRN_PMC1);
664 pmcs[1] = mfspr(SPRN_PMC2);
665 pmcs[2] = mfspr(SPRN_PMC3);
666 pmcs[3] = mfspr(SPRN_PMC4);
667 pmcs[4] = mfspr(SPRN_PMC5);
668 pmcs[5] = mfspr(SPRN_PMC6);
669
670 /* Ensure all freeze bits are unset */
671 mtspr(SPRN_MMCR2, 0);
672
673 /* Set up PMC6 to overflow in one cycle */
674 mtspr(SPRN_PMC6, 0x7FFFFFFE);
675
676 /* Enable exceptions and unfreeze PMC6 */
677 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
678
679 /* Now we need to refreeze and restore the PMCs */
680 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
681
682 mtspr(SPRN_PMC1, pmcs[0]);
683 mtspr(SPRN_PMC2, pmcs[1]);
684 mtspr(SPRN_PMC3, pmcs[2]);
685 mtspr(SPRN_PMC4, pmcs[3]);
686 mtspr(SPRN_PMC5, pmcs[4]);
687 mtspr(SPRN_PMC6, pmcs[5]);
688 }
689 #endif /* CONFIG_PPC64 */
690
691 static void perf_event_interrupt(struct pt_regs *regs);
692
693 /*
694 * Read one performance monitor counter (PMC).
695 */
696 static unsigned long read_pmc(int idx)
697 {
698 unsigned long val;
699
700 switch (idx) {
701 case 1:
702 val = mfspr(SPRN_PMC1);
703 break;
704 case 2:
705 val = mfspr(SPRN_PMC2);
706 break;
707 case 3:
708 val = mfspr(SPRN_PMC3);
709 break;
710 case 4:
711 val = mfspr(SPRN_PMC4);
712 break;
713 case 5:
714 val = mfspr(SPRN_PMC5);
715 break;
716 case 6:
717 val = mfspr(SPRN_PMC6);
718 break;
719 #ifdef CONFIG_PPC64
720 case 7:
721 val = mfspr(SPRN_PMC7);
722 break;
723 case 8:
724 val = mfspr(SPRN_PMC8);
725 break;
726 #endif /* CONFIG_PPC64 */
727 default:
728 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
729 val = 0;
730 }
731 return val;
732 }
733
734 /*
735 * Write one PMC.
736 */
737 static void write_pmc(int idx, unsigned long val)
738 {
739 switch (idx) {
740 case 1:
741 mtspr(SPRN_PMC1, val);
742 break;
743 case 2:
744 mtspr(SPRN_PMC2, val);
745 break;
746 case 3:
747 mtspr(SPRN_PMC3, val);
748 break;
749 case 4:
750 mtspr(SPRN_PMC4, val);
751 break;
752 case 5:
753 mtspr(SPRN_PMC5, val);
754 break;
755 case 6:
756 mtspr(SPRN_PMC6, val);
757 break;
758 #ifdef CONFIG_PPC64
759 case 7:
760 mtspr(SPRN_PMC7, val);
761 break;
762 case 8:
763 mtspr(SPRN_PMC8, val);
764 break;
765 #endif /* CONFIG_PPC64 */
766 default:
767 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
768 }
769 }
770
771 /* Called from sysrq_handle_showregs() */
772 void perf_event_print_debug(void)
773 {
774 unsigned long sdar, sier, flags;
775 u32 pmcs[MAX_HWEVENTS];
776 int i;
777
778 if (!ppmu->n_counter)
779 return;
780
781 local_irq_save(flags);
782
783 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
784 smp_processor_id(), ppmu->name, ppmu->n_counter);
785
786 for (i = 0; i < ppmu->n_counter; i++)
787 pmcs[i] = read_pmc(i + 1);
788
789 for (; i < MAX_HWEVENTS; i++)
790 pmcs[i] = 0xdeadbeef;
791
792 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
793 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
794
795 if (ppmu->n_counter > 4)
796 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
797 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
798
799 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
800 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
801
802 sdar = sier = 0;
803 #ifdef CONFIG_PPC64
804 sdar = mfspr(SPRN_SDAR);
805
806 if (ppmu->flags & PPMU_HAS_SIER)
807 sier = mfspr(SPRN_SIER);
808
809 if (ppmu->flags & PPMU_ARCH_207S) {
810 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
811 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
812 pr_info("EBBRR: %016lx BESCR: %016lx\n",
813 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
814 }
815 #endif
816 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
817 mfspr(SPRN_SIAR), sdar, sier);
818
819 local_irq_restore(flags);
820 }
821
822 /*
823 * Check if a set of events can all go on the PMU at once.
824 * If they can't, this will look at alternative codes for the events
825 * and see if any combination of alternative codes is feasible.
826 * The feasible set is returned in event_id[].
827 */
828 static int power_check_constraints(struct cpu_hw_events *cpuhw,
829 u64 event_id[], unsigned int cflags[],
830 int n_ev)
831 {
832 unsigned long mask, value, nv;
833 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
834 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
835 int i, j;
836 unsigned long addf = ppmu->add_fields;
837 unsigned long tadd = ppmu->test_adder;
838
839 if (n_ev > ppmu->n_counter)
840 return -1;
841
842 /* First see if the events will go on as-is */
843 for (i = 0; i < n_ev; ++i) {
844 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
845 && !ppmu->limited_pmc_event(event_id[i])) {
846 ppmu->get_alternatives(event_id[i], cflags[i],
847 cpuhw->alternatives[i]);
848 event_id[i] = cpuhw->alternatives[i][0];
849 }
850 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
851 &cpuhw->avalues[i][0]))
852 return -1;
853 }
854 value = mask = 0;
855 for (i = 0; i < n_ev; ++i) {
856 nv = (value | cpuhw->avalues[i][0]) +
857 (value & cpuhw->avalues[i][0] & addf);
858 if ((((nv + tadd) ^ value) & mask) != 0 ||
859 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
860 cpuhw->amasks[i][0]) != 0)
861 break;
862 value = nv;
863 mask |= cpuhw->amasks[i][0];
864 }
865 if (i == n_ev)
866 return 0; /* all OK */
867
868 /* doesn't work, gather alternatives... */
869 if (!ppmu->get_alternatives)
870 return -1;
871 for (i = 0; i < n_ev; ++i) {
872 choice[i] = 0;
873 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
874 cpuhw->alternatives[i]);
875 for (j = 1; j < n_alt[i]; ++j)
876 ppmu->get_constraint(cpuhw->alternatives[i][j],
877 &cpuhw->amasks[i][j],
878 &cpuhw->avalues[i][j]);
879 }
880
881 /* enumerate all possibilities and see if any will work */
882 i = 0;
883 j = -1;
884 value = mask = nv = 0;
885 while (i < n_ev) {
886 if (j >= 0) {
887 /* we're backtracking, restore context */
888 value = svalues[i];
889 mask = smasks[i];
890 j = choice[i];
891 }
892 /*
893 * See if any alternative k for event_id i,
894 * where k > j, will satisfy the constraints.
895 */
896 while (++j < n_alt[i]) {
897 nv = (value | cpuhw->avalues[i][j]) +
898 (value & cpuhw->avalues[i][j] & addf);
899 if ((((nv + tadd) ^ value) & mask) == 0 &&
900 (((nv + tadd) ^ cpuhw->avalues[i][j])
901 & cpuhw->amasks[i][j]) == 0)
902 break;
903 }
904 if (j >= n_alt[i]) {
905 /*
906 * No feasible alternative, backtrack
907 * to event_id i-1 and continue enumerating its
908 * alternatives from where we got up to.
909 */
910 if (--i < 0)
911 return -1;
912 } else {
913 /*
914 * Found a feasible alternative for event_id i,
915 * remember where we got up to with this event_id,
916 * go on to the next event_id, and start with
917 * the first alternative for it.
918 */
919 choice[i] = j;
920 svalues[i] = value;
921 smasks[i] = mask;
922 value = nv;
923 mask |= cpuhw->amasks[i][j];
924 ++i;
925 j = -1;
926 }
927 }
928
929 /* OK, we have a feasible combination, tell the caller the solution */
930 for (i = 0; i < n_ev; ++i)
931 event_id[i] = cpuhw->alternatives[i][choice[i]];
932 return 0;
933 }
934
935 /*
936 * Check if newly-added events have consistent settings for
937 * exclude_{user,kernel,hv} with each other and any previously
938 * added events.
939 */
940 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
941 int n_prev, int n_new)
942 {
943 int eu = 0, ek = 0, eh = 0;
944 int i, n, first;
945 struct perf_event *event;
946
947 /*
948 * If the PMU we're on supports per event exclude settings then we
949 * don't need to do any of this logic. NB. This assumes no PMU has both
950 * per event exclude and limited PMCs.
951 */
952 if (ppmu->flags & PPMU_ARCH_207S)
953 return 0;
954
955 n = n_prev + n_new;
956 if (n <= 1)
957 return 0;
958
959 first = 1;
960 for (i = 0; i < n; ++i) {
961 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
962 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
963 continue;
964 }
965 event = ctrs[i];
966 if (first) {
967 eu = event->attr.exclude_user;
968 ek = event->attr.exclude_kernel;
969 eh = event->attr.exclude_hv;
970 first = 0;
971 } else if (event->attr.exclude_user != eu ||
972 event->attr.exclude_kernel != ek ||
973 event->attr.exclude_hv != eh) {
974 return -EAGAIN;
975 }
976 }
977
978 if (eu || ek || eh)
979 for (i = 0; i < n; ++i)
980 if (cflags[i] & PPMU_LIMITED_PMC_OK)
981 cflags[i] |= PPMU_LIMITED_PMC_REQD;
982
983 return 0;
984 }
985
986 static u64 check_and_compute_delta(u64 prev, u64 val)
987 {
988 u64 delta = (val - prev) & 0xfffffffful;
989
990 /*
991 * POWER7 can roll back counter values, if the new value is smaller
992 * than the previous value it will cause the delta and the counter to
993 * have bogus values unless we rolled a counter over. If a coutner is
994 * rolled back, it will be smaller, but within 256, which is the maximum
995 * number of events to rollback at once. If we detect a rollback
996 * return 0. This can lead to a small lack of precision in the
997 * counters.
998 */
999 if (prev > val && (prev - val) < 256)
1000 delta = 0;
1001
1002 return delta;
1003 }
1004
1005 static void power_pmu_read(struct perf_event *event)
1006 {
1007 s64 val, delta, prev;
1008
1009 if (event->hw.state & PERF_HES_STOPPED)
1010 return;
1011
1012 if (!event->hw.idx)
1013 return;
1014
1015 if (is_ebb_event(event)) {
1016 val = read_pmc(event->hw.idx);
1017 local64_set(&event->hw.prev_count, val);
1018 return;
1019 }
1020
1021 /*
1022 * Performance monitor interrupts come even when interrupts
1023 * are soft-disabled, as long as interrupts are hard-enabled.
1024 * Therefore we treat them like NMIs.
1025 */
1026 do {
1027 prev = local64_read(&event->hw.prev_count);
1028 barrier();
1029 val = read_pmc(event->hw.idx);
1030 delta = check_and_compute_delta(prev, val);
1031 if (!delta)
1032 return;
1033 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1034
1035 local64_add(delta, &event->count);
1036
1037 /*
1038 * A number of places program the PMC with (0x80000000 - period_left).
1039 * We never want period_left to be less than 1 because we will program
1040 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1041 * roll around to 0 before taking an exception. We have seen this
1042 * on POWER8.
1043 *
1044 * To fix this, clamp the minimum value of period_left to 1.
1045 */
1046 do {
1047 prev = local64_read(&event->hw.period_left);
1048 val = prev - delta;
1049 if (val < 1)
1050 val = 1;
1051 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1052 }
1053
1054 /*
1055 * On some machines, PMC5 and PMC6 can't be written, don't respect
1056 * the freeze conditions, and don't generate interrupts. This tells
1057 * us if `event' is using such a PMC.
1058 */
1059 static int is_limited_pmc(int pmcnum)
1060 {
1061 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1062 && (pmcnum == 5 || pmcnum == 6);
1063 }
1064
1065 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1066 unsigned long pmc5, unsigned long pmc6)
1067 {
1068 struct perf_event *event;
1069 u64 val, prev, delta;
1070 int i;
1071
1072 for (i = 0; i < cpuhw->n_limited; ++i) {
1073 event = cpuhw->limited_counter[i];
1074 if (!event->hw.idx)
1075 continue;
1076 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1077 prev = local64_read(&event->hw.prev_count);
1078 event->hw.idx = 0;
1079 delta = check_and_compute_delta(prev, val);
1080 if (delta)
1081 local64_add(delta, &event->count);
1082 }
1083 }
1084
1085 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1086 unsigned long pmc5, unsigned long pmc6)
1087 {
1088 struct perf_event *event;
1089 u64 val, prev;
1090 int i;
1091
1092 for (i = 0; i < cpuhw->n_limited; ++i) {
1093 event = cpuhw->limited_counter[i];
1094 event->hw.idx = cpuhw->limited_hwidx[i];
1095 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1096 prev = local64_read(&event->hw.prev_count);
1097 if (check_and_compute_delta(prev, val))
1098 local64_set(&event->hw.prev_count, val);
1099 perf_event_update_userpage(event);
1100 }
1101 }
1102
1103 /*
1104 * Since limited events don't respect the freeze conditions, we
1105 * have to read them immediately after freezing or unfreezing the
1106 * other events. We try to keep the values from the limited
1107 * events as consistent as possible by keeping the delay (in
1108 * cycles and instructions) between freezing/unfreezing and reading
1109 * the limited events as small and consistent as possible.
1110 * Therefore, if any limited events are in use, we read them
1111 * both, and always in the same order, to minimize variability,
1112 * and do it inside the same asm that writes MMCR0.
1113 */
1114 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1115 {
1116 unsigned long pmc5, pmc6;
1117
1118 if (!cpuhw->n_limited) {
1119 mtspr(SPRN_MMCR0, mmcr0);
1120 return;
1121 }
1122
1123 /*
1124 * Write MMCR0, then read PMC5 and PMC6 immediately.
1125 * To ensure we don't get a performance monitor interrupt
1126 * between writing MMCR0 and freezing/thawing the limited
1127 * events, we first write MMCR0 with the event overflow
1128 * interrupt enable bits turned off.
1129 */
1130 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1131 : "=&r" (pmc5), "=&r" (pmc6)
1132 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1133 "i" (SPRN_MMCR0),
1134 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1135
1136 if (mmcr0 & MMCR0_FC)
1137 freeze_limited_counters(cpuhw, pmc5, pmc6);
1138 else
1139 thaw_limited_counters(cpuhw, pmc5, pmc6);
1140
1141 /*
1142 * Write the full MMCR0 including the event overflow interrupt
1143 * enable bits, if necessary.
1144 */
1145 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1146 mtspr(SPRN_MMCR0, mmcr0);
1147 }
1148
1149 /*
1150 * Disable all events to prevent PMU interrupts and to allow
1151 * events to be added or removed.
1152 */
1153 static void power_pmu_disable(struct pmu *pmu)
1154 {
1155 struct cpu_hw_events *cpuhw;
1156 unsigned long flags, mmcr0, val;
1157
1158 if (!ppmu)
1159 return;
1160 local_irq_save(flags);
1161 cpuhw = this_cpu_ptr(&cpu_hw_events);
1162
1163 if (!cpuhw->disabled) {
1164 /*
1165 * Check if we ever enabled the PMU on this cpu.
1166 */
1167 if (!cpuhw->pmcs_enabled) {
1168 ppc_enable_pmcs();
1169 cpuhw->pmcs_enabled = 1;
1170 }
1171
1172 /*
1173 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1174 */
1175 val = mmcr0 = mfspr(SPRN_MMCR0);
1176 val |= MMCR0_FC;
1177 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1178 MMCR0_FC56);
1179
1180 /*
1181 * The barrier is to make sure the mtspr has been
1182 * executed and the PMU has frozen the events etc.
1183 * before we return.
1184 */
1185 write_mmcr0(cpuhw, val);
1186 mb();
1187
1188 /*
1189 * Disable instruction sampling if it was enabled
1190 */
1191 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1192 mtspr(SPRN_MMCRA,
1193 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1194 mb();
1195 }
1196
1197 cpuhw->disabled = 1;
1198 cpuhw->n_added = 0;
1199
1200 ebb_switch_out(mmcr0);
1201 }
1202
1203 local_irq_restore(flags);
1204 }
1205
1206 /*
1207 * Re-enable all events if disable == 0.
1208 * If we were previously disabled and events were added, then
1209 * put the new config on the PMU.
1210 */
1211 static void power_pmu_enable(struct pmu *pmu)
1212 {
1213 struct perf_event *event;
1214 struct cpu_hw_events *cpuhw;
1215 unsigned long flags;
1216 long i;
1217 unsigned long val, mmcr0;
1218 s64 left;
1219 unsigned int hwc_index[MAX_HWEVENTS];
1220 int n_lim;
1221 int idx;
1222 bool ebb;
1223
1224 if (!ppmu)
1225 return;
1226 local_irq_save(flags);
1227
1228 cpuhw = this_cpu_ptr(&cpu_hw_events);
1229 if (!cpuhw->disabled)
1230 goto out;
1231
1232 if (cpuhw->n_events == 0) {
1233 ppc_set_pmu_inuse(0);
1234 goto out;
1235 }
1236
1237 cpuhw->disabled = 0;
1238
1239 /*
1240 * EBB requires an exclusive group and all events must have the EBB
1241 * flag set, or not set, so we can just check a single event. Also we
1242 * know we have at least one event.
1243 */
1244 ebb = is_ebb_event(cpuhw->event[0]);
1245
1246 /*
1247 * If we didn't change anything, or only removed events,
1248 * no need to recalculate MMCR* settings and reset the PMCs.
1249 * Just reenable the PMU with the current MMCR* settings
1250 * (possibly updated for removal of events).
1251 */
1252 if (!cpuhw->n_added) {
1253 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1254 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1255 goto out_enable;
1256 }
1257
1258 /*
1259 * Clear all MMCR settings and recompute them for the new set of events.
1260 */
1261 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1262
1263 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1264 cpuhw->mmcr, cpuhw->event)) {
1265 /* shouldn't ever get here */
1266 printk(KERN_ERR "oops compute_mmcr failed\n");
1267 goto out;
1268 }
1269
1270 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1271 /*
1272 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1273 * bits for the first event. We have already checked that all
1274 * events have the same value for these bits as the first event.
1275 */
1276 event = cpuhw->event[0];
1277 if (event->attr.exclude_user)
1278 cpuhw->mmcr[0] |= MMCR0_FCP;
1279 if (event->attr.exclude_kernel)
1280 cpuhw->mmcr[0] |= freeze_events_kernel;
1281 if (event->attr.exclude_hv)
1282 cpuhw->mmcr[0] |= MMCR0_FCHV;
1283 }
1284
1285 /*
1286 * Write the new configuration to MMCR* with the freeze
1287 * bit set and set the hardware events to their initial values.
1288 * Then unfreeze the events.
1289 */
1290 ppc_set_pmu_inuse(1);
1291 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1292 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1293 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1294 | MMCR0_FC);
1295 if (ppmu->flags & PPMU_ARCH_207S)
1296 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1297
1298 /*
1299 * Read off any pre-existing events that need to move
1300 * to another PMC.
1301 */
1302 for (i = 0; i < cpuhw->n_events; ++i) {
1303 event = cpuhw->event[i];
1304 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1305 power_pmu_read(event);
1306 write_pmc(event->hw.idx, 0);
1307 event->hw.idx = 0;
1308 }
1309 }
1310
1311 /*
1312 * Initialize the PMCs for all the new and moved events.
1313 */
1314 cpuhw->n_limited = n_lim = 0;
1315 for (i = 0; i < cpuhw->n_events; ++i) {
1316 event = cpuhw->event[i];
1317 if (event->hw.idx)
1318 continue;
1319 idx = hwc_index[i] + 1;
1320 if (is_limited_pmc(idx)) {
1321 cpuhw->limited_counter[n_lim] = event;
1322 cpuhw->limited_hwidx[n_lim] = idx;
1323 ++n_lim;
1324 continue;
1325 }
1326
1327 if (ebb)
1328 val = local64_read(&event->hw.prev_count);
1329 else {
1330 val = 0;
1331 if (event->hw.sample_period) {
1332 left = local64_read(&event->hw.period_left);
1333 if (left < 0x80000000L)
1334 val = 0x80000000L - left;
1335 }
1336 local64_set(&event->hw.prev_count, val);
1337 }
1338
1339 event->hw.idx = idx;
1340 if (event->hw.state & PERF_HES_STOPPED)
1341 val = 0;
1342 write_pmc(idx, val);
1343
1344 perf_event_update_userpage(event);
1345 }
1346 cpuhw->n_limited = n_lim;
1347 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1348
1349 out_enable:
1350 pmao_restore_workaround(ebb);
1351
1352 mmcr0 = ebb_switch_in(ebb, cpuhw);
1353
1354 mb();
1355 if (cpuhw->bhrb_users)
1356 ppmu->config_bhrb(cpuhw->bhrb_filter);
1357
1358 write_mmcr0(cpuhw, mmcr0);
1359
1360 /*
1361 * Enable instruction sampling if necessary
1362 */
1363 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1364 mb();
1365 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1366 }
1367
1368 out:
1369
1370 local_irq_restore(flags);
1371 }
1372
1373 static int collect_events(struct perf_event *group, int max_count,
1374 struct perf_event *ctrs[], u64 *events,
1375 unsigned int *flags)
1376 {
1377 int n = 0;
1378 struct perf_event *event;
1379
1380 if (!is_software_event(group)) {
1381 if (n >= max_count)
1382 return -1;
1383 ctrs[n] = group;
1384 flags[n] = group->hw.event_base;
1385 events[n++] = group->hw.config;
1386 }
1387 list_for_each_entry(event, &group->sibling_list, group_entry) {
1388 if (!is_software_event(event) &&
1389 event->state != PERF_EVENT_STATE_OFF) {
1390 if (n >= max_count)
1391 return -1;
1392 ctrs[n] = event;
1393 flags[n] = event->hw.event_base;
1394 events[n++] = event->hw.config;
1395 }
1396 }
1397 return n;
1398 }
1399
1400 /*
1401 * Add a event to the PMU.
1402 * If all events are not already frozen, then we disable and
1403 * re-enable the PMU in order to get hw_perf_enable to do the
1404 * actual work of reconfiguring the PMU.
1405 */
1406 static int power_pmu_add(struct perf_event *event, int ef_flags)
1407 {
1408 struct cpu_hw_events *cpuhw;
1409 unsigned long flags;
1410 int n0;
1411 int ret = -EAGAIN;
1412
1413 local_irq_save(flags);
1414 perf_pmu_disable(event->pmu);
1415
1416 /*
1417 * Add the event to the list (if there is room)
1418 * and check whether the total set is still feasible.
1419 */
1420 cpuhw = this_cpu_ptr(&cpu_hw_events);
1421 n0 = cpuhw->n_events;
1422 if (n0 >= ppmu->n_counter)
1423 goto out;
1424 cpuhw->event[n0] = event;
1425 cpuhw->events[n0] = event->hw.config;
1426 cpuhw->flags[n0] = event->hw.event_base;
1427
1428 /*
1429 * This event may have been disabled/stopped in record_and_restart()
1430 * because we exceeded the ->event_limit. If re-starting the event,
1431 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1432 * notification is re-enabled.
1433 */
1434 if (!(ef_flags & PERF_EF_START))
1435 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1436 else
1437 event->hw.state = 0;
1438
1439 /*
1440 * If group events scheduling transaction was started,
1441 * skip the schedulability test here, it will be performed
1442 * at commit time(->commit_txn) as a whole
1443 */
1444 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1445 goto nocheck;
1446
1447 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1448 goto out;
1449 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1450 goto out;
1451 event->hw.config = cpuhw->events[n0];
1452
1453 nocheck:
1454 ebb_event_add(event);
1455
1456 ++cpuhw->n_events;
1457 ++cpuhw->n_added;
1458
1459 ret = 0;
1460 out:
1461 if (has_branch_stack(event)) {
1462 power_pmu_bhrb_enable(event);
1463 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1464 event->attr.branch_sample_type);
1465 }
1466
1467 perf_pmu_enable(event->pmu);
1468 local_irq_restore(flags);
1469 return ret;
1470 }
1471
1472 /*
1473 * Remove a event from the PMU.
1474 */
1475 static void power_pmu_del(struct perf_event *event, int ef_flags)
1476 {
1477 struct cpu_hw_events *cpuhw;
1478 long i;
1479 unsigned long flags;
1480
1481 local_irq_save(flags);
1482 perf_pmu_disable(event->pmu);
1483
1484 power_pmu_read(event);
1485
1486 cpuhw = this_cpu_ptr(&cpu_hw_events);
1487 for (i = 0; i < cpuhw->n_events; ++i) {
1488 if (event == cpuhw->event[i]) {
1489 while (++i < cpuhw->n_events) {
1490 cpuhw->event[i-1] = cpuhw->event[i];
1491 cpuhw->events[i-1] = cpuhw->events[i];
1492 cpuhw->flags[i-1] = cpuhw->flags[i];
1493 }
1494 --cpuhw->n_events;
1495 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1496 if (event->hw.idx) {
1497 write_pmc(event->hw.idx, 0);
1498 event->hw.idx = 0;
1499 }
1500 perf_event_update_userpage(event);
1501 break;
1502 }
1503 }
1504 for (i = 0; i < cpuhw->n_limited; ++i)
1505 if (event == cpuhw->limited_counter[i])
1506 break;
1507 if (i < cpuhw->n_limited) {
1508 while (++i < cpuhw->n_limited) {
1509 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1510 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1511 }
1512 --cpuhw->n_limited;
1513 }
1514 if (cpuhw->n_events == 0) {
1515 /* disable exceptions if no events are running */
1516 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1517 }
1518
1519 if (has_branch_stack(event))
1520 power_pmu_bhrb_disable(event);
1521
1522 perf_pmu_enable(event->pmu);
1523 local_irq_restore(flags);
1524 }
1525
1526 /*
1527 * POWER-PMU does not support disabling individual counters, hence
1528 * program their cycle counter to their max value and ignore the interrupts.
1529 */
1530
1531 static void power_pmu_start(struct perf_event *event, int ef_flags)
1532 {
1533 unsigned long flags;
1534 s64 left;
1535 unsigned long val;
1536
1537 if (!event->hw.idx || !event->hw.sample_period)
1538 return;
1539
1540 if (!(event->hw.state & PERF_HES_STOPPED))
1541 return;
1542
1543 if (ef_flags & PERF_EF_RELOAD)
1544 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1545
1546 local_irq_save(flags);
1547 perf_pmu_disable(event->pmu);
1548
1549 event->hw.state = 0;
1550 left = local64_read(&event->hw.period_left);
1551
1552 val = 0;
1553 if (left < 0x80000000L)
1554 val = 0x80000000L - left;
1555
1556 write_pmc(event->hw.idx, val);
1557
1558 perf_event_update_userpage(event);
1559 perf_pmu_enable(event->pmu);
1560 local_irq_restore(flags);
1561 }
1562
1563 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1564 {
1565 unsigned long flags;
1566
1567 if (!event->hw.idx || !event->hw.sample_period)
1568 return;
1569
1570 if (event->hw.state & PERF_HES_STOPPED)
1571 return;
1572
1573 local_irq_save(flags);
1574 perf_pmu_disable(event->pmu);
1575
1576 power_pmu_read(event);
1577 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1578 write_pmc(event->hw.idx, 0);
1579
1580 perf_event_update_userpage(event);
1581 perf_pmu_enable(event->pmu);
1582 local_irq_restore(flags);
1583 }
1584
1585 /*
1586 * Start group events scheduling transaction
1587 * Set the flag to make pmu::enable() not perform the
1588 * schedulability test, it will be performed at commit time
1589 *
1590 * We only support PERF_PMU_TXN_ADD transactions. Save the
1591 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1592 * transactions.
1593 */
1594 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1595 {
1596 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1597
1598 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1599
1600 cpuhw->txn_flags = txn_flags;
1601 if (txn_flags & ~PERF_PMU_TXN_ADD)
1602 return;
1603
1604 perf_pmu_disable(pmu);
1605 cpuhw->n_txn_start = cpuhw->n_events;
1606 }
1607
1608 /*
1609 * Stop group events scheduling transaction
1610 * Clear the flag and pmu::enable() will perform the
1611 * schedulability test.
1612 */
1613 static void power_pmu_cancel_txn(struct pmu *pmu)
1614 {
1615 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1616 unsigned int txn_flags;
1617
1618 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1619
1620 txn_flags = cpuhw->txn_flags;
1621 cpuhw->txn_flags = 0;
1622 if (txn_flags & ~PERF_PMU_TXN_ADD)
1623 return;
1624
1625 perf_pmu_enable(pmu);
1626 }
1627
1628 /*
1629 * Commit group events scheduling transaction
1630 * Perform the group schedulability test as a whole
1631 * Return 0 if success
1632 */
1633 static int power_pmu_commit_txn(struct pmu *pmu)
1634 {
1635 struct cpu_hw_events *cpuhw;
1636 long i, n;
1637
1638 if (!ppmu)
1639 return -EAGAIN;
1640
1641 cpuhw = this_cpu_ptr(&cpu_hw_events);
1642 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1643
1644 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1645 cpuhw->txn_flags = 0;
1646 return 0;
1647 }
1648
1649 n = cpuhw->n_events;
1650 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1651 return -EAGAIN;
1652 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1653 if (i < 0)
1654 return -EAGAIN;
1655
1656 for (i = cpuhw->n_txn_start; i < n; ++i)
1657 cpuhw->event[i]->hw.config = cpuhw->events[i];
1658
1659 cpuhw->txn_flags = 0;
1660 perf_pmu_enable(pmu);
1661 return 0;
1662 }
1663
1664 /*
1665 * Return 1 if we might be able to put event on a limited PMC,
1666 * or 0 if not.
1667 * A event can only go on a limited PMC if it counts something
1668 * that a limited PMC can count, doesn't require interrupts, and
1669 * doesn't exclude any processor mode.
1670 */
1671 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1672 unsigned int flags)
1673 {
1674 int n;
1675 u64 alt[MAX_EVENT_ALTERNATIVES];
1676
1677 if (event->attr.exclude_user
1678 || event->attr.exclude_kernel
1679 || event->attr.exclude_hv
1680 || event->attr.sample_period)
1681 return 0;
1682
1683 if (ppmu->limited_pmc_event(ev))
1684 return 1;
1685
1686 /*
1687 * The requested event_id isn't on a limited PMC already;
1688 * see if any alternative code goes on a limited PMC.
1689 */
1690 if (!ppmu->get_alternatives)
1691 return 0;
1692
1693 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1694 n = ppmu->get_alternatives(ev, flags, alt);
1695
1696 return n > 0;
1697 }
1698
1699 /*
1700 * Find an alternative event_id that goes on a normal PMC, if possible,
1701 * and return the event_id code, or 0 if there is no such alternative.
1702 * (Note: event_id code 0 is "don't count" on all machines.)
1703 */
1704 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1705 {
1706 u64 alt[MAX_EVENT_ALTERNATIVES];
1707 int n;
1708
1709 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1710 n = ppmu->get_alternatives(ev, flags, alt);
1711 if (!n)
1712 return 0;
1713 return alt[0];
1714 }
1715
1716 /* Number of perf_events counting hardware events */
1717 static atomic_t num_events;
1718 /* Used to avoid races in calling reserve/release_pmc_hardware */
1719 static DEFINE_MUTEX(pmc_reserve_mutex);
1720
1721 /*
1722 * Release the PMU if this is the last perf_event.
1723 */
1724 static void hw_perf_event_destroy(struct perf_event *event)
1725 {
1726 if (!atomic_add_unless(&num_events, -1, 1)) {
1727 mutex_lock(&pmc_reserve_mutex);
1728 if (atomic_dec_return(&num_events) == 0)
1729 release_pmc_hardware();
1730 mutex_unlock(&pmc_reserve_mutex);
1731 }
1732 }
1733
1734 /*
1735 * Translate a generic cache event_id config to a raw event_id code.
1736 */
1737 static int hw_perf_cache_event(u64 config, u64 *eventp)
1738 {
1739 unsigned long type, op, result;
1740 int ev;
1741
1742 if (!ppmu->cache_events)
1743 return -EINVAL;
1744
1745 /* unpack config */
1746 type = config & 0xff;
1747 op = (config >> 8) & 0xff;
1748 result = (config >> 16) & 0xff;
1749
1750 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1751 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1752 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1753 return -EINVAL;
1754
1755 ev = (*ppmu->cache_events)[type][op][result];
1756 if (ev == 0)
1757 return -EOPNOTSUPP;
1758 if (ev == -1)
1759 return -EINVAL;
1760 *eventp = ev;
1761 return 0;
1762 }
1763
1764 static int power_pmu_event_init(struct perf_event *event)
1765 {
1766 u64 ev;
1767 unsigned long flags;
1768 struct perf_event *ctrs[MAX_HWEVENTS];
1769 u64 events[MAX_HWEVENTS];
1770 unsigned int cflags[MAX_HWEVENTS];
1771 int n;
1772 int err;
1773 struct cpu_hw_events *cpuhw;
1774
1775 if (!ppmu)
1776 return -ENOENT;
1777
1778 if (has_branch_stack(event)) {
1779 /* PMU has BHRB enabled */
1780 if (!(ppmu->flags & PPMU_ARCH_207S))
1781 return -EOPNOTSUPP;
1782 }
1783
1784 switch (event->attr.type) {
1785 case PERF_TYPE_HARDWARE:
1786 ev = event->attr.config;
1787 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1788 return -EOPNOTSUPP;
1789 ev = ppmu->generic_events[ev];
1790 break;
1791 case PERF_TYPE_HW_CACHE:
1792 err = hw_perf_cache_event(event->attr.config, &ev);
1793 if (err)
1794 return err;
1795 break;
1796 case PERF_TYPE_RAW:
1797 ev = event->attr.config;
1798 break;
1799 default:
1800 return -ENOENT;
1801 }
1802
1803 event->hw.config_base = ev;
1804 event->hw.idx = 0;
1805
1806 /*
1807 * If we are not running on a hypervisor, force the
1808 * exclude_hv bit to 0 so that we don't care what
1809 * the user set it to.
1810 */
1811 if (!firmware_has_feature(FW_FEATURE_LPAR))
1812 event->attr.exclude_hv = 0;
1813
1814 /*
1815 * If this is a per-task event, then we can use
1816 * PM_RUN_* events interchangeably with their non RUN_*
1817 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1818 * XXX we should check if the task is an idle task.
1819 */
1820 flags = 0;
1821 if (event->attach_state & PERF_ATTACH_TASK)
1822 flags |= PPMU_ONLY_COUNT_RUN;
1823
1824 /*
1825 * If this machine has limited events, check whether this
1826 * event_id could go on a limited event.
1827 */
1828 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1829 if (can_go_on_limited_pmc(event, ev, flags)) {
1830 flags |= PPMU_LIMITED_PMC_OK;
1831 } else if (ppmu->limited_pmc_event(ev)) {
1832 /*
1833 * The requested event_id is on a limited PMC,
1834 * but we can't use a limited PMC; see if any
1835 * alternative goes on a normal PMC.
1836 */
1837 ev = normal_pmc_alternative(ev, flags);
1838 if (!ev)
1839 return -EINVAL;
1840 }
1841 }
1842
1843 /* Extra checks for EBB */
1844 err = ebb_event_check(event);
1845 if (err)
1846 return err;
1847
1848 /*
1849 * If this is in a group, check if it can go on with all the
1850 * other hardware events in the group. We assume the event
1851 * hasn't been linked into its leader's sibling list at this point.
1852 */
1853 n = 0;
1854 if (event->group_leader != event) {
1855 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1856 ctrs, events, cflags);
1857 if (n < 0)
1858 return -EINVAL;
1859 }
1860 events[n] = ev;
1861 ctrs[n] = event;
1862 cflags[n] = flags;
1863 if (check_excludes(ctrs, cflags, n, 1))
1864 return -EINVAL;
1865
1866 cpuhw = &get_cpu_var(cpu_hw_events);
1867 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1868
1869 if (has_branch_stack(event)) {
1870 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1871 event->attr.branch_sample_type);
1872
1873 if (cpuhw->bhrb_filter == -1) {
1874 put_cpu_var(cpu_hw_events);
1875 return -EOPNOTSUPP;
1876 }
1877 }
1878
1879 put_cpu_var(cpu_hw_events);
1880 if (err)
1881 return -EINVAL;
1882
1883 event->hw.config = events[n];
1884 event->hw.event_base = cflags[n];
1885 event->hw.last_period = event->hw.sample_period;
1886 local64_set(&event->hw.period_left, event->hw.last_period);
1887
1888 /*
1889 * For EBB events we just context switch the PMC value, we don't do any
1890 * of the sample_period logic. We use hw.prev_count for this.
1891 */
1892 if (is_ebb_event(event))
1893 local64_set(&event->hw.prev_count, 0);
1894
1895 /*
1896 * See if we need to reserve the PMU.
1897 * If no events are currently in use, then we have to take a
1898 * mutex to ensure that we don't race with another task doing
1899 * reserve_pmc_hardware or release_pmc_hardware.
1900 */
1901 err = 0;
1902 if (!atomic_inc_not_zero(&num_events)) {
1903 mutex_lock(&pmc_reserve_mutex);
1904 if (atomic_read(&num_events) == 0 &&
1905 reserve_pmc_hardware(perf_event_interrupt))
1906 err = -EBUSY;
1907 else
1908 atomic_inc(&num_events);
1909 mutex_unlock(&pmc_reserve_mutex);
1910 }
1911 event->destroy = hw_perf_event_destroy;
1912
1913 return err;
1914 }
1915
1916 static int power_pmu_event_idx(struct perf_event *event)
1917 {
1918 return event->hw.idx;
1919 }
1920
1921 ssize_t power_events_sysfs_show(struct device *dev,
1922 struct device_attribute *attr, char *page)
1923 {
1924 struct perf_pmu_events_attr *pmu_attr;
1925
1926 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1927
1928 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1929 }
1930
1931 static struct pmu power_pmu = {
1932 .pmu_enable = power_pmu_enable,
1933 .pmu_disable = power_pmu_disable,
1934 .event_init = power_pmu_event_init,
1935 .add = power_pmu_add,
1936 .del = power_pmu_del,
1937 .start = power_pmu_start,
1938 .stop = power_pmu_stop,
1939 .read = power_pmu_read,
1940 .start_txn = power_pmu_start_txn,
1941 .cancel_txn = power_pmu_cancel_txn,
1942 .commit_txn = power_pmu_commit_txn,
1943 .event_idx = power_pmu_event_idx,
1944 .sched_task = power_pmu_sched_task,
1945 };
1946
1947 /*
1948 * A counter has overflowed; update its count and record
1949 * things if requested. Note that interrupts are hard-disabled
1950 * here so there is no possibility of being interrupted.
1951 */
1952 static void record_and_restart(struct perf_event *event, unsigned long val,
1953 struct pt_regs *regs)
1954 {
1955 u64 period = event->hw.sample_period;
1956 s64 prev, delta, left;
1957 int record = 0;
1958
1959 if (event->hw.state & PERF_HES_STOPPED) {
1960 write_pmc(event->hw.idx, 0);
1961 return;
1962 }
1963
1964 /* we don't have to worry about interrupts here */
1965 prev = local64_read(&event->hw.prev_count);
1966 delta = check_and_compute_delta(prev, val);
1967 local64_add(delta, &event->count);
1968
1969 /*
1970 * See if the total period for this event has expired,
1971 * and update for the next period.
1972 */
1973 val = 0;
1974 left = local64_read(&event->hw.period_left) - delta;
1975 if (delta == 0)
1976 left++;
1977 if (period) {
1978 if (left <= 0) {
1979 left += period;
1980 if (left <= 0)
1981 left = period;
1982 record = siar_valid(regs);
1983 event->hw.last_period = event->hw.sample_period;
1984 }
1985 if (left < 0x80000000LL)
1986 val = 0x80000000LL - left;
1987 }
1988
1989 write_pmc(event->hw.idx, val);
1990 local64_set(&event->hw.prev_count, val);
1991 local64_set(&event->hw.period_left, left);
1992 perf_event_update_userpage(event);
1993
1994 /*
1995 * Finally record data if requested.
1996 */
1997 if (record) {
1998 struct perf_sample_data data;
1999
2000 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2001
2002 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
2003 perf_get_data_addr(regs, &data.addr);
2004
2005 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2006 struct cpu_hw_events *cpuhw;
2007 cpuhw = this_cpu_ptr(&cpu_hw_events);
2008 power_pmu_bhrb_read(cpuhw);
2009 data.br_stack = &cpuhw->bhrb_stack;
2010 }
2011
2012 if (perf_event_overflow(event, &data, regs))
2013 power_pmu_stop(event, 0);
2014 }
2015 }
2016
2017 /*
2018 * Called from generic code to get the misc flags (i.e. processor mode)
2019 * for an event_id.
2020 */
2021 unsigned long perf_misc_flags(struct pt_regs *regs)
2022 {
2023 u32 flags = perf_get_misc_flags(regs);
2024
2025 if (flags)
2026 return flags;
2027 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2028 PERF_RECORD_MISC_KERNEL;
2029 }
2030
2031 /*
2032 * Called from generic code to get the instruction pointer
2033 * for an event_id.
2034 */
2035 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2036 {
2037 bool use_siar = regs_use_siar(regs);
2038
2039 if (use_siar && siar_valid(regs))
2040 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2041 else if (use_siar)
2042 return 0; // no valid instruction pointer
2043 else
2044 return regs->nip;
2045 }
2046
2047 static bool pmc_overflow_power7(unsigned long val)
2048 {
2049 /*
2050 * Events on POWER7 can roll back if a speculative event doesn't
2051 * eventually complete. Unfortunately in some rare cases they will
2052 * raise a performance monitor exception. We need to catch this to
2053 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2054 * cycles from overflow.
2055 *
2056 * We only do this if the first pass fails to find any overflowing
2057 * PMCs because a user might set a period of less than 256 and we
2058 * don't want to mistakenly reset them.
2059 */
2060 if ((0x80000000 - val) <= 256)
2061 return true;
2062
2063 return false;
2064 }
2065
2066 static bool pmc_overflow(unsigned long val)
2067 {
2068 if ((int)val < 0)
2069 return true;
2070
2071 return false;
2072 }
2073
2074 /*
2075 * Performance monitor interrupt stuff
2076 */
2077 static void perf_event_interrupt(struct pt_regs *regs)
2078 {
2079 int i, j;
2080 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2081 struct perf_event *event;
2082 unsigned long val[8];
2083 int found, active;
2084 int nmi;
2085
2086 if (cpuhw->n_limited)
2087 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2088 mfspr(SPRN_PMC6));
2089
2090 perf_read_regs(regs);
2091
2092 nmi = perf_intr_is_nmi(regs);
2093 if (nmi)
2094 nmi_enter();
2095 else
2096 irq_enter();
2097
2098 /* Read all the PMCs since we'll need them a bunch of times */
2099 for (i = 0; i < ppmu->n_counter; ++i)
2100 val[i] = read_pmc(i + 1);
2101
2102 /* Try to find what caused the IRQ */
2103 found = 0;
2104 for (i = 0; i < ppmu->n_counter; ++i) {
2105 if (!pmc_overflow(val[i]))
2106 continue;
2107 if (is_limited_pmc(i + 1))
2108 continue; /* these won't generate IRQs */
2109 /*
2110 * We've found one that's overflowed. For active
2111 * counters we need to log this. For inactive
2112 * counters, we need to reset it anyway
2113 */
2114 found = 1;
2115 active = 0;
2116 for (j = 0; j < cpuhw->n_events; ++j) {
2117 event = cpuhw->event[j];
2118 if (event->hw.idx == (i + 1)) {
2119 active = 1;
2120 record_and_restart(event, val[i], regs);
2121 break;
2122 }
2123 }
2124 if (!active)
2125 /* reset non active counters that have overflowed */
2126 write_pmc(i + 1, 0);
2127 }
2128 if (!found && pvr_version_is(PVR_POWER7)) {
2129 /* check active counters for special buggy p7 overflow */
2130 for (i = 0; i < cpuhw->n_events; ++i) {
2131 event = cpuhw->event[i];
2132 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2133 continue;
2134 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2135 /* event has overflowed in a buggy way*/
2136 found = 1;
2137 record_and_restart(event,
2138 val[event->hw.idx - 1],
2139 regs);
2140 }
2141 }
2142 }
2143 if (!found && !nmi && printk_ratelimit())
2144 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2145
2146 /*
2147 * Reset MMCR0 to its normal value. This will set PMXE and
2148 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2149 * and thus allow interrupts to occur again.
2150 * XXX might want to use MSR.PM to keep the events frozen until
2151 * we get back out of this interrupt.
2152 */
2153 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2154
2155 if (nmi)
2156 nmi_exit();
2157 else
2158 irq_exit();
2159 }
2160
2161 static int power_pmu_prepare_cpu(unsigned int cpu)
2162 {
2163 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2164
2165 if (ppmu) {
2166 memset(cpuhw, 0, sizeof(*cpuhw));
2167 cpuhw->mmcr[0] = MMCR0_FC;
2168 }
2169 return 0;
2170 }
2171
2172 int register_power_pmu(struct power_pmu *pmu)
2173 {
2174 if (ppmu)
2175 return -EBUSY; /* something's already registered */
2176
2177 ppmu = pmu;
2178 pr_info("%s performance monitor hardware support registered\n",
2179 pmu->name);
2180
2181 power_pmu.attr_groups = ppmu->attr_groups;
2182
2183 #ifdef MSR_HV
2184 /*
2185 * Use FCHV to ignore kernel events if MSR.HV is set.
2186 */
2187 if (mfmsr() & MSR_HV)
2188 freeze_events_kernel = MMCR0_FCHV;
2189 #endif /* CONFIG_PPC64 */
2190
2191 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2192 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2193 power_pmu_prepare_cpu, NULL);
2194 return 0;
2195 }