xfs: remote attribute lookups require the value length
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / perf / core-book3s.c
1 /*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 #define BHRB_MAX_ENTRIES 32
23 #define BHRB_TARGET 0x0000000000000002
24 #define BHRB_PREDICTION 0x0000000000000001
25 #define BHRB_EA 0xFFFFFFFFFFFFFFFC
26
27 struct cpu_hw_events {
28 int n_events;
29 int n_percpu;
30 int disabled;
31 int n_added;
32 int n_limited;
33 u8 pmcs_enabled;
34 struct perf_event *event[MAX_HWEVENTS];
35 u64 events[MAX_HWEVENTS];
36 unsigned int flags[MAX_HWEVENTS];
37 unsigned long mmcr[3];
38 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
39 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
40 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
41 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
42 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43
44 unsigned int group_flag;
45 int n_txn_start;
46
47 /* BHRB bits */
48 u64 bhrb_filter; /* BHRB HW branch filter */
49 int bhrb_users;
50 void *bhrb_context;
51 struct perf_branch_stack bhrb_stack;
52 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
53 };
54
55 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
56
57 struct power_pmu *ppmu;
58
59 /*
60 * Normally, to ignore kernel events we set the FCS (freeze counters
61 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
62 * hypervisor bit set in the MSR, or if we are running on a processor
63 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
64 * then we need to use the FCHV bit to ignore kernel events.
65 */
66 static unsigned int freeze_events_kernel = MMCR0_FCS;
67
68 /*
69 * 32-bit doesn't have MMCRA but does have an MMCR2,
70 * and a few other names are different.
71 */
72 #ifdef CONFIG_PPC32
73
74 #define MMCR0_FCHV 0
75 #define MMCR0_PMCjCE MMCR0_PMCnCE
76
77 #define SPRN_MMCRA SPRN_MMCR2
78 #define MMCRA_SAMPLE_ENABLE 0
79
80 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
81 {
82 return 0;
83 }
84 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
85 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
86 {
87 return 0;
88 }
89 static inline void perf_read_regs(struct pt_regs *regs)
90 {
91 regs->result = 0;
92 }
93 static inline int perf_intr_is_nmi(struct pt_regs *regs)
94 {
95 return 0;
96 }
97
98 static inline int siar_valid(struct pt_regs *regs)
99 {
100 return 1;
101 }
102
103 #endif /* CONFIG_PPC32 */
104
105 static bool regs_use_siar(struct pt_regs *regs)
106 {
107 return !!(regs->result & 1);
108 }
109
110 /*
111 * Things that are specific to 64-bit implementations.
112 */
113 #ifdef CONFIG_PPC64
114
115 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
116 {
117 unsigned long mmcra = regs->dsisr;
118
119 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
120 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
121 if (slot > 1)
122 return 4 * (slot - 1);
123 }
124
125 return 0;
126 }
127
128 /*
129 * The user wants a data address recorded.
130 * If we're not doing instruction sampling, give them the SDAR
131 * (sampled data address). If we are doing instruction sampling, then
132 * only give them the SDAR if it corresponds to the instruction
133 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC or
134 * the [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA.
135 */
136 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
137 {
138 unsigned long mmcra = regs->dsisr;
139 unsigned long sdsync;
140
141 if (ppmu->flags & PPMU_SIAR_VALID)
142 sdsync = POWER7P_MMCRA_SDAR_VALID;
143 else if (ppmu->flags & PPMU_ALT_SIPR)
144 sdsync = POWER6_MMCRA_SDSYNC;
145 else
146 sdsync = MMCRA_SDSYNC;
147
148 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
149 *addrp = mfspr(SPRN_SDAR);
150 }
151
152 static bool regs_sihv(struct pt_regs *regs)
153 {
154 unsigned long sihv = MMCRA_SIHV;
155
156 if (ppmu->flags & PPMU_HAS_SIER)
157 return !!(regs->dar & SIER_SIHV);
158
159 if (ppmu->flags & PPMU_ALT_SIPR)
160 sihv = POWER6_MMCRA_SIHV;
161
162 return !!(regs->dsisr & sihv);
163 }
164
165 static bool regs_sipr(struct pt_regs *regs)
166 {
167 unsigned long sipr = MMCRA_SIPR;
168
169 if (ppmu->flags & PPMU_HAS_SIER)
170 return !!(regs->dar & SIER_SIPR);
171
172 if (ppmu->flags & PPMU_ALT_SIPR)
173 sipr = POWER6_MMCRA_SIPR;
174
175 return !!(regs->dsisr & sipr);
176 }
177
178 static bool regs_no_sipr(struct pt_regs *regs)
179 {
180 return !!(regs->result & 2);
181 }
182
183 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
184 {
185 if (regs->msr & MSR_PR)
186 return PERF_RECORD_MISC_USER;
187 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
188 return PERF_RECORD_MISC_HYPERVISOR;
189 return PERF_RECORD_MISC_KERNEL;
190 }
191
192 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
193 {
194 bool use_siar = regs_use_siar(regs);
195
196 if (!use_siar)
197 return perf_flags_from_msr(regs);
198
199 /*
200 * If we don't have flags in MMCRA, rather than using
201 * the MSR, we intuit the flags from the address in
202 * SIAR which should give slightly more reliable
203 * results
204 */
205 if (regs_no_sipr(regs)) {
206 unsigned long siar = mfspr(SPRN_SIAR);
207 if (siar >= PAGE_OFFSET)
208 return PERF_RECORD_MISC_KERNEL;
209 return PERF_RECORD_MISC_USER;
210 }
211
212 /* PR has priority over HV, so order below is important */
213 if (regs_sipr(regs))
214 return PERF_RECORD_MISC_USER;
215
216 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
217 return PERF_RECORD_MISC_HYPERVISOR;
218
219 return PERF_RECORD_MISC_KERNEL;
220 }
221
222 /*
223 * Overload regs->dsisr to store MMCRA so we only need to read it once
224 * on each interrupt.
225 * Overload regs->dar to store SIER if we have it.
226 * Overload regs->result to specify whether we should use the MSR (result
227 * is zero) or the SIAR (result is non zero).
228 */
229 static inline void perf_read_regs(struct pt_regs *regs)
230 {
231 unsigned long mmcra = mfspr(SPRN_MMCRA);
232 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
233 int use_siar;
234
235 regs->dsisr = mmcra;
236 regs->result = 0;
237
238 if (ppmu->flags & PPMU_NO_SIPR)
239 regs->result |= 2;
240
241 /*
242 * On power8 if we're in random sampling mode, the SIER is updated.
243 * If we're in continuous sampling mode, we don't have SIPR.
244 */
245 if (ppmu->flags & PPMU_HAS_SIER) {
246 if (marked)
247 regs->dar = mfspr(SPRN_SIER);
248 else
249 regs->result |= 2;
250 }
251
252
253 /*
254 * If this isn't a PMU exception (eg a software event) the SIAR is
255 * not valid. Use pt_regs.
256 *
257 * If it is a marked event use the SIAR.
258 *
259 * If the PMU doesn't update the SIAR for non marked events use
260 * pt_regs.
261 *
262 * If the PMU has HV/PR flags then check to see if they
263 * place the exception in userspace. If so, use pt_regs. In
264 * continuous sampling mode the SIAR and the PMU exception are
265 * not synchronised, so they may be many instructions apart.
266 * This can result in confusing backtraces. We still want
267 * hypervisor samples as well as samples in the kernel with
268 * interrupts off hence the userspace check.
269 */
270 if (TRAP(regs) != 0xf00)
271 use_siar = 0;
272 else if (marked)
273 use_siar = 1;
274 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
275 use_siar = 0;
276 else if (!regs_no_sipr(regs) && regs_sipr(regs))
277 use_siar = 0;
278 else
279 use_siar = 1;
280
281 regs->result |= use_siar;
282 }
283
284 /*
285 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
286 * it as an NMI.
287 */
288 static inline int perf_intr_is_nmi(struct pt_regs *regs)
289 {
290 return !regs->softe;
291 }
292
293 /*
294 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
295 * must be sampled only if the SIAR-valid bit is set.
296 *
297 * For unmarked instructions and for processors that don't have the SIAR-Valid
298 * bit, assume that SIAR is valid.
299 */
300 static inline int siar_valid(struct pt_regs *regs)
301 {
302 unsigned long mmcra = regs->dsisr;
303 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
304
305 if ((ppmu->flags & PPMU_SIAR_VALID) && marked)
306 return mmcra & POWER7P_MMCRA_SIAR_VALID;
307
308 return 1;
309 }
310
311 #endif /* CONFIG_PPC64 */
312
313 static void perf_event_interrupt(struct pt_regs *regs);
314
315 void perf_event_print_debug(void)
316 {
317 }
318
319 /*
320 * Read one performance monitor counter (PMC).
321 */
322 static unsigned long read_pmc(int idx)
323 {
324 unsigned long val;
325
326 switch (idx) {
327 case 1:
328 val = mfspr(SPRN_PMC1);
329 break;
330 case 2:
331 val = mfspr(SPRN_PMC2);
332 break;
333 case 3:
334 val = mfspr(SPRN_PMC3);
335 break;
336 case 4:
337 val = mfspr(SPRN_PMC4);
338 break;
339 case 5:
340 val = mfspr(SPRN_PMC5);
341 break;
342 case 6:
343 val = mfspr(SPRN_PMC6);
344 break;
345 #ifdef CONFIG_PPC64
346 case 7:
347 val = mfspr(SPRN_PMC7);
348 break;
349 case 8:
350 val = mfspr(SPRN_PMC8);
351 break;
352 #endif /* CONFIG_PPC64 */
353 default:
354 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
355 val = 0;
356 }
357 return val;
358 }
359
360 /*
361 * Write one PMC.
362 */
363 static void write_pmc(int idx, unsigned long val)
364 {
365 switch (idx) {
366 case 1:
367 mtspr(SPRN_PMC1, val);
368 break;
369 case 2:
370 mtspr(SPRN_PMC2, val);
371 break;
372 case 3:
373 mtspr(SPRN_PMC3, val);
374 break;
375 case 4:
376 mtspr(SPRN_PMC4, val);
377 break;
378 case 5:
379 mtspr(SPRN_PMC5, val);
380 break;
381 case 6:
382 mtspr(SPRN_PMC6, val);
383 break;
384 #ifdef CONFIG_PPC64
385 case 7:
386 mtspr(SPRN_PMC7, val);
387 break;
388 case 8:
389 mtspr(SPRN_PMC8, val);
390 break;
391 #endif /* CONFIG_PPC64 */
392 default:
393 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
394 }
395 }
396
397 /*
398 * Check if a set of events can all go on the PMU at once.
399 * If they can't, this will look at alternative codes for the events
400 * and see if any combination of alternative codes is feasible.
401 * The feasible set is returned in event_id[].
402 */
403 static int power_check_constraints(struct cpu_hw_events *cpuhw,
404 u64 event_id[], unsigned int cflags[],
405 int n_ev)
406 {
407 unsigned long mask, value, nv;
408 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
409 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
410 int i, j;
411 unsigned long addf = ppmu->add_fields;
412 unsigned long tadd = ppmu->test_adder;
413
414 if (n_ev > ppmu->n_counter)
415 return -1;
416
417 /* First see if the events will go on as-is */
418 for (i = 0; i < n_ev; ++i) {
419 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
420 && !ppmu->limited_pmc_event(event_id[i])) {
421 ppmu->get_alternatives(event_id[i], cflags[i],
422 cpuhw->alternatives[i]);
423 event_id[i] = cpuhw->alternatives[i][0];
424 }
425 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
426 &cpuhw->avalues[i][0]))
427 return -1;
428 }
429 value = mask = 0;
430 for (i = 0; i < n_ev; ++i) {
431 nv = (value | cpuhw->avalues[i][0]) +
432 (value & cpuhw->avalues[i][0] & addf);
433 if ((((nv + tadd) ^ value) & mask) != 0 ||
434 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
435 cpuhw->amasks[i][0]) != 0)
436 break;
437 value = nv;
438 mask |= cpuhw->amasks[i][0];
439 }
440 if (i == n_ev)
441 return 0; /* all OK */
442
443 /* doesn't work, gather alternatives... */
444 if (!ppmu->get_alternatives)
445 return -1;
446 for (i = 0; i < n_ev; ++i) {
447 choice[i] = 0;
448 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
449 cpuhw->alternatives[i]);
450 for (j = 1; j < n_alt[i]; ++j)
451 ppmu->get_constraint(cpuhw->alternatives[i][j],
452 &cpuhw->amasks[i][j],
453 &cpuhw->avalues[i][j]);
454 }
455
456 /* enumerate all possibilities and see if any will work */
457 i = 0;
458 j = -1;
459 value = mask = nv = 0;
460 while (i < n_ev) {
461 if (j >= 0) {
462 /* we're backtracking, restore context */
463 value = svalues[i];
464 mask = smasks[i];
465 j = choice[i];
466 }
467 /*
468 * See if any alternative k for event_id i,
469 * where k > j, will satisfy the constraints.
470 */
471 while (++j < n_alt[i]) {
472 nv = (value | cpuhw->avalues[i][j]) +
473 (value & cpuhw->avalues[i][j] & addf);
474 if ((((nv + tadd) ^ value) & mask) == 0 &&
475 (((nv + tadd) ^ cpuhw->avalues[i][j])
476 & cpuhw->amasks[i][j]) == 0)
477 break;
478 }
479 if (j >= n_alt[i]) {
480 /*
481 * No feasible alternative, backtrack
482 * to event_id i-1 and continue enumerating its
483 * alternatives from where we got up to.
484 */
485 if (--i < 0)
486 return -1;
487 } else {
488 /*
489 * Found a feasible alternative for event_id i,
490 * remember where we got up to with this event_id,
491 * go on to the next event_id, and start with
492 * the first alternative for it.
493 */
494 choice[i] = j;
495 svalues[i] = value;
496 smasks[i] = mask;
497 value = nv;
498 mask |= cpuhw->amasks[i][j];
499 ++i;
500 j = -1;
501 }
502 }
503
504 /* OK, we have a feasible combination, tell the caller the solution */
505 for (i = 0; i < n_ev; ++i)
506 event_id[i] = cpuhw->alternatives[i][choice[i]];
507 return 0;
508 }
509
510 /*
511 * Check if newly-added events have consistent settings for
512 * exclude_{user,kernel,hv} with each other and any previously
513 * added events.
514 */
515 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
516 int n_prev, int n_new)
517 {
518 int eu = 0, ek = 0, eh = 0;
519 int i, n, first;
520 struct perf_event *event;
521
522 n = n_prev + n_new;
523 if (n <= 1)
524 return 0;
525
526 first = 1;
527 for (i = 0; i < n; ++i) {
528 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
529 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
530 continue;
531 }
532 event = ctrs[i];
533 if (first) {
534 eu = event->attr.exclude_user;
535 ek = event->attr.exclude_kernel;
536 eh = event->attr.exclude_hv;
537 first = 0;
538 } else if (event->attr.exclude_user != eu ||
539 event->attr.exclude_kernel != ek ||
540 event->attr.exclude_hv != eh) {
541 return -EAGAIN;
542 }
543 }
544
545 if (eu || ek || eh)
546 for (i = 0; i < n; ++i)
547 if (cflags[i] & PPMU_LIMITED_PMC_OK)
548 cflags[i] |= PPMU_LIMITED_PMC_REQD;
549
550 return 0;
551 }
552
553 static u64 check_and_compute_delta(u64 prev, u64 val)
554 {
555 u64 delta = (val - prev) & 0xfffffffful;
556
557 /*
558 * POWER7 can roll back counter values, if the new value is smaller
559 * than the previous value it will cause the delta and the counter to
560 * have bogus values unless we rolled a counter over. If a coutner is
561 * rolled back, it will be smaller, but within 256, which is the maximum
562 * number of events to rollback at once. If we dectect a rollback
563 * return 0. This can lead to a small lack of precision in the
564 * counters.
565 */
566 if (prev > val && (prev - val) < 256)
567 delta = 0;
568
569 return delta;
570 }
571
572 static void power_pmu_read(struct perf_event *event)
573 {
574 s64 val, delta, prev;
575
576 if (event->hw.state & PERF_HES_STOPPED)
577 return;
578
579 if (!event->hw.idx)
580 return;
581 /*
582 * Performance monitor interrupts come even when interrupts
583 * are soft-disabled, as long as interrupts are hard-enabled.
584 * Therefore we treat them like NMIs.
585 */
586 do {
587 prev = local64_read(&event->hw.prev_count);
588 barrier();
589 val = read_pmc(event->hw.idx);
590 delta = check_and_compute_delta(prev, val);
591 if (!delta)
592 return;
593 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
594
595 local64_add(delta, &event->count);
596 local64_sub(delta, &event->hw.period_left);
597 }
598
599 /*
600 * On some machines, PMC5 and PMC6 can't be written, don't respect
601 * the freeze conditions, and don't generate interrupts. This tells
602 * us if `event' is using such a PMC.
603 */
604 static int is_limited_pmc(int pmcnum)
605 {
606 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
607 && (pmcnum == 5 || pmcnum == 6);
608 }
609
610 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
611 unsigned long pmc5, unsigned long pmc6)
612 {
613 struct perf_event *event;
614 u64 val, prev, delta;
615 int i;
616
617 for (i = 0; i < cpuhw->n_limited; ++i) {
618 event = cpuhw->limited_counter[i];
619 if (!event->hw.idx)
620 continue;
621 val = (event->hw.idx == 5) ? pmc5 : pmc6;
622 prev = local64_read(&event->hw.prev_count);
623 event->hw.idx = 0;
624 delta = check_and_compute_delta(prev, val);
625 if (delta)
626 local64_add(delta, &event->count);
627 }
628 }
629
630 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
631 unsigned long pmc5, unsigned long pmc6)
632 {
633 struct perf_event *event;
634 u64 val, prev;
635 int i;
636
637 for (i = 0; i < cpuhw->n_limited; ++i) {
638 event = cpuhw->limited_counter[i];
639 event->hw.idx = cpuhw->limited_hwidx[i];
640 val = (event->hw.idx == 5) ? pmc5 : pmc6;
641 prev = local64_read(&event->hw.prev_count);
642 if (check_and_compute_delta(prev, val))
643 local64_set(&event->hw.prev_count, val);
644 perf_event_update_userpage(event);
645 }
646 }
647
648 /*
649 * Since limited events don't respect the freeze conditions, we
650 * have to read them immediately after freezing or unfreezing the
651 * other events. We try to keep the values from the limited
652 * events as consistent as possible by keeping the delay (in
653 * cycles and instructions) between freezing/unfreezing and reading
654 * the limited events as small and consistent as possible.
655 * Therefore, if any limited events are in use, we read them
656 * both, and always in the same order, to minimize variability,
657 * and do it inside the same asm that writes MMCR0.
658 */
659 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
660 {
661 unsigned long pmc5, pmc6;
662
663 if (!cpuhw->n_limited) {
664 mtspr(SPRN_MMCR0, mmcr0);
665 return;
666 }
667
668 /*
669 * Write MMCR0, then read PMC5 and PMC6 immediately.
670 * To ensure we don't get a performance monitor interrupt
671 * between writing MMCR0 and freezing/thawing the limited
672 * events, we first write MMCR0 with the event overflow
673 * interrupt enable bits turned off.
674 */
675 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
676 : "=&r" (pmc5), "=&r" (pmc6)
677 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
678 "i" (SPRN_MMCR0),
679 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
680
681 if (mmcr0 & MMCR0_FC)
682 freeze_limited_counters(cpuhw, pmc5, pmc6);
683 else
684 thaw_limited_counters(cpuhw, pmc5, pmc6);
685
686 /*
687 * Write the full MMCR0 including the event overflow interrupt
688 * enable bits, if necessary.
689 */
690 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
691 mtspr(SPRN_MMCR0, mmcr0);
692 }
693
694 /*
695 * Disable all events to prevent PMU interrupts and to allow
696 * events to be added or removed.
697 */
698 static void power_pmu_disable(struct pmu *pmu)
699 {
700 struct cpu_hw_events *cpuhw;
701 unsigned long flags;
702
703 if (!ppmu)
704 return;
705 local_irq_save(flags);
706 cpuhw = &__get_cpu_var(cpu_hw_events);
707
708 if (!cpuhw->disabled) {
709 cpuhw->disabled = 1;
710 cpuhw->n_added = 0;
711
712 /*
713 * Check if we ever enabled the PMU on this cpu.
714 */
715 if (!cpuhw->pmcs_enabled) {
716 ppc_enable_pmcs();
717 cpuhw->pmcs_enabled = 1;
718 }
719
720 /*
721 * Disable instruction sampling if it was enabled
722 */
723 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
724 mtspr(SPRN_MMCRA,
725 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
726 mb();
727 }
728
729 /*
730 * Set the 'freeze counters' bit.
731 * The barrier is to make sure the mtspr has been
732 * executed and the PMU has frozen the events
733 * before we return.
734 */
735 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
736 mb();
737 }
738 local_irq_restore(flags);
739 }
740
741 /*
742 * Re-enable all events if disable == 0.
743 * If we were previously disabled and events were added, then
744 * put the new config on the PMU.
745 */
746 static void power_pmu_enable(struct pmu *pmu)
747 {
748 struct perf_event *event;
749 struct cpu_hw_events *cpuhw;
750 unsigned long flags;
751 long i;
752 unsigned long val;
753 s64 left;
754 unsigned int hwc_index[MAX_HWEVENTS];
755 int n_lim;
756 int idx;
757
758 if (!ppmu)
759 return;
760 local_irq_save(flags);
761 cpuhw = &__get_cpu_var(cpu_hw_events);
762 if (!cpuhw->disabled) {
763 local_irq_restore(flags);
764 return;
765 }
766 cpuhw->disabled = 0;
767
768 /*
769 * If we didn't change anything, or only removed events,
770 * no need to recalculate MMCR* settings and reset the PMCs.
771 * Just reenable the PMU with the current MMCR* settings
772 * (possibly updated for removal of events).
773 */
774 if (!cpuhw->n_added) {
775 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
776 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
777 if (cpuhw->n_events == 0)
778 ppc_set_pmu_inuse(0);
779 goto out_enable;
780 }
781
782 /*
783 * Compute MMCR* values for the new set of events
784 */
785 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
786 cpuhw->mmcr)) {
787 /* shouldn't ever get here */
788 printk(KERN_ERR "oops compute_mmcr failed\n");
789 goto out;
790 }
791
792 /*
793 * Add in MMCR0 freeze bits corresponding to the
794 * attr.exclude_* bits for the first event.
795 * We have already checked that all events have the
796 * same values for these bits as the first event.
797 */
798 event = cpuhw->event[0];
799 if (event->attr.exclude_user)
800 cpuhw->mmcr[0] |= MMCR0_FCP;
801 if (event->attr.exclude_kernel)
802 cpuhw->mmcr[0] |= freeze_events_kernel;
803 if (event->attr.exclude_hv)
804 cpuhw->mmcr[0] |= MMCR0_FCHV;
805
806 /*
807 * Write the new configuration to MMCR* with the freeze
808 * bit set and set the hardware events to their initial values.
809 * Then unfreeze the events.
810 */
811 ppc_set_pmu_inuse(1);
812 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
813 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
814 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
815 | MMCR0_FC);
816
817 /*
818 * Read off any pre-existing events that need to move
819 * to another PMC.
820 */
821 for (i = 0; i < cpuhw->n_events; ++i) {
822 event = cpuhw->event[i];
823 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
824 power_pmu_read(event);
825 write_pmc(event->hw.idx, 0);
826 event->hw.idx = 0;
827 }
828 }
829
830 /*
831 * Initialize the PMCs for all the new and moved events.
832 */
833 cpuhw->n_limited = n_lim = 0;
834 for (i = 0; i < cpuhw->n_events; ++i) {
835 event = cpuhw->event[i];
836 if (event->hw.idx)
837 continue;
838 idx = hwc_index[i] + 1;
839 if (is_limited_pmc(idx)) {
840 cpuhw->limited_counter[n_lim] = event;
841 cpuhw->limited_hwidx[n_lim] = idx;
842 ++n_lim;
843 continue;
844 }
845 val = 0;
846 if (event->hw.sample_period) {
847 left = local64_read(&event->hw.period_left);
848 if (left < 0x80000000L)
849 val = 0x80000000L - left;
850 }
851 local64_set(&event->hw.prev_count, val);
852 event->hw.idx = idx;
853 if (event->hw.state & PERF_HES_STOPPED)
854 val = 0;
855 write_pmc(idx, val);
856 perf_event_update_userpage(event);
857 }
858 cpuhw->n_limited = n_lim;
859 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
860
861 out_enable:
862 mb();
863 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
864
865 /*
866 * Enable instruction sampling if necessary
867 */
868 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
869 mb();
870 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
871 }
872
873 out:
874 if (cpuhw->bhrb_users)
875 ppmu->config_bhrb(cpuhw->bhrb_filter);
876
877 local_irq_restore(flags);
878 }
879
880 static int collect_events(struct perf_event *group, int max_count,
881 struct perf_event *ctrs[], u64 *events,
882 unsigned int *flags)
883 {
884 int n = 0;
885 struct perf_event *event;
886
887 if (!is_software_event(group)) {
888 if (n >= max_count)
889 return -1;
890 ctrs[n] = group;
891 flags[n] = group->hw.event_base;
892 events[n++] = group->hw.config;
893 }
894 list_for_each_entry(event, &group->sibling_list, group_entry) {
895 if (!is_software_event(event) &&
896 event->state != PERF_EVENT_STATE_OFF) {
897 if (n >= max_count)
898 return -1;
899 ctrs[n] = event;
900 flags[n] = event->hw.event_base;
901 events[n++] = event->hw.config;
902 }
903 }
904 return n;
905 }
906
907 /* Reset all possible BHRB entries */
908 static void power_pmu_bhrb_reset(void)
909 {
910 asm volatile(PPC_CLRBHRB);
911 }
912
913 void power_pmu_bhrb_enable(struct perf_event *event)
914 {
915 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
916
917 if (!ppmu->bhrb_nr)
918 return;
919
920 /* Clear BHRB if we changed task context to avoid data leaks */
921 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
922 power_pmu_bhrb_reset();
923 cpuhw->bhrb_context = event->ctx;
924 }
925 cpuhw->bhrb_users++;
926 }
927
928 void power_pmu_bhrb_disable(struct perf_event *event)
929 {
930 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
931
932 if (!ppmu->bhrb_nr)
933 return;
934
935 cpuhw->bhrb_users--;
936 WARN_ON_ONCE(cpuhw->bhrb_users < 0);
937
938 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
939 /* BHRB cannot be turned off when other
940 * events are active on the PMU.
941 */
942
943 /* avoid stale pointer */
944 cpuhw->bhrb_context = NULL;
945 }
946 }
947
948 /*
949 * Add a event to the PMU.
950 * If all events are not already frozen, then we disable and
951 * re-enable the PMU in order to get hw_perf_enable to do the
952 * actual work of reconfiguring the PMU.
953 */
954 static int power_pmu_add(struct perf_event *event, int ef_flags)
955 {
956 struct cpu_hw_events *cpuhw;
957 unsigned long flags;
958 int n0;
959 int ret = -EAGAIN;
960
961 local_irq_save(flags);
962 perf_pmu_disable(event->pmu);
963
964 /*
965 * Add the event to the list (if there is room)
966 * and check whether the total set is still feasible.
967 */
968 cpuhw = &__get_cpu_var(cpu_hw_events);
969 n0 = cpuhw->n_events;
970 if (n0 >= ppmu->n_counter)
971 goto out;
972 cpuhw->event[n0] = event;
973 cpuhw->events[n0] = event->hw.config;
974 cpuhw->flags[n0] = event->hw.event_base;
975
976 /*
977 * This event may have been disabled/stopped in record_and_restart()
978 * because we exceeded the ->event_limit. If re-starting the event,
979 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
980 * notification is re-enabled.
981 */
982 if (!(ef_flags & PERF_EF_START))
983 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
984 else
985 event->hw.state = 0;
986
987 /*
988 * If group events scheduling transaction was started,
989 * skip the schedulability test here, it will be performed
990 * at commit time(->commit_txn) as a whole
991 */
992 if (cpuhw->group_flag & PERF_EVENT_TXN)
993 goto nocheck;
994
995 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
996 goto out;
997 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
998 goto out;
999 event->hw.config = cpuhw->events[n0];
1000
1001 nocheck:
1002 ++cpuhw->n_events;
1003 ++cpuhw->n_added;
1004
1005 ret = 0;
1006 out:
1007 if (has_branch_stack(event))
1008 power_pmu_bhrb_enable(event);
1009
1010 perf_pmu_enable(event->pmu);
1011 local_irq_restore(flags);
1012 return ret;
1013 }
1014
1015 /*
1016 * Remove a event from the PMU.
1017 */
1018 static void power_pmu_del(struct perf_event *event, int ef_flags)
1019 {
1020 struct cpu_hw_events *cpuhw;
1021 long i;
1022 unsigned long flags;
1023
1024 local_irq_save(flags);
1025 perf_pmu_disable(event->pmu);
1026
1027 power_pmu_read(event);
1028
1029 cpuhw = &__get_cpu_var(cpu_hw_events);
1030 for (i = 0; i < cpuhw->n_events; ++i) {
1031 if (event == cpuhw->event[i]) {
1032 while (++i < cpuhw->n_events) {
1033 cpuhw->event[i-1] = cpuhw->event[i];
1034 cpuhw->events[i-1] = cpuhw->events[i];
1035 cpuhw->flags[i-1] = cpuhw->flags[i];
1036 }
1037 --cpuhw->n_events;
1038 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1039 if (event->hw.idx) {
1040 write_pmc(event->hw.idx, 0);
1041 event->hw.idx = 0;
1042 }
1043 perf_event_update_userpage(event);
1044 break;
1045 }
1046 }
1047 for (i = 0; i < cpuhw->n_limited; ++i)
1048 if (event == cpuhw->limited_counter[i])
1049 break;
1050 if (i < cpuhw->n_limited) {
1051 while (++i < cpuhw->n_limited) {
1052 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1053 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1054 }
1055 --cpuhw->n_limited;
1056 }
1057 if (cpuhw->n_events == 0) {
1058 /* disable exceptions if no events are running */
1059 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1060 }
1061
1062 if (has_branch_stack(event))
1063 power_pmu_bhrb_disable(event);
1064
1065 perf_pmu_enable(event->pmu);
1066 local_irq_restore(flags);
1067 }
1068
1069 /*
1070 * POWER-PMU does not support disabling individual counters, hence
1071 * program their cycle counter to their max value and ignore the interrupts.
1072 */
1073
1074 static void power_pmu_start(struct perf_event *event, int ef_flags)
1075 {
1076 unsigned long flags;
1077 s64 left;
1078 unsigned long val;
1079
1080 if (!event->hw.idx || !event->hw.sample_period)
1081 return;
1082
1083 if (!(event->hw.state & PERF_HES_STOPPED))
1084 return;
1085
1086 if (ef_flags & PERF_EF_RELOAD)
1087 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1088
1089 local_irq_save(flags);
1090 perf_pmu_disable(event->pmu);
1091
1092 event->hw.state = 0;
1093 left = local64_read(&event->hw.period_left);
1094
1095 val = 0;
1096 if (left < 0x80000000L)
1097 val = 0x80000000L - left;
1098
1099 write_pmc(event->hw.idx, val);
1100
1101 perf_event_update_userpage(event);
1102 perf_pmu_enable(event->pmu);
1103 local_irq_restore(flags);
1104 }
1105
1106 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1107 {
1108 unsigned long flags;
1109
1110 if (!event->hw.idx || !event->hw.sample_period)
1111 return;
1112
1113 if (event->hw.state & PERF_HES_STOPPED)
1114 return;
1115
1116 local_irq_save(flags);
1117 perf_pmu_disable(event->pmu);
1118
1119 power_pmu_read(event);
1120 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1121 write_pmc(event->hw.idx, 0);
1122
1123 perf_event_update_userpage(event);
1124 perf_pmu_enable(event->pmu);
1125 local_irq_restore(flags);
1126 }
1127
1128 /*
1129 * Start group events scheduling transaction
1130 * Set the flag to make pmu::enable() not perform the
1131 * schedulability test, it will be performed at commit time
1132 */
1133 void power_pmu_start_txn(struct pmu *pmu)
1134 {
1135 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1136
1137 perf_pmu_disable(pmu);
1138 cpuhw->group_flag |= PERF_EVENT_TXN;
1139 cpuhw->n_txn_start = cpuhw->n_events;
1140 }
1141
1142 /*
1143 * Stop group events scheduling transaction
1144 * Clear the flag and pmu::enable() will perform the
1145 * schedulability test.
1146 */
1147 void power_pmu_cancel_txn(struct pmu *pmu)
1148 {
1149 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1150
1151 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1152 perf_pmu_enable(pmu);
1153 }
1154
1155 /*
1156 * Commit group events scheduling transaction
1157 * Perform the group schedulability test as a whole
1158 * Return 0 if success
1159 */
1160 int power_pmu_commit_txn(struct pmu *pmu)
1161 {
1162 struct cpu_hw_events *cpuhw;
1163 long i, n;
1164
1165 if (!ppmu)
1166 return -EAGAIN;
1167 cpuhw = &__get_cpu_var(cpu_hw_events);
1168 n = cpuhw->n_events;
1169 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1170 return -EAGAIN;
1171 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1172 if (i < 0)
1173 return -EAGAIN;
1174
1175 for (i = cpuhw->n_txn_start; i < n; ++i)
1176 cpuhw->event[i]->hw.config = cpuhw->events[i];
1177
1178 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1179 perf_pmu_enable(pmu);
1180 return 0;
1181 }
1182
1183 /* Called from ctxsw to prevent one process's branch entries to
1184 * mingle with the other process's entries during context switch.
1185 */
1186 void power_pmu_flush_branch_stack(void)
1187 {
1188 if (ppmu->bhrb_nr)
1189 power_pmu_bhrb_reset();
1190 }
1191
1192 /*
1193 * Return 1 if we might be able to put event on a limited PMC,
1194 * or 0 if not.
1195 * A event can only go on a limited PMC if it counts something
1196 * that a limited PMC can count, doesn't require interrupts, and
1197 * doesn't exclude any processor mode.
1198 */
1199 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1200 unsigned int flags)
1201 {
1202 int n;
1203 u64 alt[MAX_EVENT_ALTERNATIVES];
1204
1205 if (event->attr.exclude_user
1206 || event->attr.exclude_kernel
1207 || event->attr.exclude_hv
1208 || event->attr.sample_period)
1209 return 0;
1210
1211 if (ppmu->limited_pmc_event(ev))
1212 return 1;
1213
1214 /*
1215 * The requested event_id isn't on a limited PMC already;
1216 * see if any alternative code goes on a limited PMC.
1217 */
1218 if (!ppmu->get_alternatives)
1219 return 0;
1220
1221 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1222 n = ppmu->get_alternatives(ev, flags, alt);
1223
1224 return n > 0;
1225 }
1226
1227 /*
1228 * Find an alternative event_id that goes on a normal PMC, if possible,
1229 * and return the event_id code, or 0 if there is no such alternative.
1230 * (Note: event_id code 0 is "don't count" on all machines.)
1231 */
1232 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1233 {
1234 u64 alt[MAX_EVENT_ALTERNATIVES];
1235 int n;
1236
1237 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1238 n = ppmu->get_alternatives(ev, flags, alt);
1239 if (!n)
1240 return 0;
1241 return alt[0];
1242 }
1243
1244 /* Number of perf_events counting hardware events */
1245 static atomic_t num_events;
1246 /* Used to avoid races in calling reserve/release_pmc_hardware */
1247 static DEFINE_MUTEX(pmc_reserve_mutex);
1248
1249 /*
1250 * Release the PMU if this is the last perf_event.
1251 */
1252 static void hw_perf_event_destroy(struct perf_event *event)
1253 {
1254 if (!atomic_add_unless(&num_events, -1, 1)) {
1255 mutex_lock(&pmc_reserve_mutex);
1256 if (atomic_dec_return(&num_events) == 0)
1257 release_pmc_hardware();
1258 mutex_unlock(&pmc_reserve_mutex);
1259 }
1260 }
1261
1262 /*
1263 * Translate a generic cache event_id config to a raw event_id code.
1264 */
1265 static int hw_perf_cache_event(u64 config, u64 *eventp)
1266 {
1267 unsigned long type, op, result;
1268 int ev;
1269
1270 if (!ppmu->cache_events)
1271 return -EINVAL;
1272
1273 /* unpack config */
1274 type = config & 0xff;
1275 op = (config >> 8) & 0xff;
1276 result = (config >> 16) & 0xff;
1277
1278 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1279 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1280 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1281 return -EINVAL;
1282
1283 ev = (*ppmu->cache_events)[type][op][result];
1284 if (ev == 0)
1285 return -EOPNOTSUPP;
1286 if (ev == -1)
1287 return -EINVAL;
1288 *eventp = ev;
1289 return 0;
1290 }
1291
1292 static int power_pmu_event_init(struct perf_event *event)
1293 {
1294 u64 ev;
1295 unsigned long flags;
1296 struct perf_event *ctrs[MAX_HWEVENTS];
1297 u64 events[MAX_HWEVENTS];
1298 unsigned int cflags[MAX_HWEVENTS];
1299 int n;
1300 int err;
1301 struct cpu_hw_events *cpuhw;
1302
1303 if (!ppmu)
1304 return -ENOENT;
1305
1306 if (has_branch_stack(event)) {
1307 /* PMU has BHRB enabled */
1308 if (!(ppmu->flags & PPMU_BHRB))
1309 return -EOPNOTSUPP;
1310 }
1311
1312 switch (event->attr.type) {
1313 case PERF_TYPE_HARDWARE:
1314 ev = event->attr.config;
1315 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1316 return -EOPNOTSUPP;
1317 ev = ppmu->generic_events[ev];
1318 break;
1319 case PERF_TYPE_HW_CACHE:
1320 err = hw_perf_cache_event(event->attr.config, &ev);
1321 if (err)
1322 return err;
1323 break;
1324 case PERF_TYPE_RAW:
1325 ev = event->attr.config;
1326 break;
1327 default:
1328 return -ENOENT;
1329 }
1330
1331 event->hw.config_base = ev;
1332 event->hw.idx = 0;
1333
1334 /*
1335 * If we are not running on a hypervisor, force the
1336 * exclude_hv bit to 0 so that we don't care what
1337 * the user set it to.
1338 */
1339 if (!firmware_has_feature(FW_FEATURE_LPAR))
1340 event->attr.exclude_hv = 0;
1341
1342 /*
1343 * If this is a per-task event, then we can use
1344 * PM_RUN_* events interchangeably with their non RUN_*
1345 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1346 * XXX we should check if the task is an idle task.
1347 */
1348 flags = 0;
1349 if (event->attach_state & PERF_ATTACH_TASK)
1350 flags |= PPMU_ONLY_COUNT_RUN;
1351
1352 /*
1353 * If this machine has limited events, check whether this
1354 * event_id could go on a limited event.
1355 */
1356 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1357 if (can_go_on_limited_pmc(event, ev, flags)) {
1358 flags |= PPMU_LIMITED_PMC_OK;
1359 } else if (ppmu->limited_pmc_event(ev)) {
1360 /*
1361 * The requested event_id is on a limited PMC,
1362 * but we can't use a limited PMC; see if any
1363 * alternative goes on a normal PMC.
1364 */
1365 ev = normal_pmc_alternative(ev, flags);
1366 if (!ev)
1367 return -EINVAL;
1368 }
1369 }
1370
1371 /*
1372 * If this is in a group, check if it can go on with all the
1373 * other hardware events in the group. We assume the event
1374 * hasn't been linked into its leader's sibling list at this point.
1375 */
1376 n = 0;
1377 if (event->group_leader != event) {
1378 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1379 ctrs, events, cflags);
1380 if (n < 0)
1381 return -EINVAL;
1382 }
1383 events[n] = ev;
1384 ctrs[n] = event;
1385 cflags[n] = flags;
1386 if (check_excludes(ctrs, cflags, n, 1))
1387 return -EINVAL;
1388
1389 cpuhw = &get_cpu_var(cpu_hw_events);
1390 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1391
1392 if (has_branch_stack(event)) {
1393 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1394 event->attr.branch_sample_type);
1395
1396 if(cpuhw->bhrb_filter == -1)
1397 return -EOPNOTSUPP;
1398 }
1399
1400 put_cpu_var(cpu_hw_events);
1401 if (err)
1402 return -EINVAL;
1403
1404 event->hw.config = events[n];
1405 event->hw.event_base = cflags[n];
1406 event->hw.last_period = event->hw.sample_period;
1407 local64_set(&event->hw.period_left, event->hw.last_period);
1408
1409 /*
1410 * See if we need to reserve the PMU.
1411 * If no events are currently in use, then we have to take a
1412 * mutex to ensure that we don't race with another task doing
1413 * reserve_pmc_hardware or release_pmc_hardware.
1414 */
1415 err = 0;
1416 if (!atomic_inc_not_zero(&num_events)) {
1417 mutex_lock(&pmc_reserve_mutex);
1418 if (atomic_read(&num_events) == 0 &&
1419 reserve_pmc_hardware(perf_event_interrupt))
1420 err = -EBUSY;
1421 else
1422 atomic_inc(&num_events);
1423 mutex_unlock(&pmc_reserve_mutex);
1424 }
1425 event->destroy = hw_perf_event_destroy;
1426
1427 return err;
1428 }
1429
1430 static int power_pmu_event_idx(struct perf_event *event)
1431 {
1432 return event->hw.idx;
1433 }
1434
1435 ssize_t power_events_sysfs_show(struct device *dev,
1436 struct device_attribute *attr, char *page)
1437 {
1438 struct perf_pmu_events_attr *pmu_attr;
1439
1440 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1441
1442 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1443 }
1444
1445 struct pmu power_pmu = {
1446 .pmu_enable = power_pmu_enable,
1447 .pmu_disable = power_pmu_disable,
1448 .event_init = power_pmu_event_init,
1449 .add = power_pmu_add,
1450 .del = power_pmu_del,
1451 .start = power_pmu_start,
1452 .stop = power_pmu_stop,
1453 .read = power_pmu_read,
1454 .start_txn = power_pmu_start_txn,
1455 .cancel_txn = power_pmu_cancel_txn,
1456 .commit_txn = power_pmu_commit_txn,
1457 .event_idx = power_pmu_event_idx,
1458 .flush_branch_stack = power_pmu_flush_branch_stack,
1459 };
1460
1461 /* Processing BHRB entries */
1462 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
1463 {
1464 u64 val;
1465 u64 addr;
1466 int r_index, u_index, target, pred;
1467
1468 r_index = 0;
1469 u_index = 0;
1470 while (r_index < ppmu->bhrb_nr) {
1471 /* Assembly read function */
1472 val = read_bhrb(r_index);
1473
1474 /* Terminal marker: End of valid BHRB entries */
1475 if (val == 0) {
1476 break;
1477 } else {
1478 /* BHRB field break up */
1479 addr = val & BHRB_EA;
1480 pred = val & BHRB_PREDICTION;
1481 target = val & BHRB_TARGET;
1482
1483 /* Probable Missed entry: Not applicable for POWER8 */
1484 if ((addr == 0) && (target == 0) && (pred == 1)) {
1485 r_index++;
1486 continue;
1487 }
1488
1489 /* Real Missed entry: Power8 based missed entry */
1490 if ((addr == 0) && (target == 1) && (pred == 1)) {
1491 r_index++;
1492 continue;
1493 }
1494
1495 /* Reserved condition: Not a valid entry */
1496 if ((addr == 0) && (target == 1) && (pred == 0)) {
1497 r_index++;
1498 continue;
1499 }
1500
1501 /* Is a target address */
1502 if (val & BHRB_TARGET) {
1503 /* First address cannot be a target address */
1504 if (r_index == 0) {
1505 r_index++;
1506 continue;
1507 }
1508
1509 /* Update target address for the previous entry */
1510 cpuhw->bhrb_entries[u_index - 1].to = addr;
1511 cpuhw->bhrb_entries[u_index - 1].mispred = pred;
1512 cpuhw->bhrb_entries[u_index - 1].predicted = ~pred;
1513
1514 /* Dont increment u_index */
1515 r_index++;
1516 } else {
1517 /* Update address, flags for current entry */
1518 cpuhw->bhrb_entries[u_index].from = addr;
1519 cpuhw->bhrb_entries[u_index].mispred = pred;
1520 cpuhw->bhrb_entries[u_index].predicted = ~pred;
1521
1522 /* Successfully popullated one entry */
1523 u_index++;
1524 r_index++;
1525 }
1526 }
1527 }
1528 cpuhw->bhrb_stack.nr = u_index;
1529 return;
1530 }
1531
1532 /*
1533 * A counter has overflowed; update its count and record
1534 * things if requested. Note that interrupts are hard-disabled
1535 * here so there is no possibility of being interrupted.
1536 */
1537 static void record_and_restart(struct perf_event *event, unsigned long val,
1538 struct pt_regs *regs)
1539 {
1540 u64 period = event->hw.sample_period;
1541 s64 prev, delta, left;
1542 int record = 0;
1543
1544 if (event->hw.state & PERF_HES_STOPPED) {
1545 write_pmc(event->hw.idx, 0);
1546 return;
1547 }
1548
1549 /* we don't have to worry about interrupts here */
1550 prev = local64_read(&event->hw.prev_count);
1551 delta = check_and_compute_delta(prev, val);
1552 local64_add(delta, &event->count);
1553
1554 /*
1555 * See if the total period for this event has expired,
1556 * and update for the next period.
1557 */
1558 val = 0;
1559 left = local64_read(&event->hw.period_left) - delta;
1560 if (delta == 0)
1561 left++;
1562 if (period) {
1563 if (left <= 0) {
1564 left += period;
1565 if (left <= 0)
1566 left = period;
1567 record = siar_valid(regs);
1568 event->hw.last_period = event->hw.sample_period;
1569 }
1570 if (left < 0x80000000LL)
1571 val = 0x80000000LL - left;
1572 }
1573
1574 write_pmc(event->hw.idx, val);
1575 local64_set(&event->hw.prev_count, val);
1576 local64_set(&event->hw.period_left, left);
1577 perf_event_update_userpage(event);
1578
1579 /*
1580 * Finally record data if requested.
1581 */
1582 if (record) {
1583 struct perf_sample_data data;
1584
1585 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1586
1587 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1588 perf_get_data_addr(regs, &data.addr);
1589
1590 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1591 struct cpu_hw_events *cpuhw;
1592 cpuhw = &__get_cpu_var(cpu_hw_events);
1593 power_pmu_bhrb_read(cpuhw);
1594 data.br_stack = &cpuhw->bhrb_stack;
1595 }
1596
1597 if (perf_event_overflow(event, &data, regs))
1598 power_pmu_stop(event, 0);
1599 }
1600 }
1601
1602 /*
1603 * Called from generic code to get the misc flags (i.e. processor mode)
1604 * for an event_id.
1605 */
1606 unsigned long perf_misc_flags(struct pt_regs *regs)
1607 {
1608 u32 flags = perf_get_misc_flags(regs);
1609
1610 if (flags)
1611 return flags;
1612 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1613 PERF_RECORD_MISC_KERNEL;
1614 }
1615
1616 /*
1617 * Called from generic code to get the instruction pointer
1618 * for an event_id.
1619 */
1620 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1621 {
1622 bool use_siar = regs_use_siar(regs);
1623
1624 if (use_siar && siar_valid(regs))
1625 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1626 else if (use_siar)
1627 return 0; // no valid instruction pointer
1628 else
1629 return regs->nip;
1630 }
1631
1632 static bool pmc_overflow_power7(unsigned long val)
1633 {
1634 /*
1635 * Events on POWER7 can roll back if a speculative event doesn't
1636 * eventually complete. Unfortunately in some rare cases they will
1637 * raise a performance monitor exception. We need to catch this to
1638 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1639 * cycles from overflow.
1640 *
1641 * We only do this if the first pass fails to find any overflowing
1642 * PMCs because a user might set a period of less than 256 and we
1643 * don't want to mistakenly reset them.
1644 */
1645 if ((0x80000000 - val) <= 256)
1646 return true;
1647
1648 return false;
1649 }
1650
1651 static bool pmc_overflow(unsigned long val)
1652 {
1653 if ((int)val < 0)
1654 return true;
1655
1656 return false;
1657 }
1658
1659 /*
1660 * Performance monitor interrupt stuff
1661 */
1662 static void perf_event_interrupt(struct pt_regs *regs)
1663 {
1664 int i, j;
1665 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1666 struct perf_event *event;
1667 unsigned long val[8];
1668 int found, active;
1669 int nmi;
1670
1671 if (cpuhw->n_limited)
1672 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1673 mfspr(SPRN_PMC6));
1674
1675 perf_read_regs(regs);
1676
1677 nmi = perf_intr_is_nmi(regs);
1678 if (nmi)
1679 nmi_enter();
1680 else
1681 irq_enter();
1682
1683 /* Read all the PMCs since we'll need them a bunch of times */
1684 for (i = 0; i < ppmu->n_counter; ++i)
1685 val[i] = read_pmc(i + 1);
1686
1687 /* Try to find what caused the IRQ */
1688 found = 0;
1689 for (i = 0; i < ppmu->n_counter; ++i) {
1690 if (!pmc_overflow(val[i]))
1691 continue;
1692 if (is_limited_pmc(i + 1))
1693 continue; /* these won't generate IRQs */
1694 /*
1695 * We've found one that's overflowed. For active
1696 * counters we need to log this. For inactive
1697 * counters, we need to reset it anyway
1698 */
1699 found = 1;
1700 active = 0;
1701 for (j = 0; j < cpuhw->n_events; ++j) {
1702 event = cpuhw->event[j];
1703 if (event->hw.idx == (i + 1)) {
1704 active = 1;
1705 record_and_restart(event, val[i], regs);
1706 break;
1707 }
1708 }
1709 if (!active)
1710 /* reset non active counters that have overflowed */
1711 write_pmc(i + 1, 0);
1712 }
1713 if (!found && pvr_version_is(PVR_POWER7)) {
1714 /* check active counters for special buggy p7 overflow */
1715 for (i = 0; i < cpuhw->n_events; ++i) {
1716 event = cpuhw->event[i];
1717 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1718 continue;
1719 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
1720 /* event has overflowed in a buggy way*/
1721 found = 1;
1722 record_and_restart(event,
1723 val[event->hw.idx - 1],
1724 regs);
1725 }
1726 }
1727 }
1728 if ((!found) && printk_ratelimit())
1729 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
1730
1731 /*
1732 * Reset MMCR0 to its normal value. This will set PMXE and
1733 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1734 * and thus allow interrupts to occur again.
1735 * XXX might want to use MSR.PM to keep the events frozen until
1736 * we get back out of this interrupt.
1737 */
1738 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1739
1740 if (nmi)
1741 nmi_exit();
1742 else
1743 irq_exit();
1744 }
1745
1746 static void power_pmu_setup(int cpu)
1747 {
1748 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1749
1750 if (!ppmu)
1751 return;
1752 memset(cpuhw, 0, sizeof(*cpuhw));
1753 cpuhw->mmcr[0] = MMCR0_FC;
1754 }
1755
1756 static int __cpuinit
1757 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1758 {
1759 unsigned int cpu = (long)hcpu;
1760
1761 switch (action & ~CPU_TASKS_FROZEN) {
1762 case CPU_UP_PREPARE:
1763 power_pmu_setup(cpu);
1764 break;
1765
1766 default:
1767 break;
1768 }
1769
1770 return NOTIFY_OK;
1771 }
1772
1773 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1774 {
1775 if (ppmu)
1776 return -EBUSY; /* something's already registered */
1777
1778 ppmu = pmu;
1779 pr_info("%s performance monitor hardware support registered\n",
1780 pmu->name);
1781
1782 power_pmu.attr_groups = ppmu->attr_groups;
1783
1784 #ifdef MSR_HV
1785 /*
1786 * Use FCHV to ignore kernel events if MSR.HV is set.
1787 */
1788 if (mfmsr() & MSR_HV)
1789 freeze_events_kernel = MMCR0_FCHV;
1790 #endif /* CONFIG_PPC64 */
1791
1792 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1793 perf_cpu_notifier(power_pmu_notifier);
1794
1795 return 0;
1796 }