Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
4 *
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6 *
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
11 *
12 * Description:
13 * PowerPC Hashed Page Table functions
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/page.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60
61 #ifdef DEBUG
62 #define DBG(fmt...) udbg_printf(fmt)
63 #else
64 #define DBG(fmt...)
65 #endif
66
67 #ifdef DEBUG_LOW
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG_LOW(fmt...)
71 #endif
72
73 #define KB (1024)
74 #define MB (1024*KB)
75 #define GB (1024L*MB)
76
77 /*
78 * Note: pte --> Linux PTE
79 * HPTE --> PowerPC Hashed Page Table Entry
80 *
81 * Execution context:
82 * htab_initialize is called with the MMU off (of course), but
83 * the kernel has been copied down to zero so it can directly
84 * reference global data. At this point it is very difficult
85 * to print debug info.
86 *
87 */
88
89 #ifdef CONFIG_U3_DART
90 extern unsigned long dart_tablebase;
91 #endif /* CONFIG_U3_DART */
92
93 static unsigned long _SDR1;
94 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
95
96 struct hash_pte *htab_address;
97 unsigned long htab_size_bytes;
98 unsigned long htab_hash_mask;
99 EXPORT_SYMBOL_GPL(htab_hash_mask);
100 int mmu_linear_psize = MMU_PAGE_4K;
101 int mmu_virtual_psize = MMU_PAGE_4K;
102 int mmu_vmalloc_psize = MMU_PAGE_4K;
103 #ifdef CONFIG_SPARSEMEM_VMEMMAP
104 int mmu_vmemmap_psize = MMU_PAGE_4K;
105 #endif
106 int mmu_io_psize = MMU_PAGE_4K;
107 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
108 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
109 u16 mmu_slb_size = 64;
110 EXPORT_SYMBOL_GPL(mmu_slb_size);
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions;
113 #endif
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8 *linear_map_hash_slots;
116 static unsigned long linear_map_hash_count;
117 static DEFINE_SPINLOCK(linear_map_hash_lock);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
119
120 /* There are definitions of page sizes arrays to be used when none
121 * is provided by the firmware.
122 */
123
124 /* Pre-POWER4 CPUs (4k pages only)
125 */
126 static struct mmu_psize_def mmu_psize_defaults_old[] = {
127 [MMU_PAGE_4K] = {
128 .shift = 12,
129 .sllp = 0,
130 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
131 .avpnm = 0,
132 .tlbiel = 0,
133 },
134 };
135
136 /* POWER4, GPUL, POWER5
137 *
138 * Support for 16Mb large pages
139 */
140 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
141 [MMU_PAGE_4K] = {
142 .shift = 12,
143 .sllp = 0,
144 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145 .avpnm = 0,
146 .tlbiel = 1,
147 },
148 [MMU_PAGE_16M] = {
149 .shift = 24,
150 .sllp = SLB_VSID_L,
151 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
152 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
153 .avpnm = 0x1UL,
154 .tlbiel = 0,
155 },
156 };
157
158 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
159 {
160 unsigned long rflags = pteflags & 0x1fa;
161
162 /* _PAGE_EXEC -> NOEXEC */
163 if ((pteflags & _PAGE_EXEC) == 0)
164 rflags |= HPTE_R_N;
165
166 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
167 * need to add in 0x1 if it's a read-only user page
168 */
169 if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
170 (pteflags & _PAGE_DIRTY)))
171 rflags |= 1;
172
173 /* Always add C */
174 return rflags | HPTE_R_C;
175 }
176
177 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
178 unsigned long pstart, unsigned long prot,
179 int psize, int ssize)
180 {
181 unsigned long vaddr, paddr;
182 unsigned int step, shift;
183 int ret = 0;
184
185 shift = mmu_psize_defs[psize].shift;
186 step = 1 << shift;
187
188 prot = htab_convert_pte_flags(prot);
189
190 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
191 vstart, vend, pstart, prot, psize, ssize);
192
193 for (vaddr = vstart, paddr = pstart; vaddr < vend;
194 vaddr += step, paddr += step) {
195 unsigned long hash, hpteg;
196 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
197 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
198 unsigned long tprot = prot;
199
200 /*
201 * If we hit a bad address return error.
202 */
203 if (!vsid)
204 return -1;
205 /* Make kernel text executable */
206 if (overlaps_kernel_text(vaddr, vaddr + step))
207 tprot &= ~HPTE_R_N;
208
209 hash = hpt_hash(vpn, shift, ssize);
210 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
211
212 BUG_ON(!ppc_md.hpte_insert);
213 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
214 HPTE_V_BOLTED, psize, psize, ssize);
215
216 if (ret < 0)
217 break;
218 #ifdef CONFIG_DEBUG_PAGEALLOC
219 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
220 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
221 #endif /* CONFIG_DEBUG_PAGEALLOC */
222 }
223 return ret < 0 ? ret : 0;
224 }
225
226 #ifdef CONFIG_MEMORY_HOTPLUG
227 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
228 int psize, int ssize)
229 {
230 unsigned long vaddr;
231 unsigned int step, shift;
232
233 shift = mmu_psize_defs[psize].shift;
234 step = 1 << shift;
235
236 if (!ppc_md.hpte_removebolted) {
237 printk(KERN_WARNING "Platform doesn't implement "
238 "hpte_removebolted\n");
239 return -EINVAL;
240 }
241
242 for (vaddr = vstart; vaddr < vend; vaddr += step)
243 ppc_md.hpte_removebolted(vaddr, psize, ssize);
244
245 return 0;
246 }
247 #endif /* CONFIG_MEMORY_HOTPLUG */
248
249 static int __init htab_dt_scan_seg_sizes(unsigned long node,
250 const char *uname, int depth,
251 void *data)
252 {
253 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
254 u32 *prop;
255 unsigned long size = 0;
256
257 /* We are scanning "cpu" nodes only */
258 if (type == NULL || strcmp(type, "cpu") != 0)
259 return 0;
260
261 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
262 &size);
263 if (prop == NULL)
264 return 0;
265 for (; size >= 4; size -= 4, ++prop) {
266 if (prop[0] == 40) {
267 DBG("1T segment support detected\n");
268 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
269 return 1;
270 }
271 }
272 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
273 return 0;
274 }
275
276 static void __init htab_init_seg_sizes(void)
277 {
278 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
279 }
280
281 static int __init get_idx_from_shift(unsigned int shift)
282 {
283 int idx = -1;
284
285 switch (shift) {
286 case 0xc:
287 idx = MMU_PAGE_4K;
288 break;
289 case 0x10:
290 idx = MMU_PAGE_64K;
291 break;
292 case 0x14:
293 idx = MMU_PAGE_1M;
294 break;
295 case 0x18:
296 idx = MMU_PAGE_16M;
297 break;
298 case 0x22:
299 idx = MMU_PAGE_16G;
300 break;
301 }
302 return idx;
303 }
304
305 static int __init htab_dt_scan_page_sizes(unsigned long node,
306 const char *uname, int depth,
307 void *data)
308 {
309 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
310 u32 *prop;
311 unsigned long size = 0;
312
313 /* We are scanning "cpu" nodes only */
314 if (type == NULL || strcmp(type, "cpu") != 0)
315 return 0;
316
317 prop = (u32 *)of_get_flat_dt_prop(node,
318 "ibm,segment-page-sizes", &size);
319 if (prop != NULL) {
320 pr_info("Page sizes from device-tree:\n");
321 size /= 4;
322 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
323 while(size > 0) {
324 unsigned int base_shift = prop[0];
325 unsigned int slbenc = prop[1];
326 unsigned int lpnum = prop[2];
327 struct mmu_psize_def *def;
328 int idx, base_idx;
329
330 size -= 3; prop += 3;
331 base_idx = get_idx_from_shift(base_shift);
332 if (base_idx < 0) {
333 /*
334 * skip the pte encoding also
335 */
336 prop += lpnum * 2; size -= lpnum * 2;
337 continue;
338 }
339 def = &mmu_psize_defs[base_idx];
340 if (base_idx == MMU_PAGE_16M)
341 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
342
343 def->shift = base_shift;
344 if (base_shift <= 23)
345 def->avpnm = 0;
346 else
347 def->avpnm = (1 << (base_shift - 23)) - 1;
348 def->sllp = slbenc;
349 /*
350 * We don't know for sure what's up with tlbiel, so
351 * for now we only set it for 4K and 64K pages
352 */
353 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
354 def->tlbiel = 1;
355 else
356 def->tlbiel = 0;
357
358 while (size > 0 && lpnum) {
359 unsigned int shift = prop[0];
360 int penc = prop[1];
361
362 prop += 2; size -= 2;
363 lpnum--;
364
365 idx = get_idx_from_shift(shift);
366 if (idx < 0)
367 continue;
368
369 if (penc == -1)
370 pr_err("Invalid penc for base_shift=%d "
371 "shift=%d\n", base_shift, shift);
372
373 def->penc[idx] = penc;
374 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
375 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
376 base_shift, shift, def->sllp,
377 def->avpnm, def->tlbiel, def->penc[idx]);
378 }
379 }
380 return 1;
381 }
382 return 0;
383 }
384
385 #ifdef CONFIG_HUGETLB_PAGE
386 /* Scan for 16G memory blocks that have been set aside for huge pages
387 * and reserve those blocks for 16G huge pages.
388 */
389 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
390 const char *uname, int depth,
391 void *data) {
392 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
393 unsigned long *addr_prop;
394 u32 *page_count_prop;
395 unsigned int expected_pages;
396 long unsigned int phys_addr;
397 long unsigned int block_size;
398
399 /* We are scanning "memory" nodes only */
400 if (type == NULL || strcmp(type, "memory") != 0)
401 return 0;
402
403 /* This property is the log base 2 of the number of virtual pages that
404 * will represent this memory block. */
405 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
406 if (page_count_prop == NULL)
407 return 0;
408 expected_pages = (1 << page_count_prop[0]);
409 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
410 if (addr_prop == NULL)
411 return 0;
412 phys_addr = addr_prop[0];
413 block_size = addr_prop[1];
414 if (block_size != (16 * GB))
415 return 0;
416 printk(KERN_INFO "Huge page(16GB) memory: "
417 "addr = 0x%lX size = 0x%lX pages = %d\n",
418 phys_addr, block_size, expected_pages);
419 if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
420 memblock_reserve(phys_addr, block_size * expected_pages);
421 add_gpage(phys_addr, block_size, expected_pages);
422 }
423 return 0;
424 }
425 #endif /* CONFIG_HUGETLB_PAGE */
426
427 static void mmu_psize_set_default_penc(void)
428 {
429 int bpsize, apsize;
430 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
431 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
432 mmu_psize_defs[bpsize].penc[apsize] = -1;
433 }
434
435 static void __init htab_init_page_sizes(void)
436 {
437 int rc;
438
439 /* se the invalid penc to -1 */
440 mmu_psize_set_default_penc();
441
442 /* Default to 4K pages only */
443 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
444 sizeof(mmu_psize_defaults_old));
445
446 /*
447 * Try to find the available page sizes in the device-tree
448 */
449 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
450 if (rc != 0) /* Found */
451 goto found;
452
453 /*
454 * Not in the device-tree, let's fallback on known size
455 * list for 16M capable GP & GR
456 */
457 if (mmu_has_feature(MMU_FTR_16M_PAGE))
458 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
459 sizeof(mmu_psize_defaults_gp));
460 found:
461 #ifndef CONFIG_DEBUG_PAGEALLOC
462 /*
463 * Pick a size for the linear mapping. Currently, we only support
464 * 16M, 1M and 4K which is the default
465 */
466 if (mmu_psize_defs[MMU_PAGE_16M].shift)
467 mmu_linear_psize = MMU_PAGE_16M;
468 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
469 mmu_linear_psize = MMU_PAGE_1M;
470 #endif /* CONFIG_DEBUG_PAGEALLOC */
471
472 #ifdef CONFIG_PPC_64K_PAGES
473 /*
474 * Pick a size for the ordinary pages. Default is 4K, we support
475 * 64K for user mappings and vmalloc if supported by the processor.
476 * We only use 64k for ioremap if the processor
477 * (and firmware) support cache-inhibited large pages.
478 * If not, we use 4k and set mmu_ci_restrictions so that
479 * hash_page knows to switch processes that use cache-inhibited
480 * mappings to 4k pages.
481 */
482 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
483 mmu_virtual_psize = MMU_PAGE_64K;
484 mmu_vmalloc_psize = MMU_PAGE_64K;
485 if (mmu_linear_psize == MMU_PAGE_4K)
486 mmu_linear_psize = MMU_PAGE_64K;
487 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
488 /*
489 * Don't use 64k pages for ioremap on pSeries, since
490 * that would stop us accessing the HEA ethernet.
491 */
492 if (!machine_is(pseries))
493 mmu_io_psize = MMU_PAGE_64K;
494 } else
495 mmu_ci_restrictions = 1;
496 }
497 #endif /* CONFIG_PPC_64K_PAGES */
498
499 #ifdef CONFIG_SPARSEMEM_VMEMMAP
500 /* We try to use 16M pages for vmemmap if that is supported
501 * and we have at least 1G of RAM at boot
502 */
503 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
504 memblock_phys_mem_size() >= 0x40000000)
505 mmu_vmemmap_psize = MMU_PAGE_16M;
506 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
507 mmu_vmemmap_psize = MMU_PAGE_64K;
508 else
509 mmu_vmemmap_psize = MMU_PAGE_4K;
510 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
511
512 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
513 "virtual = %d, io = %d"
514 #ifdef CONFIG_SPARSEMEM_VMEMMAP
515 ", vmemmap = %d"
516 #endif
517 "\n",
518 mmu_psize_defs[mmu_linear_psize].shift,
519 mmu_psize_defs[mmu_virtual_psize].shift,
520 mmu_psize_defs[mmu_io_psize].shift
521 #ifdef CONFIG_SPARSEMEM_VMEMMAP
522 ,mmu_psize_defs[mmu_vmemmap_psize].shift
523 #endif
524 );
525
526 #ifdef CONFIG_HUGETLB_PAGE
527 /* Reserve 16G huge page memory sections for huge pages */
528 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
529 #endif /* CONFIG_HUGETLB_PAGE */
530 }
531
532 static int __init htab_dt_scan_pftsize(unsigned long node,
533 const char *uname, int depth,
534 void *data)
535 {
536 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
537 u32 *prop;
538
539 /* We are scanning "cpu" nodes only */
540 if (type == NULL || strcmp(type, "cpu") != 0)
541 return 0;
542
543 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
544 if (prop != NULL) {
545 /* pft_size[0] is the NUMA CEC cookie */
546 ppc64_pft_size = prop[1];
547 return 1;
548 }
549 return 0;
550 }
551
552 static unsigned long __init htab_get_table_size(void)
553 {
554 unsigned long mem_size, rnd_mem_size, pteg_count, psize;
555
556 /* If hash size isn't already provided by the platform, we try to
557 * retrieve it from the device-tree. If it's not there neither, we
558 * calculate it now based on the total RAM size
559 */
560 if (ppc64_pft_size == 0)
561 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
562 if (ppc64_pft_size)
563 return 1UL << ppc64_pft_size;
564
565 /* round mem_size up to next power of 2 */
566 mem_size = memblock_phys_mem_size();
567 rnd_mem_size = 1UL << __ilog2(mem_size);
568 if (rnd_mem_size < mem_size)
569 rnd_mem_size <<= 1;
570
571 /* # pages / 2 */
572 psize = mmu_psize_defs[mmu_virtual_psize].shift;
573 pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
574
575 return pteg_count << 7;
576 }
577
578 #ifdef CONFIG_MEMORY_HOTPLUG
579 int create_section_mapping(unsigned long start, unsigned long end)
580 {
581 return htab_bolt_mapping(start, end, __pa(start),
582 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
583 mmu_kernel_ssize);
584 }
585
586 int remove_section_mapping(unsigned long start, unsigned long end)
587 {
588 return htab_remove_mapping(start, end, mmu_linear_psize,
589 mmu_kernel_ssize);
590 }
591 #endif /* CONFIG_MEMORY_HOTPLUG */
592
593 #define FUNCTION_TEXT(A) ((*(unsigned long *)(A)))
594
595 static void __init htab_finish_init(void)
596 {
597 extern unsigned int *htab_call_hpte_insert1;
598 extern unsigned int *htab_call_hpte_insert2;
599 extern unsigned int *htab_call_hpte_remove;
600 extern unsigned int *htab_call_hpte_updatepp;
601
602 #ifdef CONFIG_PPC_HAS_HASH_64K
603 extern unsigned int *ht64_call_hpte_insert1;
604 extern unsigned int *ht64_call_hpte_insert2;
605 extern unsigned int *ht64_call_hpte_remove;
606 extern unsigned int *ht64_call_hpte_updatepp;
607
608 patch_branch(ht64_call_hpte_insert1,
609 FUNCTION_TEXT(ppc_md.hpte_insert),
610 BRANCH_SET_LINK);
611 patch_branch(ht64_call_hpte_insert2,
612 FUNCTION_TEXT(ppc_md.hpte_insert),
613 BRANCH_SET_LINK);
614 patch_branch(ht64_call_hpte_remove,
615 FUNCTION_TEXT(ppc_md.hpte_remove),
616 BRANCH_SET_LINK);
617 patch_branch(ht64_call_hpte_updatepp,
618 FUNCTION_TEXT(ppc_md.hpte_updatepp),
619 BRANCH_SET_LINK);
620
621 #endif /* CONFIG_PPC_HAS_HASH_64K */
622
623 patch_branch(htab_call_hpte_insert1,
624 FUNCTION_TEXT(ppc_md.hpte_insert),
625 BRANCH_SET_LINK);
626 patch_branch(htab_call_hpte_insert2,
627 FUNCTION_TEXT(ppc_md.hpte_insert),
628 BRANCH_SET_LINK);
629 patch_branch(htab_call_hpte_remove,
630 FUNCTION_TEXT(ppc_md.hpte_remove),
631 BRANCH_SET_LINK);
632 patch_branch(htab_call_hpte_updatepp,
633 FUNCTION_TEXT(ppc_md.hpte_updatepp),
634 BRANCH_SET_LINK);
635 }
636
637 static void __init htab_initialize(void)
638 {
639 unsigned long table;
640 unsigned long pteg_count;
641 unsigned long prot;
642 unsigned long base = 0, size = 0, limit;
643 struct memblock_region *reg;
644
645 DBG(" -> htab_initialize()\n");
646
647 /* Initialize segment sizes */
648 htab_init_seg_sizes();
649
650 /* Initialize page sizes */
651 htab_init_page_sizes();
652
653 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
654 mmu_kernel_ssize = MMU_SEGSIZE_1T;
655 mmu_highuser_ssize = MMU_SEGSIZE_1T;
656 printk(KERN_INFO "Using 1TB segments\n");
657 }
658
659 /*
660 * Calculate the required size of the htab. We want the number of
661 * PTEGs to equal one half the number of real pages.
662 */
663 htab_size_bytes = htab_get_table_size();
664 pteg_count = htab_size_bytes >> 7;
665
666 htab_hash_mask = pteg_count - 1;
667
668 if (firmware_has_feature(FW_FEATURE_LPAR)) {
669 /* Using a hypervisor which owns the htab */
670 htab_address = NULL;
671 _SDR1 = 0;
672 #ifdef CONFIG_FA_DUMP
673 /*
674 * If firmware assisted dump is active firmware preserves
675 * the contents of htab along with entire partition memory.
676 * Clear the htab if firmware assisted dump is active so
677 * that we dont end up using old mappings.
678 */
679 if (is_fadump_active() && ppc_md.hpte_clear_all)
680 ppc_md.hpte_clear_all();
681 #endif
682 } else {
683 /* Find storage for the HPT. Must be contiguous in
684 * the absolute address space. On cell we want it to be
685 * in the first 2 Gig so we can use it for IOMMU hacks.
686 */
687 if (machine_is(cell))
688 limit = 0x80000000;
689 else
690 limit = MEMBLOCK_ALLOC_ANYWHERE;
691
692 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
693
694 DBG("Hash table allocated at %lx, size: %lx\n", table,
695 htab_size_bytes);
696
697 htab_address = __va(table);
698
699 /* htab absolute addr + encoded htabsize */
700 _SDR1 = table + __ilog2(pteg_count) - 11;
701
702 /* Initialize the HPT with no entries */
703 memset((void *)table, 0, htab_size_bytes);
704
705 /* Set SDR1 */
706 mtspr(SPRN_SDR1, _SDR1);
707 }
708
709 prot = pgprot_val(PAGE_KERNEL);
710
711 #ifdef CONFIG_DEBUG_PAGEALLOC
712 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
713 linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
714 1, ppc64_rma_size));
715 memset(linear_map_hash_slots, 0, linear_map_hash_count);
716 #endif /* CONFIG_DEBUG_PAGEALLOC */
717
718 /* On U3 based machines, we need to reserve the DART area and
719 * _NOT_ map it to avoid cache paradoxes as it's remapped non
720 * cacheable later on
721 */
722
723 /* create bolted the linear mapping in the hash table */
724 for_each_memblock(memory, reg) {
725 base = (unsigned long)__va(reg->base);
726 size = reg->size;
727
728 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
729 base, size, prot);
730
731 #ifdef CONFIG_U3_DART
732 /* Do not map the DART space. Fortunately, it will be aligned
733 * in such a way that it will not cross two memblock regions and
734 * will fit within a single 16Mb page.
735 * The DART space is assumed to be a full 16Mb region even if
736 * we only use 2Mb of that space. We will use more of it later
737 * for AGP GART. We have to use a full 16Mb large page.
738 */
739 DBG("DART base: %lx\n", dart_tablebase);
740
741 if (dart_tablebase != 0 && dart_tablebase >= base
742 && dart_tablebase < (base + size)) {
743 unsigned long dart_table_end = dart_tablebase + 16 * MB;
744 if (base != dart_tablebase)
745 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
746 __pa(base), prot,
747 mmu_linear_psize,
748 mmu_kernel_ssize));
749 if ((base + size) > dart_table_end)
750 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
751 base + size,
752 __pa(dart_table_end),
753 prot,
754 mmu_linear_psize,
755 mmu_kernel_ssize));
756 continue;
757 }
758 #endif /* CONFIG_U3_DART */
759 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
760 prot, mmu_linear_psize, mmu_kernel_ssize));
761 }
762 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
763
764 /*
765 * If we have a memory_limit and we've allocated TCEs then we need to
766 * explicitly map the TCE area at the top of RAM. We also cope with the
767 * case that the TCEs start below memory_limit.
768 * tce_alloc_start/end are 16MB aligned so the mapping should work
769 * for either 4K or 16MB pages.
770 */
771 if (tce_alloc_start) {
772 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
773 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
774
775 if (base + size >= tce_alloc_start)
776 tce_alloc_start = base + size + 1;
777
778 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
779 __pa(tce_alloc_start), prot,
780 mmu_linear_psize, mmu_kernel_ssize));
781 }
782
783 htab_finish_init();
784
785 DBG(" <- htab_initialize()\n");
786 }
787 #undef KB
788 #undef MB
789
790 void __init early_init_mmu(void)
791 {
792 /* Setup initial STAB address in the PACA */
793 get_paca()->stab_real = __pa((u64)&initial_stab);
794 get_paca()->stab_addr = (u64)&initial_stab;
795
796 /* Initialize the MMU Hash table and create the linear mapping
797 * of memory. Has to be done before stab/slb initialization as
798 * this is currently where the page size encoding is obtained
799 */
800 htab_initialize();
801
802 /* Initialize stab / SLB management */
803 if (mmu_has_feature(MMU_FTR_SLB))
804 slb_initialize();
805 else
806 stab_initialize(get_paca()->stab_real);
807 }
808
809 #ifdef CONFIG_SMP
810 void __cpuinit early_init_mmu_secondary(void)
811 {
812 /* Initialize hash table for that CPU */
813 if (!firmware_has_feature(FW_FEATURE_LPAR))
814 mtspr(SPRN_SDR1, _SDR1);
815
816 /* Initialize STAB/SLB. We use a virtual address as it works
817 * in real mode on pSeries.
818 */
819 if (mmu_has_feature(MMU_FTR_SLB))
820 slb_initialize();
821 else
822 stab_initialize(get_paca()->stab_addr);
823 }
824 #endif /* CONFIG_SMP */
825
826 /*
827 * Called by asm hashtable.S for doing lazy icache flush
828 */
829 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
830 {
831 struct page *page;
832
833 if (!pfn_valid(pte_pfn(pte)))
834 return pp;
835
836 page = pte_page(pte);
837
838 /* page is dirty */
839 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
840 if (trap == 0x400) {
841 flush_dcache_icache_page(page);
842 set_bit(PG_arch_1, &page->flags);
843 } else
844 pp |= HPTE_R_N;
845 }
846 return pp;
847 }
848
849 #ifdef CONFIG_PPC_MM_SLICES
850 unsigned int get_paca_psize(unsigned long addr)
851 {
852 u64 lpsizes;
853 unsigned char *hpsizes;
854 unsigned long index, mask_index;
855
856 if (addr < SLICE_LOW_TOP) {
857 lpsizes = get_paca()->context.low_slices_psize;
858 index = GET_LOW_SLICE_INDEX(addr);
859 return (lpsizes >> (index * 4)) & 0xF;
860 }
861 hpsizes = get_paca()->context.high_slices_psize;
862 index = GET_HIGH_SLICE_INDEX(addr);
863 mask_index = index & 0x1;
864 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
865 }
866
867 #else
868 unsigned int get_paca_psize(unsigned long addr)
869 {
870 return get_paca()->context.user_psize;
871 }
872 #endif
873
874 /*
875 * Demote a segment to using 4k pages.
876 * For now this makes the whole process use 4k pages.
877 */
878 #ifdef CONFIG_PPC_64K_PAGES
879 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
880 {
881 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
882 return;
883 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
884 #ifdef CONFIG_SPU_BASE
885 spu_flush_all_slbs(mm);
886 #endif
887 if (get_paca_psize(addr) != MMU_PAGE_4K) {
888 get_paca()->context = mm->context;
889 slb_flush_and_rebolt();
890 }
891 }
892 #endif /* CONFIG_PPC_64K_PAGES */
893
894 #ifdef CONFIG_PPC_SUBPAGE_PROT
895 /*
896 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
897 * Userspace sets the subpage permissions using the subpage_prot system call.
898 *
899 * Result is 0: full permissions, _PAGE_RW: read-only,
900 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
901 */
902 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
903 {
904 struct subpage_prot_table *spt = &mm->context.spt;
905 u32 spp = 0;
906 u32 **sbpm, *sbpp;
907
908 if (ea >= spt->maxaddr)
909 return 0;
910 if (ea < 0x100000000) {
911 /* addresses below 4GB use spt->low_prot */
912 sbpm = spt->low_prot;
913 } else {
914 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
915 if (!sbpm)
916 return 0;
917 }
918 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
919 if (!sbpp)
920 return 0;
921 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
922
923 /* extract 2-bit bitfield for this 4k subpage */
924 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
925
926 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
927 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
928 return spp;
929 }
930
931 #else /* CONFIG_PPC_SUBPAGE_PROT */
932 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
933 {
934 return 0;
935 }
936 #endif
937
938 void hash_failure_debug(unsigned long ea, unsigned long access,
939 unsigned long vsid, unsigned long trap,
940 int ssize, int psize, int lpsize, unsigned long pte)
941 {
942 if (!printk_ratelimit())
943 return;
944 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
945 ea, access, current->comm);
946 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
947 trap, vsid, ssize, psize, lpsize, pte);
948 }
949
950 /* Result code is:
951 * 0 - handled
952 * 1 - normal page fault
953 * -1 - critical hash insertion error
954 * -2 - access not permitted by subpage protection mechanism
955 */
956 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
957 {
958 enum ctx_state prev_state = exception_enter();
959 pgd_t *pgdir;
960 unsigned long vsid;
961 struct mm_struct *mm;
962 pte_t *ptep;
963 unsigned hugeshift;
964 const struct cpumask *tmp;
965 int rc, user_region = 0, local = 0;
966 int psize, ssize;
967
968 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
969 ea, access, trap);
970
971 /* Get region & vsid */
972 switch (REGION_ID(ea)) {
973 case USER_REGION_ID:
974 user_region = 1;
975 mm = current->mm;
976 if (! mm) {
977 DBG_LOW(" user region with no mm !\n");
978 rc = 1;
979 goto bail;
980 }
981 psize = get_slice_psize(mm, ea);
982 ssize = user_segment_size(ea);
983 vsid = get_vsid(mm->context.id, ea, ssize);
984 break;
985 case VMALLOC_REGION_ID:
986 mm = &init_mm;
987 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
988 if (ea < VMALLOC_END)
989 psize = mmu_vmalloc_psize;
990 else
991 psize = mmu_io_psize;
992 ssize = mmu_kernel_ssize;
993 break;
994 default:
995 /* Not a valid range
996 * Send the problem up to do_page_fault
997 */
998 rc = 1;
999 goto bail;
1000 }
1001 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1002
1003 /* Bad address. */
1004 if (!vsid) {
1005 DBG_LOW("Bad address!\n");
1006 rc = 1;
1007 goto bail;
1008 }
1009 /* Get pgdir */
1010 pgdir = mm->pgd;
1011 if (pgdir == NULL) {
1012 rc = 1;
1013 goto bail;
1014 }
1015
1016 /* Check CPU locality */
1017 tmp = cpumask_of(smp_processor_id());
1018 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1019 local = 1;
1020
1021 #ifndef CONFIG_PPC_64K_PAGES
1022 /* If we use 4K pages and our psize is not 4K, then we might
1023 * be hitting a special driver mapping, and need to align the
1024 * address before we fetch the PTE.
1025 *
1026 * It could also be a hugepage mapping, in which case this is
1027 * not necessary, but it's not harmful, either.
1028 */
1029 if (psize != MMU_PAGE_4K)
1030 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1031 #endif /* CONFIG_PPC_64K_PAGES */
1032
1033 /* Get PTE and page size from page tables */
1034 ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
1035 if (ptep == NULL || !pte_present(*ptep)) {
1036 DBG_LOW(" no PTE !\n");
1037 rc = 1;
1038 goto bail;
1039 }
1040
1041 /* Add _PAGE_PRESENT to the required access perm */
1042 access |= _PAGE_PRESENT;
1043
1044 /* Pre-check access permissions (will be re-checked atomically
1045 * in __hash_page_XX but this pre-check is a fast path
1046 */
1047 if (access & ~pte_val(*ptep)) {
1048 DBG_LOW(" no access !\n");
1049 rc = 1;
1050 goto bail;
1051 }
1052
1053 #ifdef CONFIG_HUGETLB_PAGE
1054 if (hugeshift) {
1055 rc = __hash_page_huge(ea, access, vsid, ptep, trap, local,
1056 ssize, hugeshift, psize);
1057 goto bail;
1058 }
1059 #endif /* CONFIG_HUGETLB_PAGE */
1060
1061 #ifndef CONFIG_PPC_64K_PAGES
1062 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1063 #else
1064 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1065 pte_val(*(ptep + PTRS_PER_PTE)));
1066 #endif
1067 /* Do actual hashing */
1068 #ifdef CONFIG_PPC_64K_PAGES
1069 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1070 if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1071 demote_segment_4k(mm, ea);
1072 psize = MMU_PAGE_4K;
1073 }
1074
1075 /* If this PTE is non-cacheable and we have restrictions on
1076 * using non cacheable large pages, then we switch to 4k
1077 */
1078 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1079 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1080 if (user_region) {
1081 demote_segment_4k(mm, ea);
1082 psize = MMU_PAGE_4K;
1083 } else if (ea < VMALLOC_END) {
1084 /*
1085 * some driver did a non-cacheable mapping
1086 * in vmalloc space, so switch vmalloc
1087 * to 4k pages
1088 */
1089 printk(KERN_ALERT "Reducing vmalloc segment "
1090 "to 4kB pages because of "
1091 "non-cacheable mapping\n");
1092 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1093 #ifdef CONFIG_SPU_BASE
1094 spu_flush_all_slbs(mm);
1095 #endif
1096 }
1097 }
1098 if (user_region) {
1099 if (psize != get_paca_psize(ea)) {
1100 get_paca()->context = mm->context;
1101 slb_flush_and_rebolt();
1102 }
1103 } else if (get_paca()->vmalloc_sllp !=
1104 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1105 get_paca()->vmalloc_sllp =
1106 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1107 slb_vmalloc_update();
1108 }
1109 #endif /* CONFIG_PPC_64K_PAGES */
1110
1111 #ifdef CONFIG_PPC_HAS_HASH_64K
1112 if (psize == MMU_PAGE_64K)
1113 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1114 else
1115 #endif /* CONFIG_PPC_HAS_HASH_64K */
1116 {
1117 int spp = subpage_protection(mm, ea);
1118 if (access & spp)
1119 rc = -2;
1120 else
1121 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1122 local, ssize, spp);
1123 }
1124
1125 /* Dump some info in case of hash insertion failure, they should
1126 * never happen so it is really useful to know if/when they do
1127 */
1128 if (rc == -1)
1129 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1130 psize, pte_val(*ptep));
1131 #ifndef CONFIG_PPC_64K_PAGES
1132 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1133 #else
1134 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1135 pte_val(*(ptep + PTRS_PER_PTE)));
1136 #endif
1137 DBG_LOW(" -> rc=%d\n", rc);
1138
1139 bail:
1140 exception_exit(prev_state);
1141 return rc;
1142 }
1143 EXPORT_SYMBOL_GPL(hash_page);
1144
1145 void hash_preload(struct mm_struct *mm, unsigned long ea,
1146 unsigned long access, unsigned long trap)
1147 {
1148 unsigned long vsid;
1149 pgd_t *pgdir;
1150 pte_t *ptep;
1151 unsigned long flags;
1152 int rc, ssize, local = 0;
1153
1154 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1155
1156 #ifdef CONFIG_PPC_MM_SLICES
1157 /* We only prefault standard pages for now */
1158 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1159 return;
1160 #endif
1161
1162 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1163 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1164
1165 /* Get Linux PTE if available */
1166 pgdir = mm->pgd;
1167 if (pgdir == NULL)
1168 return;
1169 ptep = find_linux_pte(pgdir, ea);
1170 if (!ptep)
1171 return;
1172
1173 #ifdef CONFIG_PPC_64K_PAGES
1174 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1175 * a 64K kernel), then we don't preload, hash_page() will take
1176 * care of it once we actually try to access the page.
1177 * That way we don't have to duplicate all of the logic for segment
1178 * page size demotion here
1179 */
1180 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1181 return;
1182 #endif /* CONFIG_PPC_64K_PAGES */
1183
1184 /* Get VSID */
1185 ssize = user_segment_size(ea);
1186 vsid = get_vsid(mm->context.id, ea, ssize);
1187 if (!vsid)
1188 return;
1189
1190 /* Hash doesn't like irqs */
1191 local_irq_save(flags);
1192
1193 /* Is that local to this CPU ? */
1194 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1195 local = 1;
1196
1197 /* Hash it in */
1198 #ifdef CONFIG_PPC_HAS_HASH_64K
1199 if (mm->context.user_psize == MMU_PAGE_64K)
1200 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1201 else
1202 #endif /* CONFIG_PPC_HAS_HASH_64K */
1203 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1204 subpage_protection(mm, ea));
1205
1206 /* Dump some info in case of hash insertion failure, they should
1207 * never happen so it is really useful to know if/when they do
1208 */
1209 if (rc == -1)
1210 hash_failure_debug(ea, access, vsid, trap, ssize,
1211 mm->context.user_psize,
1212 mm->context.user_psize,
1213 pte_val(*ptep));
1214
1215 local_irq_restore(flags);
1216 }
1217
1218 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1219 * do not forget to update the assembly call site !
1220 */
1221 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1222 int local)
1223 {
1224 unsigned long hash, index, shift, hidx, slot;
1225
1226 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1227 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1228 hash = hpt_hash(vpn, shift, ssize);
1229 hidx = __rpte_to_hidx(pte, index);
1230 if (hidx & _PTEIDX_SECONDARY)
1231 hash = ~hash;
1232 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1233 slot += hidx & _PTEIDX_GROUP_IX;
1234 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1235 ppc_md.hpte_invalidate(slot, vpn, psize, ssize, local);
1236 } pte_iterate_hashed_end();
1237
1238 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1239 /* Transactions are not aborted by tlbiel, only tlbie.
1240 * Without, syncing a page back to a block device w/ PIO could pick up
1241 * transactional data (bad!) so we force an abort here. Before the
1242 * sync the page will be made read-only, which will flush_hash_page.
1243 * BIG ISSUE here: if the kernel uses a page from userspace without
1244 * unmapping it first, it may see the speculated version.
1245 */
1246 if (local && cpu_has_feature(CPU_FTR_TM) &&
1247 current->thread.regs &&
1248 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1249 tm_enable();
1250 tm_abort(TM_CAUSE_TLBI);
1251 }
1252 #endif
1253 }
1254
1255 void flush_hash_range(unsigned long number, int local)
1256 {
1257 if (ppc_md.flush_hash_range)
1258 ppc_md.flush_hash_range(number, local);
1259 else {
1260 int i;
1261 struct ppc64_tlb_batch *batch =
1262 &__get_cpu_var(ppc64_tlb_batch);
1263
1264 for (i = 0; i < number; i++)
1265 flush_hash_page(batch->vpn[i], batch->pte[i],
1266 batch->psize, batch->ssize, local);
1267 }
1268 }
1269
1270 /*
1271 * low_hash_fault is called when we the low level hash code failed
1272 * to instert a PTE due to an hypervisor error
1273 */
1274 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1275 {
1276 enum ctx_state prev_state = exception_enter();
1277
1278 if (user_mode(regs)) {
1279 #ifdef CONFIG_PPC_SUBPAGE_PROT
1280 if (rc == -2)
1281 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1282 else
1283 #endif
1284 _exception(SIGBUS, regs, BUS_ADRERR, address);
1285 } else
1286 bad_page_fault(regs, address, SIGBUS);
1287
1288 exception_exit(prev_state);
1289 }
1290
1291 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1292 unsigned long pa, unsigned long rflags,
1293 unsigned long vflags, int psize, int ssize)
1294 {
1295 unsigned long hpte_group;
1296 long slot;
1297
1298 repeat:
1299 hpte_group = ((hash & htab_hash_mask) *
1300 HPTES_PER_GROUP) & ~0x7UL;
1301
1302 /* Insert into the hash table, primary slot */
1303 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1304 psize, psize, ssize);
1305
1306 /* Primary is full, try the secondary */
1307 if (unlikely(slot == -1)) {
1308 hpte_group = ((~hash & htab_hash_mask) *
1309 HPTES_PER_GROUP) & ~0x7UL;
1310 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1311 vflags | HPTE_V_SECONDARY,
1312 psize, psize, ssize);
1313 if (slot == -1) {
1314 if (mftb() & 0x1)
1315 hpte_group = ((hash & htab_hash_mask) *
1316 HPTES_PER_GROUP)&~0x7UL;
1317
1318 ppc_md.hpte_remove(hpte_group);
1319 goto repeat;
1320 }
1321 }
1322
1323 return slot;
1324 }
1325
1326 #ifdef CONFIG_DEBUG_PAGEALLOC
1327 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1328 {
1329 unsigned long hash;
1330 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1331 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1332 unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1333 long ret;
1334
1335 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1336
1337 /* Don't create HPTE entries for bad address */
1338 if (!vsid)
1339 return;
1340
1341 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1342 HPTE_V_BOLTED,
1343 mmu_linear_psize, mmu_kernel_ssize);
1344
1345 BUG_ON (ret < 0);
1346 spin_lock(&linear_map_hash_lock);
1347 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1348 linear_map_hash_slots[lmi] = ret | 0x80;
1349 spin_unlock(&linear_map_hash_lock);
1350 }
1351
1352 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1353 {
1354 unsigned long hash, hidx, slot;
1355 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1356 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1357
1358 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1359 spin_lock(&linear_map_hash_lock);
1360 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1361 hidx = linear_map_hash_slots[lmi] & 0x7f;
1362 linear_map_hash_slots[lmi] = 0;
1363 spin_unlock(&linear_map_hash_lock);
1364 if (hidx & _PTEIDX_SECONDARY)
1365 hash = ~hash;
1366 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1367 slot += hidx & _PTEIDX_GROUP_IX;
1368 ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_kernel_ssize, 0);
1369 }
1370
1371 void kernel_map_pages(struct page *page, int numpages, int enable)
1372 {
1373 unsigned long flags, vaddr, lmi;
1374 int i;
1375
1376 local_irq_save(flags);
1377 for (i = 0; i < numpages; i++, page++) {
1378 vaddr = (unsigned long)page_address(page);
1379 lmi = __pa(vaddr) >> PAGE_SHIFT;
1380 if (lmi >= linear_map_hash_count)
1381 continue;
1382 if (enable)
1383 kernel_map_linear_page(vaddr, lmi);
1384 else
1385 kernel_unmap_linear_page(vaddr, lmi);
1386 }
1387 local_irq_restore(flags);
1388 }
1389 #endif /* CONFIG_DEBUG_PAGEALLOC */
1390
1391 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1392 phys_addr_t first_memblock_size)
1393 {
1394 /* We don't currently support the first MEMBLOCK not mapping 0
1395 * physical on those processors
1396 */
1397 BUG_ON(first_memblock_base != 0);
1398
1399 /* On LPAR systems, the first entry is our RMA region,
1400 * non-LPAR 64-bit hash MMU systems don't have a limitation
1401 * on real mode access, but using the first entry works well
1402 * enough. We also clamp it to 1G to avoid some funky things
1403 * such as RTAS bugs etc...
1404 */
1405 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1406
1407 /* Finally limit subsequent allocations */
1408 memblock_set_current_limit(ppc64_rma_size);
1409 }