Merge remote-tracking branches 'asoc/fix/atmel', 'asoc/fix/compress', 'asoc/fix/da721...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / powerpc / kvm / mpic.c
1 /*
2 * OpenPIC emulation
3 *
4 * Copyright (c) 2004 Jocelyn Mayer
5 * 2011 Alexander Graf
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/mutex.h>
28 #include <linux/kvm_host.h>
29 #include <linux/errno.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <asm/uaccess.h>
33 #include <asm/mpic.h>
34 #include <asm/kvm_para.h>
35 #include <asm/kvm_host.h>
36 #include <asm/kvm_ppc.h>
37 #include <kvm/iodev.h>
38
39 #define MAX_CPU 32
40 #define MAX_SRC 256
41 #define MAX_TMR 4
42 #define MAX_IPI 4
43 #define MAX_MSI 8
44 #define MAX_IRQ (MAX_SRC + MAX_IPI + MAX_TMR)
45 #define VID 0x03 /* MPIC version ID */
46
47 /* OpenPIC capability flags */
48 #define OPENPIC_FLAG_IDR_CRIT (1 << 0)
49 #define OPENPIC_FLAG_ILR (2 << 0)
50
51 /* OpenPIC address map */
52 #define OPENPIC_REG_SIZE 0x40000
53 #define OPENPIC_GLB_REG_START 0x0
54 #define OPENPIC_GLB_REG_SIZE 0x10F0
55 #define OPENPIC_TMR_REG_START 0x10F0
56 #define OPENPIC_TMR_REG_SIZE 0x220
57 #define OPENPIC_MSI_REG_START 0x1600
58 #define OPENPIC_MSI_REG_SIZE 0x200
59 #define OPENPIC_SUMMARY_REG_START 0x3800
60 #define OPENPIC_SUMMARY_REG_SIZE 0x800
61 #define OPENPIC_SRC_REG_START 0x10000
62 #define OPENPIC_SRC_REG_SIZE (MAX_SRC * 0x20)
63 #define OPENPIC_CPU_REG_START 0x20000
64 #define OPENPIC_CPU_REG_SIZE (0x100 + ((MAX_CPU - 1) * 0x1000))
65
66 struct fsl_mpic_info {
67 int max_ext;
68 };
69
70 static struct fsl_mpic_info fsl_mpic_20 = {
71 .max_ext = 12,
72 };
73
74 static struct fsl_mpic_info fsl_mpic_42 = {
75 .max_ext = 12,
76 };
77
78 #define FRR_NIRQ_SHIFT 16
79 #define FRR_NCPU_SHIFT 8
80 #define FRR_VID_SHIFT 0
81
82 #define VID_REVISION_1_2 2
83 #define VID_REVISION_1_3 3
84
85 #define VIR_GENERIC 0x00000000 /* Generic Vendor ID */
86
87 #define GCR_RESET 0x80000000
88 #define GCR_MODE_PASS 0x00000000
89 #define GCR_MODE_MIXED 0x20000000
90 #define GCR_MODE_PROXY 0x60000000
91
92 #define TBCR_CI 0x80000000 /* count inhibit */
93 #define TCCR_TOG 0x80000000 /* toggles when decrement to zero */
94
95 #define IDR_EP_SHIFT 31
96 #define IDR_EP_MASK (1 << IDR_EP_SHIFT)
97 #define IDR_CI0_SHIFT 30
98 #define IDR_CI1_SHIFT 29
99 #define IDR_P1_SHIFT 1
100 #define IDR_P0_SHIFT 0
101
102 #define ILR_INTTGT_MASK 0x000000ff
103 #define ILR_INTTGT_INT 0x00
104 #define ILR_INTTGT_CINT 0x01 /* critical */
105 #define ILR_INTTGT_MCP 0x02 /* machine check */
106 #define NUM_OUTPUTS 3
107
108 #define MSIIR_OFFSET 0x140
109 #define MSIIR_SRS_SHIFT 29
110 #define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT)
111 #define MSIIR_IBS_SHIFT 24
112 #define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT)
113
114 static int get_current_cpu(void)
115 {
116 #if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
117 struct kvm_vcpu *vcpu = current->thread.kvm_vcpu;
118 return vcpu ? vcpu->arch.irq_cpu_id : -1;
119 #else
120 /* XXX */
121 return -1;
122 #endif
123 }
124
125 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
126 u32 val, int idx);
127 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
128 u32 *ptr, int idx);
129 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
130 uint32_t val);
131
132 enum irq_type {
133 IRQ_TYPE_NORMAL = 0,
134 IRQ_TYPE_FSLINT, /* FSL internal interrupt -- level only */
135 IRQ_TYPE_FSLSPECIAL, /* FSL timer/IPI interrupt, edge, no polarity */
136 };
137
138 struct irq_queue {
139 /* Round up to the nearest 64 IRQs so that the queue length
140 * won't change when moving between 32 and 64 bit hosts.
141 */
142 unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)];
143 int next;
144 int priority;
145 };
146
147 struct irq_source {
148 uint32_t ivpr; /* IRQ vector/priority register */
149 uint32_t idr; /* IRQ destination register */
150 uint32_t destmask; /* bitmap of CPU destinations */
151 int last_cpu;
152 int output; /* IRQ level, e.g. ILR_INTTGT_INT */
153 int pending; /* TRUE if IRQ is pending */
154 enum irq_type type;
155 bool level:1; /* level-triggered */
156 bool nomask:1; /* critical interrupts ignore mask on some FSL MPICs */
157 };
158
159 #define IVPR_MASK_SHIFT 31
160 #define IVPR_MASK_MASK (1 << IVPR_MASK_SHIFT)
161 #define IVPR_ACTIVITY_SHIFT 30
162 #define IVPR_ACTIVITY_MASK (1 << IVPR_ACTIVITY_SHIFT)
163 #define IVPR_MODE_SHIFT 29
164 #define IVPR_MODE_MASK (1 << IVPR_MODE_SHIFT)
165 #define IVPR_POLARITY_SHIFT 23
166 #define IVPR_POLARITY_MASK (1 << IVPR_POLARITY_SHIFT)
167 #define IVPR_SENSE_SHIFT 22
168 #define IVPR_SENSE_MASK (1 << IVPR_SENSE_SHIFT)
169
170 #define IVPR_PRIORITY_MASK (0xF << 16)
171 #define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16))
172 #define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask)
173
174 /* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */
175 #define IDR_EP 0x80000000 /* external pin */
176 #define IDR_CI 0x40000000 /* critical interrupt */
177
178 struct irq_dest {
179 struct kvm_vcpu *vcpu;
180
181 int32_t ctpr; /* CPU current task priority */
182 struct irq_queue raised;
183 struct irq_queue servicing;
184
185 /* Count of IRQ sources asserting on non-INT outputs */
186 uint32_t outputs_active[NUM_OUTPUTS];
187 };
188
189 #define MAX_MMIO_REGIONS 10
190
191 struct openpic {
192 struct kvm *kvm;
193 struct kvm_device *dev;
194 struct kvm_io_device mmio;
195 const struct mem_reg *mmio_regions[MAX_MMIO_REGIONS];
196 int num_mmio_regions;
197
198 gpa_t reg_base;
199 spinlock_t lock;
200
201 /* Behavior control */
202 struct fsl_mpic_info *fsl;
203 uint32_t model;
204 uint32_t flags;
205 uint32_t nb_irqs;
206 uint32_t vid;
207 uint32_t vir; /* Vendor identification register */
208 uint32_t vector_mask;
209 uint32_t tfrr_reset;
210 uint32_t ivpr_reset;
211 uint32_t idr_reset;
212 uint32_t brr1;
213 uint32_t mpic_mode_mask;
214
215 /* Global registers */
216 uint32_t frr; /* Feature reporting register */
217 uint32_t gcr; /* Global configuration register */
218 uint32_t pir; /* Processor initialization register */
219 uint32_t spve; /* Spurious vector register */
220 uint32_t tfrr; /* Timer frequency reporting register */
221 /* Source registers */
222 struct irq_source src[MAX_IRQ];
223 /* Local registers per output pin */
224 struct irq_dest dst[MAX_CPU];
225 uint32_t nb_cpus;
226 /* Timer registers */
227 struct {
228 uint32_t tccr; /* Global timer current count register */
229 uint32_t tbcr; /* Global timer base count register */
230 } timers[MAX_TMR];
231 /* Shared MSI registers */
232 struct {
233 uint32_t msir; /* Shared Message Signaled Interrupt Register */
234 } msi[MAX_MSI];
235 uint32_t max_irq;
236 uint32_t irq_ipi0;
237 uint32_t irq_tim0;
238 uint32_t irq_msi;
239 };
240
241
242 static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst,
243 int output)
244 {
245 struct kvm_interrupt irq = {
246 .irq = KVM_INTERRUPT_SET_LEVEL,
247 };
248
249 if (!dst->vcpu) {
250 pr_debug("%s: destination cpu %d does not exist\n",
251 __func__, (int)(dst - &opp->dst[0]));
252 return;
253 }
254
255 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
256 output);
257
258 if (output != ILR_INTTGT_INT) /* TODO */
259 return;
260
261 kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq);
262 }
263
264 static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst,
265 int output)
266 {
267 if (!dst->vcpu) {
268 pr_debug("%s: destination cpu %d does not exist\n",
269 __func__, (int)(dst - &opp->dst[0]));
270 return;
271 }
272
273 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
274 output);
275
276 if (output != ILR_INTTGT_INT) /* TODO */
277 return;
278
279 kvmppc_core_dequeue_external(dst->vcpu);
280 }
281
282 static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ)
283 {
284 set_bit(n_IRQ, q->queue);
285 }
286
287 static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ)
288 {
289 clear_bit(n_IRQ, q->queue);
290 }
291
292 static void IRQ_check(struct openpic *opp, struct irq_queue *q)
293 {
294 int irq = -1;
295 int next = -1;
296 int priority = -1;
297
298 for (;;) {
299 irq = find_next_bit(q->queue, opp->max_irq, irq + 1);
300 if (irq == opp->max_irq)
301 break;
302
303 pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n",
304 irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority);
305
306 if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) {
307 next = irq;
308 priority = IVPR_PRIORITY(opp->src[irq].ivpr);
309 }
310 }
311
312 q->next = next;
313 q->priority = priority;
314 }
315
316 static int IRQ_get_next(struct openpic *opp, struct irq_queue *q)
317 {
318 /* XXX: optimize */
319 IRQ_check(opp, q);
320
321 return q->next;
322 }
323
324 static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ,
325 bool active, bool was_active)
326 {
327 struct irq_dest *dst;
328 struct irq_source *src;
329 int priority;
330
331 dst = &opp->dst[n_CPU];
332 src = &opp->src[n_IRQ];
333
334 pr_debug("%s: IRQ %d active %d was %d\n",
335 __func__, n_IRQ, active, was_active);
336
337 if (src->output != ILR_INTTGT_INT) {
338 pr_debug("%s: output %d irq %d active %d was %d count %d\n",
339 __func__, src->output, n_IRQ, active, was_active,
340 dst->outputs_active[src->output]);
341
342 /* On Freescale MPIC, critical interrupts ignore priority,
343 * IACK, EOI, etc. Before MPIC v4.1 they also ignore
344 * masking.
345 */
346 if (active) {
347 if (!was_active &&
348 dst->outputs_active[src->output]++ == 0) {
349 pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n",
350 __func__, src->output, n_CPU, n_IRQ);
351 mpic_irq_raise(opp, dst, src->output);
352 }
353 } else {
354 if (was_active &&
355 --dst->outputs_active[src->output] == 0) {
356 pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n",
357 __func__, src->output, n_CPU, n_IRQ);
358 mpic_irq_lower(opp, dst, src->output);
359 }
360 }
361
362 return;
363 }
364
365 priority = IVPR_PRIORITY(src->ivpr);
366
367 /* Even if the interrupt doesn't have enough priority,
368 * it is still raised, in case ctpr is lowered later.
369 */
370 if (active)
371 IRQ_setbit(&dst->raised, n_IRQ);
372 else
373 IRQ_resetbit(&dst->raised, n_IRQ);
374
375 IRQ_check(opp, &dst->raised);
376
377 if (active && priority <= dst->ctpr) {
378 pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n",
379 __func__, n_IRQ, priority, dst->ctpr, n_CPU);
380 active = 0;
381 }
382
383 if (active) {
384 if (IRQ_get_next(opp, &dst->servicing) >= 0 &&
385 priority <= dst->servicing.priority) {
386 pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n",
387 __func__, n_IRQ, dst->servicing.next, n_CPU);
388 } else {
389 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n",
390 __func__, n_CPU, n_IRQ, dst->raised.next);
391 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
392 }
393 } else {
394 IRQ_get_next(opp, &dst->servicing);
395 if (dst->raised.priority > dst->ctpr &&
396 dst->raised.priority > dst->servicing.priority) {
397 pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n",
398 __func__, n_IRQ, dst->raised.next,
399 dst->raised.priority, dst->ctpr,
400 dst->servicing.priority, n_CPU);
401 /* IRQ line stays asserted */
402 } else {
403 pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n",
404 __func__, n_IRQ, dst->ctpr,
405 dst->servicing.priority, n_CPU);
406 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
407 }
408 }
409 }
410
411 /* update pic state because registers for n_IRQ have changed value */
412 static void openpic_update_irq(struct openpic *opp, int n_IRQ)
413 {
414 struct irq_source *src;
415 bool active, was_active;
416 int i;
417
418 src = &opp->src[n_IRQ];
419 active = src->pending;
420
421 if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) {
422 /* Interrupt source is disabled */
423 pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ);
424 active = false;
425 }
426
427 was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK);
428
429 /*
430 * We don't have a similar check for already-active because
431 * ctpr may have changed and we need to withdraw the interrupt.
432 */
433 if (!active && !was_active) {
434 pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ);
435 return;
436 }
437
438 if (active)
439 src->ivpr |= IVPR_ACTIVITY_MASK;
440 else
441 src->ivpr &= ~IVPR_ACTIVITY_MASK;
442
443 if (src->destmask == 0) {
444 /* No target */
445 pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ);
446 return;
447 }
448
449 if (src->destmask == (1 << src->last_cpu)) {
450 /* Only one CPU is allowed to receive this IRQ */
451 IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active);
452 } else if (!(src->ivpr & IVPR_MODE_MASK)) {
453 /* Directed delivery mode */
454 for (i = 0; i < opp->nb_cpus; i++) {
455 if (src->destmask & (1 << i)) {
456 IRQ_local_pipe(opp, i, n_IRQ, active,
457 was_active);
458 }
459 }
460 } else {
461 /* Distributed delivery mode */
462 for (i = src->last_cpu + 1; i != src->last_cpu; i++) {
463 if (i == opp->nb_cpus)
464 i = 0;
465
466 if (src->destmask & (1 << i)) {
467 IRQ_local_pipe(opp, i, n_IRQ, active,
468 was_active);
469 src->last_cpu = i;
470 break;
471 }
472 }
473 }
474 }
475
476 static void openpic_set_irq(void *opaque, int n_IRQ, int level)
477 {
478 struct openpic *opp = opaque;
479 struct irq_source *src;
480
481 if (n_IRQ >= MAX_IRQ) {
482 WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ);
483 return;
484 }
485
486 src = &opp->src[n_IRQ];
487 pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n",
488 n_IRQ, level, src->ivpr);
489 if (src->level) {
490 /* level-sensitive irq */
491 src->pending = level;
492 openpic_update_irq(opp, n_IRQ);
493 } else {
494 /* edge-sensitive irq */
495 if (level) {
496 src->pending = 1;
497 openpic_update_irq(opp, n_IRQ);
498 }
499
500 if (src->output != ILR_INTTGT_INT) {
501 /* Edge-triggered interrupts shouldn't be used
502 * with non-INT delivery, but just in case,
503 * try to make it do something sane rather than
504 * cause an interrupt storm. This is close to
505 * what you'd probably see happen in real hardware.
506 */
507 src->pending = 0;
508 openpic_update_irq(opp, n_IRQ);
509 }
510 }
511 }
512
513 static void openpic_reset(struct openpic *opp)
514 {
515 int i;
516
517 opp->gcr = GCR_RESET;
518 /* Initialise controller registers */
519 opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) |
520 (opp->vid << FRR_VID_SHIFT);
521
522 opp->pir = 0;
523 opp->spve = -1 & opp->vector_mask;
524 opp->tfrr = opp->tfrr_reset;
525 /* Initialise IRQ sources */
526 for (i = 0; i < opp->max_irq; i++) {
527 opp->src[i].ivpr = opp->ivpr_reset;
528
529 switch (opp->src[i].type) {
530 case IRQ_TYPE_NORMAL:
531 opp->src[i].level =
532 !!(opp->ivpr_reset & IVPR_SENSE_MASK);
533 break;
534
535 case IRQ_TYPE_FSLINT:
536 opp->src[i].ivpr |= IVPR_POLARITY_MASK;
537 break;
538
539 case IRQ_TYPE_FSLSPECIAL:
540 break;
541 }
542
543 write_IRQreg_idr(opp, i, opp->idr_reset);
544 }
545 /* Initialise IRQ destinations */
546 for (i = 0; i < MAX_CPU; i++) {
547 opp->dst[i].ctpr = 15;
548 memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue));
549 opp->dst[i].raised.next = -1;
550 memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue));
551 opp->dst[i].servicing.next = -1;
552 }
553 /* Initialise timers */
554 for (i = 0; i < MAX_TMR; i++) {
555 opp->timers[i].tccr = 0;
556 opp->timers[i].tbcr = TBCR_CI;
557 }
558 /* Go out of RESET state */
559 opp->gcr = 0;
560 }
561
562 static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ)
563 {
564 return opp->src[n_IRQ].idr;
565 }
566
567 static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ)
568 {
569 if (opp->flags & OPENPIC_FLAG_ILR)
570 return opp->src[n_IRQ].output;
571
572 return 0xffffffff;
573 }
574
575 static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ)
576 {
577 return opp->src[n_IRQ].ivpr;
578 }
579
580 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
581 uint32_t val)
582 {
583 struct irq_source *src = &opp->src[n_IRQ];
584 uint32_t normal_mask = (1UL << opp->nb_cpus) - 1;
585 uint32_t crit_mask = 0;
586 uint32_t mask = normal_mask;
587 int crit_shift = IDR_EP_SHIFT - opp->nb_cpus;
588 int i;
589
590 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
591 crit_mask = mask << crit_shift;
592 mask |= crit_mask | IDR_EP;
593 }
594
595 src->idr = val & mask;
596 pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr);
597
598 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
599 if (src->idr & crit_mask) {
600 if (src->idr & normal_mask) {
601 pr_debug("%s: IRQ configured for multiple output types, using critical\n",
602 __func__);
603 }
604
605 src->output = ILR_INTTGT_CINT;
606 src->nomask = true;
607 src->destmask = 0;
608
609 for (i = 0; i < opp->nb_cpus; i++) {
610 int n_ci = IDR_CI0_SHIFT - i;
611
612 if (src->idr & (1UL << n_ci))
613 src->destmask |= 1UL << i;
614 }
615 } else {
616 src->output = ILR_INTTGT_INT;
617 src->nomask = false;
618 src->destmask = src->idr & normal_mask;
619 }
620 } else {
621 src->destmask = src->idr;
622 }
623 }
624
625 static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ,
626 uint32_t val)
627 {
628 if (opp->flags & OPENPIC_FLAG_ILR) {
629 struct irq_source *src = &opp->src[n_IRQ];
630
631 src->output = val & ILR_INTTGT_MASK;
632 pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr,
633 src->output);
634
635 /* TODO: on MPIC v4.0 only, set nomask for non-INT */
636 }
637 }
638
639 static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ,
640 uint32_t val)
641 {
642 uint32_t mask;
643
644 /* NOTE when implementing newer FSL MPIC models: starting with v4.0,
645 * the polarity bit is read-only on internal interrupts.
646 */
647 mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK |
648 IVPR_POLARITY_MASK | opp->vector_mask;
649
650 /* ACTIVITY bit is read-only */
651 opp->src[n_IRQ].ivpr =
652 (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask);
653
654 /* For FSL internal interrupts, The sense bit is reserved and zero,
655 * and the interrupt is always level-triggered. Timers and IPIs
656 * have no sense or polarity bits, and are edge-triggered.
657 */
658 switch (opp->src[n_IRQ].type) {
659 case IRQ_TYPE_NORMAL:
660 opp->src[n_IRQ].level =
661 !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK);
662 break;
663
664 case IRQ_TYPE_FSLINT:
665 opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK;
666 break;
667
668 case IRQ_TYPE_FSLSPECIAL:
669 opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK);
670 break;
671 }
672
673 openpic_update_irq(opp, n_IRQ);
674 pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val,
675 opp->src[n_IRQ].ivpr);
676 }
677
678 static void openpic_gcr_write(struct openpic *opp, uint64_t val)
679 {
680 if (val & GCR_RESET) {
681 openpic_reset(opp);
682 return;
683 }
684
685 opp->gcr &= ~opp->mpic_mode_mask;
686 opp->gcr |= val & opp->mpic_mode_mask;
687 }
688
689 static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val)
690 {
691 struct openpic *opp = opaque;
692 int err = 0;
693
694 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
695 if (addr & 0xF)
696 return 0;
697
698 switch (addr) {
699 case 0x00: /* Block Revision Register1 (BRR1) is Readonly */
700 break;
701 case 0x40:
702 case 0x50:
703 case 0x60:
704 case 0x70:
705 case 0x80:
706 case 0x90:
707 case 0xA0:
708 case 0xB0:
709 err = openpic_cpu_write_internal(opp, addr, val,
710 get_current_cpu());
711 break;
712 case 0x1000: /* FRR */
713 break;
714 case 0x1020: /* GCR */
715 openpic_gcr_write(opp, val);
716 break;
717 case 0x1080: /* VIR */
718 break;
719 case 0x1090: /* PIR */
720 /*
721 * This register is used to reset a CPU core --
722 * let userspace handle it.
723 */
724 err = -ENXIO;
725 break;
726 case 0x10A0: /* IPI_IVPR */
727 case 0x10B0:
728 case 0x10C0:
729 case 0x10D0: {
730 int idx;
731 idx = (addr - 0x10A0) >> 4;
732 write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val);
733 break;
734 }
735 case 0x10E0: /* SPVE */
736 opp->spve = val & opp->vector_mask;
737 break;
738 default:
739 break;
740 }
741
742 return err;
743 }
744
745 static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr)
746 {
747 struct openpic *opp = opaque;
748 u32 retval;
749 int err = 0;
750
751 pr_debug("%s: addr %#llx\n", __func__, addr);
752 retval = 0xFFFFFFFF;
753 if (addr & 0xF)
754 goto out;
755
756 switch (addr) {
757 case 0x1000: /* FRR */
758 retval = opp->frr;
759 retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT;
760 break;
761 case 0x1020: /* GCR */
762 retval = opp->gcr;
763 break;
764 case 0x1080: /* VIR */
765 retval = opp->vir;
766 break;
767 case 0x1090: /* PIR */
768 retval = 0x00000000;
769 break;
770 case 0x00: /* Block Revision Register1 (BRR1) */
771 retval = opp->brr1;
772 break;
773 case 0x40:
774 case 0x50:
775 case 0x60:
776 case 0x70:
777 case 0x80:
778 case 0x90:
779 case 0xA0:
780 case 0xB0:
781 err = openpic_cpu_read_internal(opp, addr,
782 &retval, get_current_cpu());
783 break;
784 case 0x10A0: /* IPI_IVPR */
785 case 0x10B0:
786 case 0x10C0:
787 case 0x10D0:
788 {
789 int idx;
790 idx = (addr - 0x10A0) >> 4;
791 retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx);
792 }
793 break;
794 case 0x10E0: /* SPVE */
795 retval = opp->spve;
796 break;
797 default:
798 break;
799 }
800
801 out:
802 pr_debug("%s: => 0x%08x\n", __func__, retval);
803 *ptr = retval;
804 return err;
805 }
806
807 static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val)
808 {
809 struct openpic *opp = opaque;
810 int idx;
811
812 addr += 0x10f0;
813
814 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
815 if (addr & 0xF)
816 return 0;
817
818 if (addr == 0x10f0) {
819 /* TFRR */
820 opp->tfrr = val;
821 return 0;
822 }
823
824 idx = (addr >> 6) & 0x3;
825 addr = addr & 0x30;
826
827 switch (addr & 0x30) {
828 case 0x00: /* TCCR */
829 break;
830 case 0x10: /* TBCR */
831 if ((opp->timers[idx].tccr & TCCR_TOG) != 0 &&
832 (val & TBCR_CI) == 0 &&
833 (opp->timers[idx].tbcr & TBCR_CI) != 0)
834 opp->timers[idx].tccr &= ~TCCR_TOG;
835
836 opp->timers[idx].tbcr = val;
837 break;
838 case 0x20: /* TVPR */
839 write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val);
840 break;
841 case 0x30: /* TDR */
842 write_IRQreg_idr(opp, opp->irq_tim0 + idx, val);
843 break;
844 }
845
846 return 0;
847 }
848
849 static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr)
850 {
851 struct openpic *opp = opaque;
852 uint32_t retval = -1;
853 int idx;
854
855 pr_debug("%s: addr %#llx\n", __func__, addr);
856 if (addr & 0xF)
857 goto out;
858
859 idx = (addr >> 6) & 0x3;
860 if (addr == 0x0) {
861 /* TFRR */
862 retval = opp->tfrr;
863 goto out;
864 }
865
866 switch (addr & 0x30) {
867 case 0x00: /* TCCR */
868 retval = opp->timers[idx].tccr;
869 break;
870 case 0x10: /* TBCR */
871 retval = opp->timers[idx].tbcr;
872 break;
873 case 0x20: /* TIPV */
874 retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx);
875 break;
876 case 0x30: /* TIDE (TIDR) */
877 retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx);
878 break;
879 }
880
881 out:
882 pr_debug("%s: => 0x%08x\n", __func__, retval);
883 *ptr = retval;
884 return 0;
885 }
886
887 static int openpic_src_write(void *opaque, gpa_t addr, u32 val)
888 {
889 struct openpic *opp = opaque;
890 int idx;
891
892 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
893
894 addr = addr & 0xffff;
895 idx = addr >> 5;
896
897 switch (addr & 0x1f) {
898 case 0x00:
899 write_IRQreg_ivpr(opp, idx, val);
900 break;
901 case 0x10:
902 write_IRQreg_idr(opp, idx, val);
903 break;
904 case 0x18:
905 write_IRQreg_ilr(opp, idx, val);
906 break;
907 }
908
909 return 0;
910 }
911
912 static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr)
913 {
914 struct openpic *opp = opaque;
915 uint32_t retval;
916 int idx;
917
918 pr_debug("%s: addr %#llx\n", __func__, addr);
919 retval = 0xFFFFFFFF;
920
921 addr = addr & 0xffff;
922 idx = addr >> 5;
923
924 switch (addr & 0x1f) {
925 case 0x00:
926 retval = read_IRQreg_ivpr(opp, idx);
927 break;
928 case 0x10:
929 retval = read_IRQreg_idr(opp, idx);
930 break;
931 case 0x18:
932 retval = read_IRQreg_ilr(opp, idx);
933 break;
934 }
935
936 pr_debug("%s: => 0x%08x\n", __func__, retval);
937 *ptr = retval;
938 return 0;
939 }
940
941 static int openpic_msi_write(void *opaque, gpa_t addr, u32 val)
942 {
943 struct openpic *opp = opaque;
944 int idx = opp->irq_msi;
945 int srs, ibs;
946
947 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
948 if (addr & 0xF)
949 return 0;
950
951 switch (addr) {
952 case MSIIR_OFFSET:
953 srs = val >> MSIIR_SRS_SHIFT;
954 idx += srs;
955 ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT;
956 opp->msi[srs].msir |= 1 << ibs;
957 openpic_set_irq(opp, idx, 1);
958 break;
959 default:
960 /* most registers are read-only, thus ignored */
961 break;
962 }
963
964 return 0;
965 }
966
967 static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr)
968 {
969 struct openpic *opp = opaque;
970 uint32_t r = 0;
971 int i, srs;
972
973 pr_debug("%s: addr %#llx\n", __func__, addr);
974 if (addr & 0xF)
975 return -ENXIO;
976
977 srs = addr >> 4;
978
979 switch (addr) {
980 case 0x00:
981 case 0x10:
982 case 0x20:
983 case 0x30:
984 case 0x40:
985 case 0x50:
986 case 0x60:
987 case 0x70: /* MSIRs */
988 r = opp->msi[srs].msir;
989 /* Clear on read */
990 opp->msi[srs].msir = 0;
991 openpic_set_irq(opp, opp->irq_msi + srs, 0);
992 break;
993 case 0x120: /* MSISR */
994 for (i = 0; i < MAX_MSI; i++)
995 r |= (opp->msi[i].msir ? 1 : 0) << i;
996 break;
997 }
998
999 pr_debug("%s: => 0x%08x\n", __func__, r);
1000 *ptr = r;
1001 return 0;
1002 }
1003
1004 static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr)
1005 {
1006 uint32_t r = 0;
1007
1008 pr_debug("%s: addr %#llx\n", __func__, addr);
1009
1010 /* TODO: EISR/EIMR */
1011
1012 *ptr = r;
1013 return 0;
1014 }
1015
1016 static int openpic_summary_write(void *opaque, gpa_t addr, u32 val)
1017 {
1018 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
1019
1020 /* TODO: EISR/EIMR */
1021 return 0;
1022 }
1023
1024 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
1025 u32 val, int idx)
1026 {
1027 struct openpic *opp = opaque;
1028 struct irq_source *src;
1029 struct irq_dest *dst;
1030 int s_IRQ, n_IRQ;
1031
1032 pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx,
1033 addr, val);
1034
1035 if (idx < 0)
1036 return 0;
1037
1038 if (addr & 0xF)
1039 return 0;
1040
1041 dst = &opp->dst[idx];
1042 addr &= 0xFF0;
1043 switch (addr) {
1044 case 0x40: /* IPIDR */
1045 case 0x50:
1046 case 0x60:
1047 case 0x70:
1048 idx = (addr - 0x40) >> 4;
1049 /* we use IDE as mask which CPUs to deliver the IPI to still. */
1050 opp->src[opp->irq_ipi0 + idx].destmask |= val;
1051 openpic_set_irq(opp, opp->irq_ipi0 + idx, 1);
1052 openpic_set_irq(opp, opp->irq_ipi0 + idx, 0);
1053 break;
1054 case 0x80: /* CTPR */
1055 dst->ctpr = val & 0x0000000F;
1056
1057 pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n",
1058 __func__, idx, dst->ctpr, dst->raised.priority,
1059 dst->servicing.priority);
1060
1061 if (dst->raised.priority <= dst->ctpr) {
1062 pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n",
1063 __func__, idx);
1064 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1065 } else if (dst->raised.priority > dst->servicing.priority) {
1066 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n",
1067 __func__, idx, dst->raised.next);
1068 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1069 }
1070
1071 break;
1072 case 0x90: /* WHOAMI */
1073 /* Read-only register */
1074 break;
1075 case 0xA0: /* IACK */
1076 /* Read-only register */
1077 break;
1078 case 0xB0: { /* EOI */
1079 int notify_eoi;
1080
1081 pr_debug("EOI\n");
1082 s_IRQ = IRQ_get_next(opp, &dst->servicing);
1083
1084 if (s_IRQ < 0) {
1085 pr_debug("%s: EOI with no interrupt in service\n",
1086 __func__);
1087 break;
1088 }
1089
1090 IRQ_resetbit(&dst->servicing, s_IRQ);
1091 /* Notify listeners that the IRQ is over */
1092 notify_eoi = s_IRQ;
1093 /* Set up next servicing IRQ */
1094 s_IRQ = IRQ_get_next(opp, &dst->servicing);
1095 /* Check queued interrupts. */
1096 n_IRQ = IRQ_get_next(opp, &dst->raised);
1097 src = &opp->src[n_IRQ];
1098 if (n_IRQ != -1 &&
1099 (s_IRQ == -1 ||
1100 IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) {
1101 pr_debug("Raise OpenPIC INT output cpu %d irq %d\n",
1102 idx, n_IRQ);
1103 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1104 }
1105
1106 spin_unlock(&opp->lock);
1107 kvm_notify_acked_irq(opp->kvm, 0, notify_eoi);
1108 spin_lock(&opp->lock);
1109
1110 break;
1111 }
1112 default:
1113 break;
1114 }
1115
1116 return 0;
1117 }
1118
1119 static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val)
1120 {
1121 struct openpic *opp = opaque;
1122
1123 return openpic_cpu_write_internal(opp, addr, val,
1124 (addr & 0x1f000) >> 12);
1125 }
1126
1127 static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst,
1128 int cpu)
1129 {
1130 struct irq_source *src;
1131 int retval, irq;
1132
1133 pr_debug("Lower OpenPIC INT output\n");
1134 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1135
1136 irq = IRQ_get_next(opp, &dst->raised);
1137 pr_debug("IACK: irq=%d\n", irq);
1138
1139 if (irq == -1)
1140 /* No more interrupt pending */
1141 return opp->spve;
1142
1143 src = &opp->src[irq];
1144 if (!(src->ivpr & IVPR_ACTIVITY_MASK) ||
1145 !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) {
1146 pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n",
1147 __func__, irq, dst->ctpr, src->ivpr);
1148 openpic_update_irq(opp, irq);
1149 retval = opp->spve;
1150 } else {
1151 /* IRQ enter servicing state */
1152 IRQ_setbit(&dst->servicing, irq);
1153 retval = IVPR_VECTOR(opp, src->ivpr);
1154 }
1155
1156 if (!src->level) {
1157 /* edge-sensitive IRQ */
1158 src->ivpr &= ~IVPR_ACTIVITY_MASK;
1159 src->pending = 0;
1160 IRQ_resetbit(&dst->raised, irq);
1161 }
1162
1163 if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) {
1164 src->destmask &= ~(1 << cpu);
1165 if (src->destmask && !src->level) {
1166 /* trigger on CPUs that didn't know about it yet */
1167 openpic_set_irq(opp, irq, 1);
1168 openpic_set_irq(opp, irq, 0);
1169 /* if all CPUs knew about it, set active bit again */
1170 src->ivpr |= IVPR_ACTIVITY_MASK;
1171 }
1172 }
1173
1174 return retval;
1175 }
1176
1177 void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu)
1178 {
1179 struct openpic *opp = vcpu->arch.mpic;
1180 int cpu = vcpu->arch.irq_cpu_id;
1181 unsigned long flags;
1182
1183 spin_lock_irqsave(&opp->lock, flags);
1184
1185 if ((opp->gcr & opp->mpic_mode_mask) == GCR_MODE_PROXY)
1186 kvmppc_set_epr(vcpu, openpic_iack(opp, &opp->dst[cpu], cpu));
1187
1188 spin_unlock_irqrestore(&opp->lock, flags);
1189 }
1190
1191 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
1192 u32 *ptr, int idx)
1193 {
1194 struct openpic *opp = opaque;
1195 struct irq_dest *dst;
1196 uint32_t retval;
1197
1198 pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr);
1199 retval = 0xFFFFFFFF;
1200
1201 if (idx < 0)
1202 goto out;
1203
1204 if (addr & 0xF)
1205 goto out;
1206
1207 dst = &opp->dst[idx];
1208 addr &= 0xFF0;
1209 switch (addr) {
1210 case 0x80: /* CTPR */
1211 retval = dst->ctpr;
1212 break;
1213 case 0x90: /* WHOAMI */
1214 retval = idx;
1215 break;
1216 case 0xA0: /* IACK */
1217 retval = openpic_iack(opp, dst, idx);
1218 break;
1219 case 0xB0: /* EOI */
1220 retval = 0;
1221 break;
1222 default:
1223 break;
1224 }
1225 pr_debug("%s: => 0x%08x\n", __func__, retval);
1226
1227 out:
1228 *ptr = retval;
1229 return 0;
1230 }
1231
1232 static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr)
1233 {
1234 struct openpic *opp = opaque;
1235
1236 return openpic_cpu_read_internal(opp, addr, ptr,
1237 (addr & 0x1f000) >> 12);
1238 }
1239
1240 struct mem_reg {
1241 int (*read)(void *opaque, gpa_t addr, u32 *ptr);
1242 int (*write)(void *opaque, gpa_t addr, u32 val);
1243 gpa_t start_addr;
1244 int size;
1245 };
1246
1247 static const struct mem_reg openpic_gbl_mmio = {
1248 .write = openpic_gbl_write,
1249 .read = openpic_gbl_read,
1250 .start_addr = OPENPIC_GLB_REG_START,
1251 .size = OPENPIC_GLB_REG_SIZE,
1252 };
1253
1254 static const struct mem_reg openpic_tmr_mmio = {
1255 .write = openpic_tmr_write,
1256 .read = openpic_tmr_read,
1257 .start_addr = OPENPIC_TMR_REG_START,
1258 .size = OPENPIC_TMR_REG_SIZE,
1259 };
1260
1261 static const struct mem_reg openpic_cpu_mmio = {
1262 .write = openpic_cpu_write,
1263 .read = openpic_cpu_read,
1264 .start_addr = OPENPIC_CPU_REG_START,
1265 .size = OPENPIC_CPU_REG_SIZE,
1266 };
1267
1268 static const struct mem_reg openpic_src_mmio = {
1269 .write = openpic_src_write,
1270 .read = openpic_src_read,
1271 .start_addr = OPENPIC_SRC_REG_START,
1272 .size = OPENPIC_SRC_REG_SIZE,
1273 };
1274
1275 static const struct mem_reg openpic_msi_mmio = {
1276 .read = openpic_msi_read,
1277 .write = openpic_msi_write,
1278 .start_addr = OPENPIC_MSI_REG_START,
1279 .size = OPENPIC_MSI_REG_SIZE,
1280 };
1281
1282 static const struct mem_reg openpic_summary_mmio = {
1283 .read = openpic_summary_read,
1284 .write = openpic_summary_write,
1285 .start_addr = OPENPIC_SUMMARY_REG_START,
1286 .size = OPENPIC_SUMMARY_REG_SIZE,
1287 };
1288
1289 static void add_mmio_region(struct openpic *opp, const struct mem_reg *mr)
1290 {
1291 if (opp->num_mmio_regions >= MAX_MMIO_REGIONS) {
1292 WARN(1, "kvm mpic: too many mmio regions\n");
1293 return;
1294 }
1295
1296 opp->mmio_regions[opp->num_mmio_regions++] = mr;
1297 }
1298
1299 static void fsl_common_init(struct openpic *opp)
1300 {
1301 int i;
1302 int virq = MAX_SRC;
1303
1304 add_mmio_region(opp, &openpic_msi_mmio);
1305 add_mmio_region(opp, &openpic_summary_mmio);
1306
1307 opp->vid = VID_REVISION_1_2;
1308 opp->vir = VIR_GENERIC;
1309 opp->vector_mask = 0xFFFF;
1310 opp->tfrr_reset = 0;
1311 opp->ivpr_reset = IVPR_MASK_MASK;
1312 opp->idr_reset = 1 << 0;
1313 opp->max_irq = MAX_IRQ;
1314
1315 opp->irq_ipi0 = virq;
1316 virq += MAX_IPI;
1317 opp->irq_tim0 = virq;
1318 virq += MAX_TMR;
1319
1320 BUG_ON(virq > MAX_IRQ);
1321
1322 opp->irq_msi = 224;
1323
1324 for (i = 0; i < opp->fsl->max_ext; i++)
1325 opp->src[i].level = false;
1326
1327 /* Internal interrupts, including message and MSI */
1328 for (i = 16; i < MAX_SRC; i++) {
1329 opp->src[i].type = IRQ_TYPE_FSLINT;
1330 opp->src[i].level = true;
1331 }
1332
1333 /* timers and IPIs */
1334 for (i = MAX_SRC; i < virq; i++) {
1335 opp->src[i].type = IRQ_TYPE_FSLSPECIAL;
1336 opp->src[i].level = false;
1337 }
1338 }
1339
1340 static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr)
1341 {
1342 int i;
1343
1344 for (i = 0; i < opp->num_mmio_regions; i++) {
1345 const struct mem_reg *mr = opp->mmio_regions[i];
1346
1347 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1348 continue;
1349
1350 return mr->read(opp, addr - mr->start_addr, ptr);
1351 }
1352
1353 return -ENXIO;
1354 }
1355
1356 static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val)
1357 {
1358 int i;
1359
1360 for (i = 0; i < opp->num_mmio_regions; i++) {
1361 const struct mem_reg *mr = opp->mmio_regions[i];
1362
1363 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1364 continue;
1365
1366 return mr->write(opp, addr - mr->start_addr, val);
1367 }
1368
1369 return -ENXIO;
1370 }
1371
1372 static int kvm_mpic_read(struct kvm_vcpu *vcpu,
1373 struct kvm_io_device *this,
1374 gpa_t addr, int len, void *ptr)
1375 {
1376 struct openpic *opp = container_of(this, struct openpic, mmio);
1377 int ret;
1378 union {
1379 u32 val;
1380 u8 bytes[4];
1381 } u;
1382
1383 if (addr & (len - 1)) {
1384 pr_debug("%s: bad alignment %llx/%d\n",
1385 __func__, addr, len);
1386 return -EINVAL;
1387 }
1388
1389 spin_lock_irq(&opp->lock);
1390 ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val);
1391 spin_unlock_irq(&opp->lock);
1392
1393 /*
1394 * Technically only 32-bit accesses are allowed, but be nice to
1395 * people dumping registers a byte at a time -- it works in real
1396 * hardware (reads only, not writes).
1397 */
1398 if (len == 4) {
1399 *(u32 *)ptr = u.val;
1400 pr_debug("%s: addr %llx ret %d len 4 val %x\n",
1401 __func__, addr, ret, u.val);
1402 } else if (len == 1) {
1403 *(u8 *)ptr = u.bytes[addr & 3];
1404 pr_debug("%s: addr %llx ret %d len 1 val %x\n",
1405 __func__, addr, ret, u.bytes[addr & 3]);
1406 } else {
1407 pr_debug("%s: bad length %d\n", __func__, len);
1408 return -EINVAL;
1409 }
1410
1411 return ret;
1412 }
1413
1414 static int kvm_mpic_write(struct kvm_vcpu *vcpu,
1415 struct kvm_io_device *this,
1416 gpa_t addr, int len, const void *ptr)
1417 {
1418 struct openpic *opp = container_of(this, struct openpic, mmio);
1419 int ret;
1420
1421 if (len != 4) {
1422 pr_debug("%s: bad length %d\n", __func__, len);
1423 return -EOPNOTSUPP;
1424 }
1425 if (addr & 3) {
1426 pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len);
1427 return -EOPNOTSUPP;
1428 }
1429
1430 spin_lock_irq(&opp->lock);
1431 ret = kvm_mpic_write_internal(opp, addr - opp->reg_base,
1432 *(const u32 *)ptr);
1433 spin_unlock_irq(&opp->lock);
1434
1435 pr_debug("%s: addr %llx ret %d val %x\n",
1436 __func__, addr, ret, *(const u32 *)ptr);
1437
1438 return ret;
1439 }
1440
1441 static const struct kvm_io_device_ops mpic_mmio_ops = {
1442 .read = kvm_mpic_read,
1443 .write = kvm_mpic_write,
1444 };
1445
1446 static void map_mmio(struct openpic *opp)
1447 {
1448 kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops);
1449
1450 kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS,
1451 opp->reg_base, OPENPIC_REG_SIZE,
1452 &opp->mmio);
1453 }
1454
1455 static void unmap_mmio(struct openpic *opp)
1456 {
1457 kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio);
1458 }
1459
1460 static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr)
1461 {
1462 u64 base;
1463
1464 if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64)))
1465 return -EFAULT;
1466
1467 if (base & 0x3ffff) {
1468 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n",
1469 __func__, base);
1470 return -EINVAL;
1471 }
1472
1473 if (base == opp->reg_base)
1474 return 0;
1475
1476 mutex_lock(&opp->kvm->slots_lock);
1477
1478 unmap_mmio(opp);
1479 opp->reg_base = base;
1480
1481 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n",
1482 __func__, base);
1483
1484 if (base == 0)
1485 goto out;
1486
1487 map_mmio(opp);
1488
1489 out:
1490 mutex_unlock(&opp->kvm->slots_lock);
1491 return 0;
1492 }
1493
1494 #define ATTR_SET 0
1495 #define ATTR_GET 1
1496
1497 static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type)
1498 {
1499 int ret;
1500
1501 if (addr & 3)
1502 return -ENXIO;
1503
1504 spin_lock_irq(&opp->lock);
1505
1506 if (type == ATTR_SET)
1507 ret = kvm_mpic_write_internal(opp, addr, *val);
1508 else
1509 ret = kvm_mpic_read_internal(opp, addr, val);
1510
1511 spin_unlock_irq(&opp->lock);
1512
1513 pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val);
1514
1515 return ret;
1516 }
1517
1518 static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1519 {
1520 struct openpic *opp = dev->private;
1521 u32 attr32;
1522
1523 switch (attr->group) {
1524 case KVM_DEV_MPIC_GRP_MISC:
1525 switch (attr->attr) {
1526 case KVM_DEV_MPIC_BASE_ADDR:
1527 return set_base_addr(opp, attr);
1528 }
1529
1530 break;
1531
1532 case KVM_DEV_MPIC_GRP_REGISTER:
1533 if (get_user(attr32, (u32 __user *)(long)attr->addr))
1534 return -EFAULT;
1535
1536 return access_reg(opp, attr->attr, &attr32, ATTR_SET);
1537
1538 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1539 if (attr->attr > MAX_SRC)
1540 return -EINVAL;
1541
1542 if (get_user(attr32, (u32 __user *)(long)attr->addr))
1543 return -EFAULT;
1544
1545 if (attr32 != 0 && attr32 != 1)
1546 return -EINVAL;
1547
1548 spin_lock_irq(&opp->lock);
1549 openpic_set_irq(opp, attr->attr, attr32);
1550 spin_unlock_irq(&opp->lock);
1551 return 0;
1552 }
1553
1554 return -ENXIO;
1555 }
1556
1557 static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1558 {
1559 struct openpic *opp = dev->private;
1560 u64 attr64;
1561 u32 attr32;
1562 int ret;
1563
1564 switch (attr->group) {
1565 case KVM_DEV_MPIC_GRP_MISC:
1566 switch (attr->attr) {
1567 case KVM_DEV_MPIC_BASE_ADDR:
1568 mutex_lock(&opp->kvm->slots_lock);
1569 attr64 = opp->reg_base;
1570 mutex_unlock(&opp->kvm->slots_lock);
1571
1572 if (copy_to_user((u64 __user *)(long)attr->addr,
1573 &attr64, sizeof(u64)))
1574 return -EFAULT;
1575
1576 return 0;
1577 }
1578
1579 break;
1580
1581 case KVM_DEV_MPIC_GRP_REGISTER:
1582 ret = access_reg(opp, attr->attr, &attr32, ATTR_GET);
1583 if (ret)
1584 return ret;
1585
1586 if (put_user(attr32, (u32 __user *)(long)attr->addr))
1587 return -EFAULT;
1588
1589 return 0;
1590
1591 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1592 if (attr->attr > MAX_SRC)
1593 return -EINVAL;
1594
1595 spin_lock_irq(&opp->lock);
1596 attr32 = opp->src[attr->attr].pending;
1597 spin_unlock_irq(&opp->lock);
1598
1599 if (put_user(attr32, (u32 __user *)(long)attr->addr))
1600 return -EFAULT;
1601
1602 return 0;
1603 }
1604
1605 return -ENXIO;
1606 }
1607
1608 static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1609 {
1610 switch (attr->group) {
1611 case KVM_DEV_MPIC_GRP_MISC:
1612 switch (attr->attr) {
1613 case KVM_DEV_MPIC_BASE_ADDR:
1614 return 0;
1615 }
1616
1617 break;
1618
1619 case KVM_DEV_MPIC_GRP_REGISTER:
1620 return 0;
1621
1622 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1623 if (attr->attr > MAX_SRC)
1624 break;
1625
1626 return 0;
1627 }
1628
1629 return -ENXIO;
1630 }
1631
1632 static void mpic_destroy(struct kvm_device *dev)
1633 {
1634 struct openpic *opp = dev->private;
1635
1636 dev->kvm->arch.mpic = NULL;
1637 kfree(opp);
1638 kfree(dev);
1639 }
1640
1641 static int mpic_set_default_irq_routing(struct openpic *opp)
1642 {
1643 struct kvm_irq_routing_entry *routing;
1644
1645 /* Create a nop default map, so that dereferencing it still works */
1646 routing = kzalloc((sizeof(*routing)), GFP_KERNEL);
1647 if (!routing)
1648 return -ENOMEM;
1649
1650 kvm_set_irq_routing(opp->kvm, routing, 0, 0);
1651
1652 kfree(routing);
1653 return 0;
1654 }
1655
1656 static int mpic_create(struct kvm_device *dev, u32 type)
1657 {
1658 struct openpic *opp;
1659 int ret;
1660
1661 /* We only support one MPIC at a time for now */
1662 if (dev->kvm->arch.mpic)
1663 return -EINVAL;
1664
1665 opp = kzalloc(sizeof(struct openpic), GFP_KERNEL);
1666 if (!opp)
1667 return -ENOMEM;
1668
1669 dev->private = opp;
1670 opp->kvm = dev->kvm;
1671 opp->dev = dev;
1672 opp->model = type;
1673 spin_lock_init(&opp->lock);
1674
1675 add_mmio_region(opp, &openpic_gbl_mmio);
1676 add_mmio_region(opp, &openpic_tmr_mmio);
1677 add_mmio_region(opp, &openpic_src_mmio);
1678 add_mmio_region(opp, &openpic_cpu_mmio);
1679
1680 switch (opp->model) {
1681 case KVM_DEV_TYPE_FSL_MPIC_20:
1682 opp->fsl = &fsl_mpic_20;
1683 opp->brr1 = 0x00400200;
1684 opp->flags |= OPENPIC_FLAG_IDR_CRIT;
1685 opp->nb_irqs = 80;
1686 opp->mpic_mode_mask = GCR_MODE_MIXED;
1687
1688 fsl_common_init(opp);
1689
1690 break;
1691
1692 case KVM_DEV_TYPE_FSL_MPIC_42:
1693 opp->fsl = &fsl_mpic_42;
1694 opp->brr1 = 0x00400402;
1695 opp->flags |= OPENPIC_FLAG_ILR;
1696 opp->nb_irqs = 196;
1697 opp->mpic_mode_mask = GCR_MODE_PROXY;
1698
1699 fsl_common_init(opp);
1700
1701 break;
1702
1703 default:
1704 ret = -ENODEV;
1705 goto err;
1706 }
1707
1708 ret = mpic_set_default_irq_routing(opp);
1709 if (ret)
1710 goto err;
1711
1712 openpic_reset(opp);
1713
1714 smp_wmb();
1715 dev->kvm->arch.mpic = opp;
1716
1717 return 0;
1718
1719 err:
1720 kfree(opp);
1721 return ret;
1722 }
1723
1724 struct kvm_device_ops kvm_mpic_ops = {
1725 .name = "kvm-mpic",
1726 .create = mpic_create,
1727 .destroy = mpic_destroy,
1728 .set_attr = mpic_set_attr,
1729 .get_attr = mpic_get_attr,
1730 .has_attr = mpic_has_attr,
1731 };
1732
1733 int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu,
1734 u32 cpu)
1735 {
1736 struct openpic *opp = dev->private;
1737 int ret = 0;
1738
1739 if (dev->ops != &kvm_mpic_ops)
1740 return -EPERM;
1741 if (opp->kvm != vcpu->kvm)
1742 return -EPERM;
1743 if (cpu < 0 || cpu >= MAX_CPU)
1744 return -EPERM;
1745
1746 spin_lock_irq(&opp->lock);
1747
1748 if (opp->dst[cpu].vcpu) {
1749 ret = -EEXIST;
1750 goto out;
1751 }
1752 if (vcpu->arch.irq_type) {
1753 ret = -EBUSY;
1754 goto out;
1755 }
1756
1757 opp->dst[cpu].vcpu = vcpu;
1758 opp->nb_cpus = max(opp->nb_cpus, cpu + 1);
1759
1760 vcpu->arch.mpic = opp;
1761 vcpu->arch.irq_cpu_id = cpu;
1762 vcpu->arch.irq_type = KVMPPC_IRQ_MPIC;
1763
1764 /* This might need to be changed if GCR gets extended */
1765 if (opp->mpic_mode_mask == GCR_MODE_PROXY)
1766 vcpu->arch.epr_flags |= KVMPPC_EPR_KERNEL;
1767
1768 out:
1769 spin_unlock_irq(&opp->lock);
1770 return ret;
1771 }
1772
1773 /*
1774 * This should only happen immediately before the mpic is destroyed,
1775 * so we shouldn't need to worry about anything still trying to
1776 * access the vcpu pointer.
1777 */
1778 void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu)
1779 {
1780 BUG_ON(!opp->dst[vcpu->arch.irq_cpu_id].vcpu);
1781
1782 opp->dst[vcpu->arch.irq_cpu_id].vcpu = NULL;
1783 }
1784
1785 /*
1786 * Return value:
1787 * < 0 Interrupt was ignored (masked or not delivered for other reasons)
1788 * = 0 Interrupt was coalesced (previous irq is still pending)
1789 * > 0 Number of CPUs interrupt was delivered to
1790 */
1791 static int mpic_set_irq(struct kvm_kernel_irq_routing_entry *e,
1792 struct kvm *kvm, int irq_source_id, int level,
1793 bool line_status)
1794 {
1795 u32 irq = e->irqchip.pin;
1796 struct openpic *opp = kvm->arch.mpic;
1797 unsigned long flags;
1798
1799 spin_lock_irqsave(&opp->lock, flags);
1800 openpic_set_irq(opp, irq, level);
1801 spin_unlock_irqrestore(&opp->lock, flags);
1802
1803 /* All code paths we care about don't check for the return value */
1804 return 0;
1805 }
1806
1807 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
1808 struct kvm *kvm, int irq_source_id, int level, bool line_status)
1809 {
1810 struct openpic *opp = kvm->arch.mpic;
1811 unsigned long flags;
1812
1813 spin_lock_irqsave(&opp->lock, flags);
1814
1815 /*
1816 * XXX We ignore the target address for now, as we only support
1817 * a single MSI bank.
1818 */
1819 openpic_msi_write(kvm->arch.mpic, MSIIR_OFFSET, e->msi.data);
1820 spin_unlock_irqrestore(&opp->lock, flags);
1821
1822 /* All code paths we care about don't check for the return value */
1823 return 0;
1824 }
1825
1826 int kvm_set_routing_entry(struct kvm *kvm,
1827 struct kvm_kernel_irq_routing_entry *e,
1828 const struct kvm_irq_routing_entry *ue)
1829 {
1830 int r = -EINVAL;
1831
1832 switch (ue->type) {
1833 case KVM_IRQ_ROUTING_IRQCHIP:
1834 e->set = mpic_set_irq;
1835 e->irqchip.irqchip = ue->u.irqchip.irqchip;
1836 e->irqchip.pin = ue->u.irqchip.pin;
1837 if (e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS)
1838 goto out;
1839 break;
1840 case KVM_IRQ_ROUTING_MSI:
1841 e->set = kvm_set_msi;
1842 e->msi.address_lo = ue->u.msi.address_lo;
1843 e->msi.address_hi = ue->u.msi.address_hi;
1844 e->msi.data = ue->u.msi.data;
1845 break;
1846 default:
1847 goto out;
1848 }
1849
1850 r = 0;
1851 out:
1852 return r;
1853 }