[POWERPC] Remove ioremap64 and fixup_bigphys_addr
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / vdso.c
1 /*
2 * Copyright (C) 2004 Benjamin Herrenschmidt, IBM Corp.
3 * <benh@kernel.crashing.org>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 */
10
11 #include <linux/module.h>
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/slab.h>
21 #include <linux/user.h>
22 #include <linux/elf.h>
23 #include <linux/security.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/pgtable.h>
27 #include <asm/system.h>
28 #include <asm/processor.h>
29 #include <asm/mmu.h>
30 #include <asm/mmu_context.h>
31 #include <asm/lmb.h>
32 #include <asm/machdep.h>
33 #include <asm/cputable.h>
34 #include <asm/sections.h>
35 #include <asm/firmware.h>
36 #include <asm/vdso.h>
37 #include <asm/vdso_datapage.h>
38
39 #include "setup.h"
40
41 #undef DEBUG
42
43 #ifdef DEBUG
44 #define DBG(fmt...) printk(fmt)
45 #else
46 #define DBG(fmt...)
47 #endif
48
49 /* Max supported size for symbol names */
50 #define MAX_SYMNAME 64
51
52 extern char vdso32_start, vdso32_end;
53 static void *vdso32_kbase = &vdso32_start;
54 unsigned int vdso32_pages;
55 unsigned long vdso32_sigtramp;
56 unsigned long vdso32_rt_sigtramp;
57
58 #ifdef CONFIG_PPC64
59 extern char vdso64_start, vdso64_end;
60 static void *vdso64_kbase = &vdso64_start;
61 unsigned int vdso64_pages;
62 unsigned long vdso64_rt_sigtramp;
63 #endif /* CONFIG_PPC64 */
64
65 /*
66 * The vdso data page (aka. systemcfg for old ppc64 fans) is here.
67 * Once the early boot kernel code no longer needs to muck around
68 * with it, it will become dynamically allocated
69 */
70 static union {
71 struct vdso_data data;
72 u8 page[PAGE_SIZE];
73 } vdso_data_store __attribute__((__section__(".data.page_aligned")));
74 struct vdso_data *vdso_data = &vdso_data_store.data;
75
76 /* Format of the patch table */
77 struct vdso_patch_def
78 {
79 unsigned long ftr_mask, ftr_value;
80 const char *gen_name;
81 const char *fix_name;
82 };
83
84 /* Table of functions to patch based on the CPU type/revision
85 *
86 * Currently, we only change sync_dicache to do nothing on processors
87 * with a coherent icache
88 */
89 static struct vdso_patch_def vdso_patches[] = {
90 {
91 CPU_FTR_COHERENT_ICACHE, CPU_FTR_COHERENT_ICACHE,
92 "__kernel_sync_dicache", "__kernel_sync_dicache_p5"
93 },
94 {
95 CPU_FTR_USE_TB, 0,
96 "__kernel_gettimeofday", NULL
97 },
98 };
99
100 /*
101 * Some infos carried around for each of them during parsing at
102 * boot time.
103 */
104 struct lib32_elfinfo
105 {
106 Elf32_Ehdr *hdr; /* ptr to ELF */
107 Elf32_Sym *dynsym; /* ptr to .dynsym section */
108 unsigned long dynsymsize; /* size of .dynsym section */
109 char *dynstr; /* ptr to .dynstr section */
110 unsigned long text; /* offset of .text section in .so */
111 };
112
113 struct lib64_elfinfo
114 {
115 Elf64_Ehdr *hdr;
116 Elf64_Sym *dynsym;
117 unsigned long dynsymsize;
118 char *dynstr;
119 unsigned long text;
120 };
121
122
123 #ifdef __DEBUG
124 static void dump_one_vdso_page(struct page *pg, struct page *upg)
125 {
126 printk("kpg: %p (c:%d,f:%08lx)", __va(page_to_pfn(pg) << PAGE_SHIFT),
127 page_count(pg),
128 pg->flags);
129 if (upg/* && pg != upg*/) {
130 printk(" upg: %p (c:%d,f:%08lx)", __va(page_to_pfn(upg)
131 << PAGE_SHIFT),
132 page_count(upg),
133 upg->flags);
134 }
135 printk("\n");
136 }
137
138 static void dump_vdso_pages(struct vm_area_struct * vma)
139 {
140 int i;
141
142 if (!vma || test_thread_flag(TIF_32BIT)) {
143 printk("vDSO32 @ %016lx:\n", (unsigned long)vdso32_kbase);
144 for (i=0; i<vdso32_pages; i++) {
145 struct page *pg = virt_to_page(vdso32_kbase +
146 i*PAGE_SIZE);
147 struct page *upg = (vma && vma->vm_mm) ?
148 follow_page(vma, vma->vm_start + i*PAGE_SIZE, 0)
149 : NULL;
150 dump_one_vdso_page(pg, upg);
151 }
152 }
153 if (!vma || !test_thread_flag(TIF_32BIT)) {
154 printk("vDSO64 @ %016lx:\n", (unsigned long)vdso64_kbase);
155 for (i=0; i<vdso64_pages; i++) {
156 struct page *pg = virt_to_page(vdso64_kbase +
157 i*PAGE_SIZE);
158 struct page *upg = (vma && vma->vm_mm) ?
159 follow_page(vma, vma->vm_start + i*PAGE_SIZE, 0)
160 : NULL;
161 dump_one_vdso_page(pg, upg);
162 }
163 }
164 }
165 #endif /* DEBUG */
166
167 /*
168 * Keep a dummy vma_close for now, it will prevent VMA merging.
169 */
170 static void vdso_vma_close(struct vm_area_struct * vma)
171 {
172 }
173
174 /*
175 * Our nopage() function, maps in the actual vDSO kernel pages, they will
176 * be mapped read-only by do_no_page(), and eventually COW'ed, either
177 * right away for an initial write access, or by do_wp_page().
178 */
179 static struct page * vdso_vma_nopage(struct vm_area_struct * vma,
180 unsigned long address, int *type)
181 {
182 unsigned long offset = address - vma->vm_start;
183 struct page *pg;
184 #ifdef CONFIG_PPC64
185 void *vbase = (vma->vm_mm->task_size > TASK_SIZE_USER32) ?
186 vdso64_kbase : vdso32_kbase;
187 #else
188 void *vbase = vdso32_kbase;
189 #endif
190
191 DBG("vdso_vma_nopage(current: %s, address: %016lx, off: %lx)\n",
192 current->comm, address, offset);
193
194 if (address < vma->vm_start || address > vma->vm_end)
195 return NOPAGE_SIGBUS;
196
197 /*
198 * Last page is systemcfg.
199 */
200 if ((vma->vm_end - address) <= PAGE_SIZE)
201 pg = virt_to_page(vdso_data);
202 else
203 pg = virt_to_page(vbase + offset);
204
205 get_page(pg);
206 DBG(" ->page count: %d\n", page_count(pg));
207
208 return pg;
209 }
210
211 static struct vm_operations_struct vdso_vmops = {
212 .close = vdso_vma_close,
213 .nopage = vdso_vma_nopage,
214 };
215
216 /*
217 * This is called from binfmt_elf, we create the special vma for the
218 * vDSO and insert it into the mm struct tree
219 */
220 int arch_setup_additional_pages(struct linux_binprm *bprm,
221 int executable_stack)
222 {
223 struct mm_struct *mm = current->mm;
224 struct vm_area_struct *vma;
225 unsigned long vdso_pages;
226 unsigned long vdso_base;
227 int rc;
228
229 #ifdef CONFIG_PPC64
230 if (test_thread_flag(TIF_32BIT)) {
231 vdso_pages = vdso32_pages;
232 vdso_base = VDSO32_MBASE;
233 } else {
234 vdso_pages = vdso64_pages;
235 vdso_base = VDSO64_MBASE;
236 }
237 #else
238 vdso_pages = vdso32_pages;
239 vdso_base = VDSO32_MBASE;
240 #endif
241
242 current->mm->context.vdso_base = 0;
243
244 /* vDSO has a problem and was disabled, just don't "enable" it for the
245 * process
246 */
247 if (vdso_pages == 0)
248 return 0;
249 /* Add a page to the vdso size for the data page */
250 vdso_pages ++;
251
252 /*
253 * pick a base address for the vDSO in process space. We try to put it
254 * at vdso_base which is the "natural" base for it, but we might fail
255 * and end up putting it elsewhere.
256 */
257 down_write(&mm->mmap_sem);
258 vdso_base = get_unmapped_area(NULL, vdso_base,
259 vdso_pages << PAGE_SHIFT, 0, 0);
260 if (IS_ERR_VALUE(vdso_base)) {
261 rc = vdso_base;
262 goto fail_mmapsem;
263 }
264
265
266 /* Allocate a VMA structure and fill it up */
267 vma = kmem_cache_zalloc(vm_area_cachep, SLAB_KERNEL);
268 if (vma == NULL) {
269 rc = -ENOMEM;
270 goto fail_mmapsem;
271 }
272 vma->vm_mm = mm;
273 vma->vm_start = vdso_base;
274 vma->vm_end = vma->vm_start + (vdso_pages << PAGE_SHIFT);
275
276 /*
277 * our vma flags don't have VM_WRITE so by default, the process isn't
278 * allowed to write those pages.
279 * gdb can break that with ptrace interface, and thus trigger COW on
280 * those pages but it's then your responsibility to never do that on
281 * the "data" page of the vDSO or you'll stop getting kernel updates
282 * and your nice userland gettimeofday will be totally dead.
283 * It's fine to use that for setting breakpoints in the vDSO code
284 * pages though
285 */
286 vma->vm_flags = VM_READ|VM_EXEC|VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC;
287 vma->vm_flags |= mm->def_flags;
288 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
289 vma->vm_ops = &vdso_vmops;
290
291 /* Insert new VMA */
292 rc = insert_vm_struct(mm, vma);
293 if (rc)
294 goto fail_vma;
295
296 /* Put vDSO base into mm struct and account for memory usage */
297 current->mm->context.vdso_base = vdso_base;
298 mm->total_vm += (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
299 up_write(&mm->mmap_sem);
300 return 0;
301
302 fail_vma:
303 kmem_cache_free(vm_area_cachep, vma);
304 fail_mmapsem:
305 up_write(&mm->mmap_sem);
306 return rc;
307 }
308
309 const char *arch_vma_name(struct vm_area_struct *vma)
310 {
311 if (vma->vm_mm && vma->vm_start == vma->vm_mm->context.vdso_base)
312 return "[vdso]";
313 return NULL;
314 }
315
316
317
318 static void * __init find_section32(Elf32_Ehdr *ehdr, const char *secname,
319 unsigned long *size)
320 {
321 Elf32_Shdr *sechdrs;
322 unsigned int i;
323 char *secnames;
324
325 /* Grab section headers and strings so we can tell who is who */
326 sechdrs = (void *)ehdr + ehdr->e_shoff;
327 secnames = (void *)ehdr + sechdrs[ehdr->e_shstrndx].sh_offset;
328
329 /* Find the section they want */
330 for (i = 1; i < ehdr->e_shnum; i++) {
331 if (strcmp(secnames+sechdrs[i].sh_name, secname) == 0) {
332 if (size)
333 *size = sechdrs[i].sh_size;
334 return (void *)ehdr + sechdrs[i].sh_offset;
335 }
336 }
337 *size = 0;
338 return NULL;
339 }
340
341 static Elf32_Sym * __init find_symbol32(struct lib32_elfinfo *lib,
342 const char *symname)
343 {
344 unsigned int i;
345 char name[MAX_SYMNAME], *c;
346
347 for (i = 0; i < (lib->dynsymsize / sizeof(Elf32_Sym)); i++) {
348 if (lib->dynsym[i].st_name == 0)
349 continue;
350 strlcpy(name, lib->dynstr + lib->dynsym[i].st_name,
351 MAX_SYMNAME);
352 c = strchr(name, '@');
353 if (c)
354 *c = 0;
355 if (strcmp(symname, name) == 0)
356 return &lib->dynsym[i];
357 }
358 return NULL;
359 }
360
361 /* Note that we assume the section is .text and the symbol is relative to
362 * the library base
363 */
364 static unsigned long __init find_function32(struct lib32_elfinfo *lib,
365 const char *symname)
366 {
367 Elf32_Sym *sym = find_symbol32(lib, symname);
368
369 if (sym == NULL) {
370 printk(KERN_WARNING "vDSO32: function %s not found !\n",
371 symname);
372 return 0;
373 }
374 return sym->st_value - VDSO32_LBASE;
375 }
376
377 static int vdso_do_func_patch32(struct lib32_elfinfo *v32,
378 struct lib64_elfinfo *v64,
379 const char *orig, const char *fix)
380 {
381 Elf32_Sym *sym32_gen, *sym32_fix;
382
383 sym32_gen = find_symbol32(v32, orig);
384 if (sym32_gen == NULL) {
385 printk(KERN_ERR "vDSO32: Can't find symbol %s !\n", orig);
386 return -1;
387 }
388 if (fix == NULL) {
389 sym32_gen->st_name = 0;
390 return 0;
391 }
392 sym32_fix = find_symbol32(v32, fix);
393 if (sym32_fix == NULL) {
394 printk(KERN_ERR "vDSO32: Can't find symbol %s !\n", fix);
395 return -1;
396 }
397 sym32_gen->st_value = sym32_fix->st_value;
398 sym32_gen->st_size = sym32_fix->st_size;
399 sym32_gen->st_info = sym32_fix->st_info;
400 sym32_gen->st_other = sym32_fix->st_other;
401 sym32_gen->st_shndx = sym32_fix->st_shndx;
402
403 return 0;
404 }
405
406
407 #ifdef CONFIG_PPC64
408
409 static void * __init find_section64(Elf64_Ehdr *ehdr, const char *secname,
410 unsigned long *size)
411 {
412 Elf64_Shdr *sechdrs;
413 unsigned int i;
414 char *secnames;
415
416 /* Grab section headers and strings so we can tell who is who */
417 sechdrs = (void *)ehdr + ehdr->e_shoff;
418 secnames = (void *)ehdr + sechdrs[ehdr->e_shstrndx].sh_offset;
419
420 /* Find the section they want */
421 for (i = 1; i < ehdr->e_shnum; i++) {
422 if (strcmp(secnames+sechdrs[i].sh_name, secname) == 0) {
423 if (size)
424 *size = sechdrs[i].sh_size;
425 return (void *)ehdr + sechdrs[i].sh_offset;
426 }
427 }
428 if (size)
429 *size = 0;
430 return NULL;
431 }
432
433 static Elf64_Sym * __init find_symbol64(struct lib64_elfinfo *lib,
434 const char *symname)
435 {
436 unsigned int i;
437 char name[MAX_SYMNAME], *c;
438
439 for (i = 0; i < (lib->dynsymsize / sizeof(Elf64_Sym)); i++) {
440 if (lib->dynsym[i].st_name == 0)
441 continue;
442 strlcpy(name, lib->dynstr + lib->dynsym[i].st_name,
443 MAX_SYMNAME);
444 c = strchr(name, '@');
445 if (c)
446 *c = 0;
447 if (strcmp(symname, name) == 0)
448 return &lib->dynsym[i];
449 }
450 return NULL;
451 }
452
453 /* Note that we assume the section is .text and the symbol is relative to
454 * the library base
455 */
456 static unsigned long __init find_function64(struct lib64_elfinfo *lib,
457 const char *symname)
458 {
459 Elf64_Sym *sym = find_symbol64(lib, symname);
460
461 if (sym == NULL) {
462 printk(KERN_WARNING "vDSO64: function %s not found !\n",
463 symname);
464 return 0;
465 }
466 #ifdef VDS64_HAS_DESCRIPTORS
467 return *((u64 *)(vdso64_kbase + sym->st_value - VDSO64_LBASE)) -
468 VDSO64_LBASE;
469 #else
470 return sym->st_value - VDSO64_LBASE;
471 #endif
472 }
473
474 static int vdso_do_func_patch64(struct lib32_elfinfo *v32,
475 struct lib64_elfinfo *v64,
476 const char *orig, const char *fix)
477 {
478 Elf64_Sym *sym64_gen, *sym64_fix;
479
480 sym64_gen = find_symbol64(v64, orig);
481 if (sym64_gen == NULL) {
482 printk(KERN_ERR "vDSO64: Can't find symbol %s !\n", orig);
483 return -1;
484 }
485 if (fix == NULL) {
486 sym64_gen->st_name = 0;
487 return 0;
488 }
489 sym64_fix = find_symbol64(v64, fix);
490 if (sym64_fix == NULL) {
491 printk(KERN_ERR "vDSO64: Can't find symbol %s !\n", fix);
492 return -1;
493 }
494 sym64_gen->st_value = sym64_fix->st_value;
495 sym64_gen->st_size = sym64_fix->st_size;
496 sym64_gen->st_info = sym64_fix->st_info;
497 sym64_gen->st_other = sym64_fix->st_other;
498 sym64_gen->st_shndx = sym64_fix->st_shndx;
499
500 return 0;
501 }
502
503 #endif /* CONFIG_PPC64 */
504
505
506 static __init int vdso_do_find_sections(struct lib32_elfinfo *v32,
507 struct lib64_elfinfo *v64)
508 {
509 void *sect;
510
511 /*
512 * Locate symbol tables & text section
513 */
514
515 v32->dynsym = find_section32(v32->hdr, ".dynsym", &v32->dynsymsize);
516 v32->dynstr = find_section32(v32->hdr, ".dynstr", NULL);
517 if (v32->dynsym == NULL || v32->dynstr == NULL) {
518 printk(KERN_ERR "vDSO32: required symbol section not found\n");
519 return -1;
520 }
521 sect = find_section32(v32->hdr, ".text", NULL);
522 if (sect == NULL) {
523 printk(KERN_ERR "vDSO32: the .text section was not found\n");
524 return -1;
525 }
526 v32->text = sect - vdso32_kbase;
527
528 #ifdef CONFIG_PPC64
529 v64->dynsym = find_section64(v64->hdr, ".dynsym", &v64->dynsymsize);
530 v64->dynstr = find_section64(v64->hdr, ".dynstr", NULL);
531 if (v64->dynsym == NULL || v64->dynstr == NULL) {
532 printk(KERN_ERR "vDSO64: required symbol section not found\n");
533 return -1;
534 }
535 sect = find_section64(v64->hdr, ".text", NULL);
536 if (sect == NULL) {
537 printk(KERN_ERR "vDSO64: the .text section was not found\n");
538 return -1;
539 }
540 v64->text = sect - vdso64_kbase;
541 #endif /* CONFIG_PPC64 */
542
543 return 0;
544 }
545
546 static __init void vdso_setup_trampolines(struct lib32_elfinfo *v32,
547 struct lib64_elfinfo *v64)
548 {
549 /*
550 * Find signal trampolines
551 */
552
553 #ifdef CONFIG_PPC64
554 vdso64_rt_sigtramp = find_function64(v64, "__kernel_sigtramp_rt64");
555 #endif
556 vdso32_sigtramp = find_function32(v32, "__kernel_sigtramp32");
557 vdso32_rt_sigtramp = find_function32(v32, "__kernel_sigtramp_rt32");
558 }
559
560 static __init int vdso_fixup_datapage(struct lib32_elfinfo *v32,
561 struct lib64_elfinfo *v64)
562 {
563 Elf32_Sym *sym32;
564 #ifdef CONFIG_PPC64
565 Elf64_Sym *sym64;
566
567 sym64 = find_symbol64(v64, "__kernel_datapage_offset");
568 if (sym64 == NULL) {
569 printk(KERN_ERR "vDSO64: Can't find symbol "
570 "__kernel_datapage_offset !\n");
571 return -1;
572 }
573 *((int *)(vdso64_kbase + sym64->st_value - VDSO64_LBASE)) =
574 (vdso64_pages << PAGE_SHIFT) -
575 (sym64->st_value - VDSO64_LBASE);
576 #endif /* CONFIG_PPC64 */
577
578 sym32 = find_symbol32(v32, "__kernel_datapage_offset");
579 if (sym32 == NULL) {
580 printk(KERN_ERR "vDSO32: Can't find symbol "
581 "__kernel_datapage_offset !\n");
582 return -1;
583 }
584 *((int *)(vdso32_kbase + (sym32->st_value - VDSO32_LBASE))) =
585 (vdso32_pages << PAGE_SHIFT) -
586 (sym32->st_value - VDSO32_LBASE);
587
588 return 0;
589 }
590
591
592 static __init int vdso_fixup_features(struct lib32_elfinfo *v32,
593 struct lib64_elfinfo *v64)
594 {
595 void *start32;
596 unsigned long size32;
597
598 #ifdef CONFIG_PPC64
599 void *start64;
600 unsigned long size64;
601
602 start64 = find_section64(v64->hdr, "__ftr_fixup", &size64);
603 if (start64)
604 do_feature_fixups(cur_cpu_spec->cpu_features,
605 start64, start64 + size64);
606
607 start64 = find_section64(v64->hdr, "__fw_ftr_fixup", &size64);
608 if (start64)
609 do_feature_fixups(powerpc_firmware_features,
610 start64, start64 + size64);
611 #endif /* CONFIG_PPC64 */
612
613 start32 = find_section32(v32->hdr, "__ftr_fixup", &size32);
614 if (start32)
615 do_feature_fixups(cur_cpu_spec->cpu_features,
616 start32, start32 + size32);
617
618 #ifdef CONFIG_PPC64
619 start32 = find_section32(v32->hdr, "__fw_ftr_fixup", &size32);
620 if (start32)
621 do_feature_fixups(powerpc_firmware_features,
622 start32, start32 + size32);
623 #endif /* CONFIG_PPC64 */
624
625 return 0;
626 }
627
628 static __init int vdso_fixup_alt_funcs(struct lib32_elfinfo *v32,
629 struct lib64_elfinfo *v64)
630 {
631 int i;
632
633 for (i = 0; i < ARRAY_SIZE(vdso_patches); i++) {
634 struct vdso_patch_def *patch = &vdso_patches[i];
635 int match = (cur_cpu_spec->cpu_features & patch->ftr_mask)
636 == patch->ftr_value;
637 if (!match)
638 continue;
639
640 DBG("replacing %s with %s...\n", patch->gen_name,
641 patch->fix_name ? "NONE" : patch->fix_name);
642
643 /*
644 * Patch the 32 bits and 64 bits symbols. Note that we do not
645 * patch the "." symbol on 64 bits.
646 * It would be easy to do, but doesn't seem to be necessary,
647 * patching the OPD symbol is enough.
648 */
649 vdso_do_func_patch32(v32, v64, patch->gen_name,
650 patch->fix_name);
651 #ifdef CONFIG_PPC64
652 vdso_do_func_patch64(v32, v64, patch->gen_name,
653 patch->fix_name);
654 #endif /* CONFIG_PPC64 */
655 }
656
657 return 0;
658 }
659
660
661 static __init int vdso_setup(void)
662 {
663 struct lib32_elfinfo v32;
664 struct lib64_elfinfo v64;
665
666 v32.hdr = vdso32_kbase;
667 #ifdef CONFIG_PPC64
668 v64.hdr = vdso64_kbase;
669 #endif
670 if (vdso_do_find_sections(&v32, &v64))
671 return -1;
672
673 if (vdso_fixup_datapage(&v32, &v64))
674 return -1;
675
676 if (vdso_fixup_features(&v32, &v64))
677 return -1;
678
679 if (vdso_fixup_alt_funcs(&v32, &v64))
680 return -1;
681
682 vdso_setup_trampolines(&v32, &v64);
683
684 return 0;
685 }
686
687 /*
688 * Called from setup_arch to initialize the bitmap of available
689 * syscalls in the systemcfg page
690 */
691 static void __init vdso_setup_syscall_map(void)
692 {
693 unsigned int i;
694 extern unsigned long *sys_call_table;
695 extern unsigned long sys_ni_syscall;
696
697
698 for (i = 0; i < __NR_syscalls; i++) {
699 #ifdef CONFIG_PPC64
700 if (sys_call_table[i*2] != sys_ni_syscall)
701 vdso_data->syscall_map_64[i >> 5] |=
702 0x80000000UL >> (i & 0x1f);
703 if (sys_call_table[i*2+1] != sys_ni_syscall)
704 vdso_data->syscall_map_32[i >> 5] |=
705 0x80000000UL >> (i & 0x1f);
706 #else /* CONFIG_PPC64 */
707 if (sys_call_table[i] != sys_ni_syscall)
708 vdso_data->syscall_map_32[i >> 5] |=
709 0x80000000UL >> (i & 0x1f);
710 #endif /* CONFIG_PPC64 */
711 }
712 }
713
714
715 void __init vdso_init(void)
716 {
717 int i;
718
719 #ifdef CONFIG_PPC64
720 /*
721 * Fill up the "systemcfg" stuff for backward compatiblity
722 */
723 strcpy(vdso_data->eye_catcher, "SYSTEMCFG:PPC64");
724 vdso_data->version.major = SYSTEMCFG_MAJOR;
725 vdso_data->version.minor = SYSTEMCFG_MINOR;
726 vdso_data->processor = mfspr(SPRN_PVR);
727 /*
728 * Fake the old platform number for pSeries and iSeries and add
729 * in LPAR bit if necessary
730 */
731 vdso_data->platform = machine_is(iseries) ? 0x200 : 0x100;
732 if (firmware_has_feature(FW_FEATURE_LPAR))
733 vdso_data->platform |= 1;
734 vdso_data->physicalMemorySize = lmb_phys_mem_size();
735 vdso_data->dcache_size = ppc64_caches.dsize;
736 vdso_data->dcache_line_size = ppc64_caches.dline_size;
737 vdso_data->icache_size = ppc64_caches.isize;
738 vdso_data->icache_line_size = ppc64_caches.iline_size;
739
740 /*
741 * Calculate the size of the 64 bits vDSO
742 */
743 vdso64_pages = (&vdso64_end - &vdso64_start) >> PAGE_SHIFT;
744 DBG("vdso64_kbase: %p, 0x%x pages\n", vdso64_kbase, vdso64_pages);
745 #endif /* CONFIG_PPC64 */
746
747
748 /*
749 * Calculate the size of the 32 bits vDSO
750 */
751 vdso32_pages = (&vdso32_end - &vdso32_start) >> PAGE_SHIFT;
752 DBG("vdso32_kbase: %p, 0x%x pages\n", vdso32_kbase, vdso32_pages);
753
754
755 /*
756 * Setup the syscall map in the vDOS
757 */
758 vdso_setup_syscall_map();
759
760 /*
761 * Initialize the vDSO images in memory, that is do necessary
762 * fixups of vDSO symbols, locate trampolines, etc...
763 */
764 if (vdso_setup()) {
765 printk(KERN_ERR "vDSO setup failure, not enabled !\n");
766 vdso32_pages = 0;
767 #ifdef CONFIG_PPC64
768 vdso64_pages = 0;
769 #endif
770 return;
771 }
772
773 /* Make sure pages are in the correct state */
774 for (i = 0; i < vdso32_pages; i++) {
775 struct page *pg = virt_to_page(vdso32_kbase + i*PAGE_SIZE);
776 ClearPageReserved(pg);
777 get_page(pg);
778
779 }
780 #ifdef CONFIG_PPC64
781 for (i = 0; i < vdso64_pages; i++) {
782 struct page *pg = virt_to_page(vdso64_kbase + i*PAGE_SIZE);
783 ClearPageReserved(pg);
784 get_page(pg);
785 }
786 #endif /* CONFIG_PPC64 */
787
788 get_page(virt_to_page(vdso_data));
789 }
790
791 int in_gate_area_no_task(unsigned long addr)
792 {
793 return 0;
794 }
795
796 int in_gate_area(struct task_struct *task, unsigned long addr)
797 {
798 return 0;
799 }
800
801 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
802 {
803 return NULL;
804 }
805