Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37
38 #include <asm/emulated_ops.h>
39 #include <asm/pgtable.h>
40 #include <asm/uaccess.h>
41 #include <asm/system.h>
42 #include <asm/io.h>
43 #include <asm/machdep.h>
44 #include <asm/rtas.h>
45 #include <asm/pmc.h>
46 #ifdef CONFIG_PPC32
47 #include <asm/reg.h>
48 #endif
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58
59 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
60 int (*__debugger)(struct pt_regs *regs) __read_mostly;
61 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
62 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
63 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
64 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
65 int (*__debugger_dabr_match)(struct pt_regs *regs) __read_mostly;
66 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
67
68 EXPORT_SYMBOL(__debugger);
69 EXPORT_SYMBOL(__debugger_ipi);
70 EXPORT_SYMBOL(__debugger_bpt);
71 EXPORT_SYMBOL(__debugger_sstep);
72 EXPORT_SYMBOL(__debugger_iabr_match);
73 EXPORT_SYMBOL(__debugger_dabr_match);
74 EXPORT_SYMBOL(__debugger_fault_handler);
75 #endif
76
77 /*
78 * Trap & Exception support
79 */
80
81 #ifdef CONFIG_PMAC_BACKLIGHT
82 static void pmac_backlight_unblank(void)
83 {
84 mutex_lock(&pmac_backlight_mutex);
85 if (pmac_backlight) {
86 struct backlight_properties *props;
87
88 props = &pmac_backlight->props;
89 props->brightness = props->max_brightness;
90 props->power = FB_BLANK_UNBLANK;
91 backlight_update_status(pmac_backlight);
92 }
93 mutex_unlock(&pmac_backlight_mutex);
94 }
95 #else
96 static inline void pmac_backlight_unblank(void) { }
97 #endif
98
99 int die(const char *str, struct pt_regs *regs, long err)
100 {
101 static struct {
102 raw_spinlock_t lock;
103 u32 lock_owner;
104 int lock_owner_depth;
105 } die = {
106 .lock = __RAW_SPIN_LOCK_UNLOCKED(die.lock),
107 .lock_owner = -1,
108 .lock_owner_depth = 0
109 };
110 static int die_counter;
111 unsigned long flags;
112
113 if (debugger(regs))
114 return 1;
115
116 oops_enter();
117
118 if (die.lock_owner != raw_smp_processor_id()) {
119 console_verbose();
120 raw_spin_lock_irqsave(&die.lock, flags);
121 die.lock_owner = smp_processor_id();
122 die.lock_owner_depth = 0;
123 bust_spinlocks(1);
124 if (machine_is(powermac))
125 pmac_backlight_unblank();
126 } else {
127 local_save_flags(flags);
128 }
129
130 if (++die.lock_owner_depth < 3) {
131 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
132 #ifdef CONFIG_PREEMPT
133 printk("PREEMPT ");
134 #endif
135 #ifdef CONFIG_SMP
136 printk("SMP NR_CPUS=%d ", NR_CPUS);
137 #endif
138 #ifdef CONFIG_DEBUG_PAGEALLOC
139 printk("DEBUG_PAGEALLOC ");
140 #endif
141 #ifdef CONFIG_NUMA
142 printk("NUMA ");
143 #endif
144 printk("%s\n", ppc_md.name ? ppc_md.name : "");
145
146 sysfs_printk_last_file();
147 if (notify_die(DIE_OOPS, str, regs, err, 255,
148 SIGSEGV) == NOTIFY_STOP)
149 return 1;
150
151 print_modules();
152 show_regs(regs);
153 } else {
154 printk("Recursive die() failure, output suppressed\n");
155 }
156
157 bust_spinlocks(0);
158 die.lock_owner = -1;
159 add_taint(TAINT_DIE);
160 raw_spin_unlock_irqrestore(&die.lock, flags);
161
162 if (kexec_should_crash(current) ||
163 kexec_sr_activated(smp_processor_id()))
164 crash_kexec(regs);
165 crash_kexec_secondary(regs);
166
167 if (in_interrupt())
168 panic("Fatal exception in interrupt");
169
170 if (panic_on_oops)
171 panic("Fatal exception");
172
173 oops_exit();
174 do_exit(err);
175
176 return 0;
177 }
178
179 void user_single_step_siginfo(struct task_struct *tsk,
180 struct pt_regs *regs, siginfo_t *info)
181 {
182 memset(info, 0, sizeof(*info));
183 info->si_signo = SIGTRAP;
184 info->si_code = TRAP_TRACE;
185 info->si_addr = (void __user *)regs->nip;
186 }
187
188 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
189 {
190 siginfo_t info;
191 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
192 "at %08lx nip %08lx lr %08lx code %x\n";
193 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
194 "at %016lx nip %016lx lr %016lx code %x\n";
195
196 if (!user_mode(regs)) {
197 if (die("Exception in kernel mode", regs, signr))
198 return;
199 } else if (show_unhandled_signals &&
200 unhandled_signal(current, signr) &&
201 printk_ratelimit()) {
202 printk(regs->msr & MSR_SF ? fmt64 : fmt32,
203 current->comm, current->pid, signr,
204 addr, regs->nip, regs->link, code);
205 }
206
207 memset(&info, 0, sizeof(info));
208 info.si_signo = signr;
209 info.si_code = code;
210 info.si_addr = (void __user *) addr;
211 force_sig_info(signr, &info, current);
212 }
213
214 #ifdef CONFIG_PPC64
215 void system_reset_exception(struct pt_regs *regs)
216 {
217 /* See if any machine dependent calls */
218 if (ppc_md.system_reset_exception) {
219 if (ppc_md.system_reset_exception(regs))
220 return;
221 }
222
223 #ifdef CONFIG_KEXEC
224 cpu_set(smp_processor_id(), cpus_in_sr);
225 #endif
226
227 die("System Reset", regs, SIGABRT);
228
229 /*
230 * Some CPUs when released from the debugger will execute this path.
231 * These CPUs entered the debugger via a soft-reset. If the CPU was
232 * hung before entering the debugger it will return to the hung
233 * state when exiting this function. This causes a problem in
234 * kdump since the hung CPU(s) will not respond to the IPI sent
235 * from kdump. To prevent the problem we call crash_kexec_secondary()
236 * here. If a kdump had not been initiated or we exit the debugger
237 * with the "exit and recover" command (x) crash_kexec_secondary()
238 * will return after 5ms and the CPU returns to its previous state.
239 */
240 crash_kexec_secondary(regs);
241
242 /* Must die if the interrupt is not recoverable */
243 if (!(regs->msr & MSR_RI))
244 panic("Unrecoverable System Reset");
245
246 /* What should we do here? We could issue a shutdown or hard reset. */
247 }
248 #endif
249
250 /*
251 * I/O accesses can cause machine checks on powermacs.
252 * Check if the NIP corresponds to the address of a sync
253 * instruction for which there is an entry in the exception
254 * table.
255 * Note that the 601 only takes a machine check on TEA
256 * (transfer error ack) signal assertion, and does not
257 * set any of the top 16 bits of SRR1.
258 * -- paulus.
259 */
260 static inline int check_io_access(struct pt_regs *regs)
261 {
262 #ifdef CONFIG_PPC32
263 unsigned long msr = regs->msr;
264 const struct exception_table_entry *entry;
265 unsigned int *nip = (unsigned int *)regs->nip;
266
267 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
268 && (entry = search_exception_tables(regs->nip)) != NULL) {
269 /*
270 * Check that it's a sync instruction, or somewhere
271 * in the twi; isync; nop sequence that inb/inw/inl uses.
272 * As the address is in the exception table
273 * we should be able to read the instr there.
274 * For the debug message, we look at the preceding
275 * load or store.
276 */
277 if (*nip == 0x60000000) /* nop */
278 nip -= 2;
279 else if (*nip == 0x4c00012c) /* isync */
280 --nip;
281 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
282 /* sync or twi */
283 unsigned int rb;
284
285 --nip;
286 rb = (*nip >> 11) & 0x1f;
287 printk(KERN_DEBUG "%s bad port %lx at %p\n",
288 (*nip & 0x100)? "OUT to": "IN from",
289 regs->gpr[rb] - _IO_BASE, nip);
290 regs->msr |= MSR_RI;
291 regs->nip = entry->fixup;
292 return 1;
293 }
294 }
295 #endif /* CONFIG_PPC32 */
296 return 0;
297 }
298
299 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
300 /* On 4xx, the reason for the machine check or program exception
301 is in the ESR. */
302 #define get_reason(regs) ((regs)->dsisr)
303 #ifndef CONFIG_FSL_BOOKE
304 #define get_mc_reason(regs) ((regs)->dsisr)
305 #else
306 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
307 #endif
308 #define REASON_FP ESR_FP
309 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
310 #define REASON_PRIVILEGED ESR_PPR
311 #define REASON_TRAP ESR_PTR
312
313 /* single-step stuff */
314 #define single_stepping(regs) (current->thread.dbcr0 & DBCR0_IC)
315 #define clear_single_step(regs) (current->thread.dbcr0 &= ~DBCR0_IC)
316
317 #else
318 /* On non-4xx, the reason for the machine check or program
319 exception is in the MSR. */
320 #define get_reason(regs) ((regs)->msr)
321 #define get_mc_reason(regs) ((regs)->msr)
322 #define REASON_FP 0x100000
323 #define REASON_ILLEGAL 0x80000
324 #define REASON_PRIVILEGED 0x40000
325 #define REASON_TRAP 0x20000
326
327 #define single_stepping(regs) ((regs)->msr & MSR_SE)
328 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
329 #endif
330
331 #if defined(CONFIG_4xx)
332 int machine_check_4xx(struct pt_regs *regs)
333 {
334 unsigned long reason = get_mc_reason(regs);
335
336 if (reason & ESR_IMCP) {
337 printk("Instruction");
338 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
339 } else
340 printk("Data");
341 printk(" machine check in kernel mode.\n");
342
343 return 0;
344 }
345
346 int machine_check_440A(struct pt_regs *regs)
347 {
348 unsigned long reason = get_mc_reason(regs);
349
350 printk("Machine check in kernel mode.\n");
351 if (reason & ESR_IMCP){
352 printk("Instruction Synchronous Machine Check exception\n");
353 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
354 }
355 else {
356 u32 mcsr = mfspr(SPRN_MCSR);
357 if (mcsr & MCSR_IB)
358 printk("Instruction Read PLB Error\n");
359 if (mcsr & MCSR_DRB)
360 printk("Data Read PLB Error\n");
361 if (mcsr & MCSR_DWB)
362 printk("Data Write PLB Error\n");
363 if (mcsr & MCSR_TLBP)
364 printk("TLB Parity Error\n");
365 if (mcsr & MCSR_ICP){
366 flush_instruction_cache();
367 printk("I-Cache Parity Error\n");
368 }
369 if (mcsr & MCSR_DCSP)
370 printk("D-Cache Search Parity Error\n");
371 if (mcsr & MCSR_DCFP)
372 printk("D-Cache Flush Parity Error\n");
373 if (mcsr & MCSR_IMPE)
374 printk("Machine Check exception is imprecise\n");
375
376 /* Clear MCSR */
377 mtspr(SPRN_MCSR, mcsr);
378 }
379 return 0;
380 }
381
382 int machine_check_47x(struct pt_regs *regs)
383 {
384 unsigned long reason = get_mc_reason(regs);
385 u32 mcsr;
386
387 printk(KERN_ERR "Machine check in kernel mode.\n");
388 if (reason & ESR_IMCP) {
389 printk(KERN_ERR
390 "Instruction Synchronous Machine Check exception\n");
391 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
392 return 0;
393 }
394 mcsr = mfspr(SPRN_MCSR);
395 if (mcsr & MCSR_IB)
396 printk(KERN_ERR "Instruction Read PLB Error\n");
397 if (mcsr & MCSR_DRB)
398 printk(KERN_ERR "Data Read PLB Error\n");
399 if (mcsr & MCSR_DWB)
400 printk(KERN_ERR "Data Write PLB Error\n");
401 if (mcsr & MCSR_TLBP)
402 printk(KERN_ERR "TLB Parity Error\n");
403 if (mcsr & MCSR_ICP) {
404 flush_instruction_cache();
405 printk(KERN_ERR "I-Cache Parity Error\n");
406 }
407 if (mcsr & MCSR_DCSP)
408 printk(KERN_ERR "D-Cache Search Parity Error\n");
409 if (mcsr & PPC47x_MCSR_GPR)
410 printk(KERN_ERR "GPR Parity Error\n");
411 if (mcsr & PPC47x_MCSR_FPR)
412 printk(KERN_ERR "FPR Parity Error\n");
413 if (mcsr & PPC47x_MCSR_IPR)
414 printk(KERN_ERR "Machine Check exception is imprecise\n");
415
416 /* Clear MCSR */
417 mtspr(SPRN_MCSR, mcsr);
418
419 return 0;
420 }
421 #elif defined(CONFIG_E500)
422 int machine_check_e500mc(struct pt_regs *regs)
423 {
424 unsigned long mcsr = mfspr(SPRN_MCSR);
425 unsigned long reason = mcsr;
426 int recoverable = 1;
427
428 printk("Machine check in kernel mode.\n");
429 printk("Caused by (from MCSR=%lx): ", reason);
430
431 if (reason & MCSR_MCP)
432 printk("Machine Check Signal\n");
433
434 if (reason & MCSR_ICPERR) {
435 printk("Instruction Cache Parity Error\n");
436
437 /*
438 * This is recoverable by invalidating the i-cache.
439 */
440 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
441 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
442 ;
443
444 /*
445 * This will generally be accompanied by an instruction
446 * fetch error report -- only treat MCSR_IF as fatal
447 * if it wasn't due to an L1 parity error.
448 */
449 reason &= ~MCSR_IF;
450 }
451
452 if (reason & MCSR_DCPERR_MC) {
453 printk("Data Cache Parity Error\n");
454 recoverable = 0;
455 }
456
457 if (reason & MCSR_L2MMU_MHIT) {
458 printk("Hit on multiple TLB entries\n");
459 recoverable = 0;
460 }
461
462 if (reason & MCSR_NMI)
463 printk("Non-maskable interrupt\n");
464
465 if (reason & MCSR_IF) {
466 printk("Instruction Fetch Error Report\n");
467 recoverable = 0;
468 }
469
470 if (reason & MCSR_LD) {
471 printk("Load Error Report\n");
472 recoverable = 0;
473 }
474
475 if (reason & MCSR_ST) {
476 printk("Store Error Report\n");
477 recoverable = 0;
478 }
479
480 if (reason & MCSR_LDG) {
481 printk("Guarded Load Error Report\n");
482 recoverable = 0;
483 }
484
485 if (reason & MCSR_TLBSYNC)
486 printk("Simultaneous tlbsync operations\n");
487
488 if (reason & MCSR_BSL2_ERR) {
489 printk("Level 2 Cache Error\n");
490 recoverable = 0;
491 }
492
493 if (reason & MCSR_MAV) {
494 u64 addr;
495
496 addr = mfspr(SPRN_MCAR);
497 addr |= (u64)mfspr(SPRN_MCARU) << 32;
498
499 printk("Machine Check %s Address: %#llx\n",
500 reason & MCSR_MEA ? "Effective" : "Physical", addr);
501 }
502
503 mtspr(SPRN_MCSR, mcsr);
504 return mfspr(SPRN_MCSR) == 0 && recoverable;
505 }
506
507 int machine_check_e500(struct pt_regs *regs)
508 {
509 unsigned long reason = get_mc_reason(regs);
510
511 printk("Machine check in kernel mode.\n");
512 printk("Caused by (from MCSR=%lx): ", reason);
513
514 if (reason & MCSR_MCP)
515 printk("Machine Check Signal\n");
516 if (reason & MCSR_ICPERR)
517 printk("Instruction Cache Parity Error\n");
518 if (reason & MCSR_DCP_PERR)
519 printk("Data Cache Push Parity Error\n");
520 if (reason & MCSR_DCPERR)
521 printk("Data Cache Parity Error\n");
522 if (reason & MCSR_BUS_IAERR)
523 printk("Bus - Instruction Address Error\n");
524 if (reason & MCSR_BUS_RAERR)
525 printk("Bus - Read Address Error\n");
526 if (reason & MCSR_BUS_WAERR)
527 printk("Bus - Write Address Error\n");
528 if (reason & MCSR_BUS_IBERR)
529 printk("Bus - Instruction Data Error\n");
530 if (reason & MCSR_BUS_RBERR)
531 printk("Bus - Read Data Bus Error\n");
532 if (reason & MCSR_BUS_WBERR)
533 printk("Bus - Read Data Bus Error\n");
534 if (reason & MCSR_BUS_IPERR)
535 printk("Bus - Instruction Parity Error\n");
536 if (reason & MCSR_BUS_RPERR)
537 printk("Bus - Read Parity Error\n");
538
539 return 0;
540 }
541 #elif defined(CONFIG_E200)
542 int machine_check_e200(struct pt_regs *regs)
543 {
544 unsigned long reason = get_mc_reason(regs);
545
546 printk("Machine check in kernel mode.\n");
547 printk("Caused by (from MCSR=%lx): ", reason);
548
549 if (reason & MCSR_MCP)
550 printk("Machine Check Signal\n");
551 if (reason & MCSR_CP_PERR)
552 printk("Cache Push Parity Error\n");
553 if (reason & MCSR_CPERR)
554 printk("Cache Parity Error\n");
555 if (reason & MCSR_EXCP_ERR)
556 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
557 if (reason & MCSR_BUS_IRERR)
558 printk("Bus - Read Bus Error on instruction fetch\n");
559 if (reason & MCSR_BUS_DRERR)
560 printk("Bus - Read Bus Error on data load\n");
561 if (reason & MCSR_BUS_WRERR)
562 printk("Bus - Write Bus Error on buffered store or cache line push\n");
563
564 return 0;
565 }
566 #else
567 int machine_check_generic(struct pt_regs *regs)
568 {
569 unsigned long reason = get_mc_reason(regs);
570
571 printk("Machine check in kernel mode.\n");
572 printk("Caused by (from SRR1=%lx): ", reason);
573 switch (reason & 0x601F0000) {
574 case 0x80000:
575 printk("Machine check signal\n");
576 break;
577 case 0: /* for 601 */
578 case 0x40000:
579 case 0x140000: /* 7450 MSS error and TEA */
580 printk("Transfer error ack signal\n");
581 break;
582 case 0x20000:
583 printk("Data parity error signal\n");
584 break;
585 case 0x10000:
586 printk("Address parity error signal\n");
587 break;
588 case 0x20000000:
589 printk("L1 Data Cache error\n");
590 break;
591 case 0x40000000:
592 printk("L1 Instruction Cache error\n");
593 break;
594 case 0x00100000:
595 printk("L2 data cache parity error\n");
596 break;
597 default:
598 printk("Unknown values in msr\n");
599 }
600 return 0;
601 }
602 #endif /* everything else */
603
604 void machine_check_exception(struct pt_regs *regs)
605 {
606 int recover = 0;
607
608 __get_cpu_var(irq_stat).mce_exceptions++;
609
610 /* See if any machine dependent calls. In theory, we would want
611 * to call the CPU first, and call the ppc_md. one if the CPU
612 * one returns a positive number. However there is existing code
613 * that assumes the board gets a first chance, so let's keep it
614 * that way for now and fix things later. --BenH.
615 */
616 if (ppc_md.machine_check_exception)
617 recover = ppc_md.machine_check_exception(regs);
618 else if (cur_cpu_spec->machine_check)
619 recover = cur_cpu_spec->machine_check(regs);
620
621 if (recover > 0)
622 return;
623
624 if (user_mode(regs)) {
625 regs->msr |= MSR_RI;
626 _exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
627 return;
628 }
629
630 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
631 /* the qspan pci read routines can cause machine checks -- Cort
632 *
633 * yuck !!! that totally needs to go away ! There are better ways
634 * to deal with that than having a wart in the mcheck handler.
635 * -- BenH
636 */
637 bad_page_fault(regs, regs->dar, SIGBUS);
638 return;
639 #endif
640
641 if (debugger_fault_handler(regs)) {
642 regs->msr |= MSR_RI;
643 return;
644 }
645
646 if (check_io_access(regs))
647 return;
648
649 if (debugger_fault_handler(regs))
650 return;
651 die("Machine check", regs, SIGBUS);
652
653 /* Must die if the interrupt is not recoverable */
654 if (!(regs->msr & MSR_RI))
655 panic("Unrecoverable Machine check");
656 }
657
658 void SMIException(struct pt_regs *regs)
659 {
660 die("System Management Interrupt", regs, SIGABRT);
661 }
662
663 void unknown_exception(struct pt_regs *regs)
664 {
665 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
666 regs->nip, regs->msr, regs->trap);
667
668 _exception(SIGTRAP, regs, 0, 0);
669 }
670
671 void instruction_breakpoint_exception(struct pt_regs *regs)
672 {
673 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
674 5, SIGTRAP) == NOTIFY_STOP)
675 return;
676 if (debugger_iabr_match(regs))
677 return;
678 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
679 }
680
681 void RunModeException(struct pt_regs *regs)
682 {
683 _exception(SIGTRAP, regs, 0, 0);
684 }
685
686 void __kprobes single_step_exception(struct pt_regs *regs)
687 {
688 clear_single_step(regs);
689
690 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
691 5, SIGTRAP) == NOTIFY_STOP)
692 return;
693 if (debugger_sstep(regs))
694 return;
695
696 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
697 }
698
699 /*
700 * After we have successfully emulated an instruction, we have to
701 * check if the instruction was being single-stepped, and if so,
702 * pretend we got a single-step exception. This was pointed out
703 * by Kumar Gala. -- paulus
704 */
705 static void emulate_single_step(struct pt_regs *regs)
706 {
707 if (single_stepping(regs))
708 single_step_exception(regs);
709 }
710
711 static inline int __parse_fpscr(unsigned long fpscr)
712 {
713 int ret = 0;
714
715 /* Invalid operation */
716 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
717 ret = FPE_FLTINV;
718
719 /* Overflow */
720 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
721 ret = FPE_FLTOVF;
722
723 /* Underflow */
724 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
725 ret = FPE_FLTUND;
726
727 /* Divide by zero */
728 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
729 ret = FPE_FLTDIV;
730
731 /* Inexact result */
732 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
733 ret = FPE_FLTRES;
734
735 return ret;
736 }
737
738 static void parse_fpe(struct pt_regs *regs)
739 {
740 int code = 0;
741
742 flush_fp_to_thread(current);
743
744 code = __parse_fpscr(current->thread.fpscr.val);
745
746 _exception(SIGFPE, regs, code, regs->nip);
747 }
748
749 /*
750 * Illegal instruction emulation support. Originally written to
751 * provide the PVR to user applications using the mfspr rd, PVR.
752 * Return non-zero if we can't emulate, or -EFAULT if the associated
753 * memory access caused an access fault. Return zero on success.
754 *
755 * There are a couple of ways to do this, either "decode" the instruction
756 * or directly match lots of bits. In this case, matching lots of
757 * bits is faster and easier.
758 *
759 */
760 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
761 {
762 u8 rT = (instword >> 21) & 0x1f;
763 u8 rA = (instword >> 16) & 0x1f;
764 u8 NB_RB = (instword >> 11) & 0x1f;
765 u32 num_bytes;
766 unsigned long EA;
767 int pos = 0;
768
769 /* Early out if we are an invalid form of lswx */
770 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
771 if ((rT == rA) || (rT == NB_RB))
772 return -EINVAL;
773
774 EA = (rA == 0) ? 0 : regs->gpr[rA];
775
776 switch (instword & PPC_INST_STRING_MASK) {
777 case PPC_INST_LSWX:
778 case PPC_INST_STSWX:
779 EA += NB_RB;
780 num_bytes = regs->xer & 0x7f;
781 break;
782 case PPC_INST_LSWI:
783 case PPC_INST_STSWI:
784 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
785 break;
786 default:
787 return -EINVAL;
788 }
789
790 while (num_bytes != 0)
791 {
792 u8 val;
793 u32 shift = 8 * (3 - (pos & 0x3));
794
795 switch ((instword & PPC_INST_STRING_MASK)) {
796 case PPC_INST_LSWX:
797 case PPC_INST_LSWI:
798 if (get_user(val, (u8 __user *)EA))
799 return -EFAULT;
800 /* first time updating this reg,
801 * zero it out */
802 if (pos == 0)
803 regs->gpr[rT] = 0;
804 regs->gpr[rT] |= val << shift;
805 break;
806 case PPC_INST_STSWI:
807 case PPC_INST_STSWX:
808 val = regs->gpr[rT] >> shift;
809 if (put_user(val, (u8 __user *)EA))
810 return -EFAULT;
811 break;
812 }
813 /* move EA to next address */
814 EA += 1;
815 num_bytes--;
816
817 /* manage our position within the register */
818 if (++pos == 4) {
819 pos = 0;
820 if (++rT == 32)
821 rT = 0;
822 }
823 }
824
825 return 0;
826 }
827
828 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
829 {
830 u32 ra,rs;
831 unsigned long tmp;
832
833 ra = (instword >> 16) & 0x1f;
834 rs = (instword >> 21) & 0x1f;
835
836 tmp = regs->gpr[rs];
837 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
838 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
839 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
840 regs->gpr[ra] = tmp;
841
842 return 0;
843 }
844
845 static int emulate_isel(struct pt_regs *regs, u32 instword)
846 {
847 u8 rT = (instword >> 21) & 0x1f;
848 u8 rA = (instword >> 16) & 0x1f;
849 u8 rB = (instword >> 11) & 0x1f;
850 u8 BC = (instword >> 6) & 0x1f;
851 u8 bit;
852 unsigned long tmp;
853
854 tmp = (rA == 0) ? 0 : regs->gpr[rA];
855 bit = (regs->ccr >> (31 - BC)) & 0x1;
856
857 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
858
859 return 0;
860 }
861
862 static int emulate_instruction(struct pt_regs *regs)
863 {
864 u32 instword;
865 u32 rd;
866
867 if (!user_mode(regs) || (regs->msr & MSR_LE))
868 return -EINVAL;
869 CHECK_FULL_REGS(regs);
870
871 if (get_user(instword, (u32 __user *)(regs->nip)))
872 return -EFAULT;
873
874 /* Emulate the mfspr rD, PVR. */
875 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
876 PPC_WARN_EMULATED(mfpvr, regs);
877 rd = (instword >> 21) & 0x1f;
878 regs->gpr[rd] = mfspr(SPRN_PVR);
879 return 0;
880 }
881
882 /* Emulating the dcba insn is just a no-op. */
883 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
884 PPC_WARN_EMULATED(dcba, regs);
885 return 0;
886 }
887
888 /* Emulate the mcrxr insn. */
889 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
890 int shift = (instword >> 21) & 0x1c;
891 unsigned long msk = 0xf0000000UL >> shift;
892
893 PPC_WARN_EMULATED(mcrxr, regs);
894 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
895 regs->xer &= ~0xf0000000UL;
896 return 0;
897 }
898
899 /* Emulate load/store string insn. */
900 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
901 PPC_WARN_EMULATED(string, regs);
902 return emulate_string_inst(regs, instword);
903 }
904
905 /* Emulate the popcntb (Population Count Bytes) instruction. */
906 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
907 PPC_WARN_EMULATED(popcntb, regs);
908 return emulate_popcntb_inst(regs, instword);
909 }
910
911 /* Emulate isel (Integer Select) instruction */
912 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
913 PPC_WARN_EMULATED(isel, regs);
914 return emulate_isel(regs, instword);
915 }
916
917 return -EINVAL;
918 }
919
920 int is_valid_bugaddr(unsigned long addr)
921 {
922 return is_kernel_addr(addr);
923 }
924
925 void __kprobes program_check_exception(struct pt_regs *regs)
926 {
927 unsigned int reason = get_reason(regs);
928 extern int do_mathemu(struct pt_regs *regs);
929
930 /* We can now get here via a FP Unavailable exception if the core
931 * has no FPU, in that case the reason flags will be 0 */
932
933 if (reason & REASON_FP) {
934 /* IEEE FP exception */
935 parse_fpe(regs);
936 return;
937 }
938 if (reason & REASON_TRAP) {
939 /* Debugger is first in line to stop recursive faults in
940 * rcu_lock, notify_die, or atomic_notifier_call_chain */
941 if (debugger_bpt(regs))
942 return;
943
944 /* trap exception */
945 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
946 == NOTIFY_STOP)
947 return;
948
949 if (!(regs->msr & MSR_PR) && /* not user-mode */
950 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
951 regs->nip += 4;
952 return;
953 }
954 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
955 return;
956 }
957
958 local_irq_enable();
959
960 #ifdef CONFIG_MATH_EMULATION
961 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
962 * but there seems to be a hardware bug on the 405GP (RevD)
963 * that means ESR is sometimes set incorrectly - either to
964 * ESR_DST (!?) or 0. In the process of chasing this with the
965 * hardware people - not sure if it can happen on any illegal
966 * instruction or only on FP instructions, whether there is a
967 * pattern to occurences etc. -dgibson 31/Mar/2003 */
968 switch (do_mathemu(regs)) {
969 case 0:
970 emulate_single_step(regs);
971 return;
972 case 1: {
973 int code = 0;
974 code = __parse_fpscr(current->thread.fpscr.val);
975 _exception(SIGFPE, regs, code, regs->nip);
976 return;
977 }
978 case -EFAULT:
979 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
980 return;
981 }
982 /* fall through on any other errors */
983 #endif /* CONFIG_MATH_EMULATION */
984
985 /* Try to emulate it if we should. */
986 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
987 switch (emulate_instruction(regs)) {
988 case 0:
989 regs->nip += 4;
990 emulate_single_step(regs);
991 return;
992 case -EFAULT:
993 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
994 return;
995 }
996 }
997
998 if (reason & REASON_PRIVILEGED)
999 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1000 else
1001 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1002 }
1003
1004 void alignment_exception(struct pt_regs *regs)
1005 {
1006 int sig, code, fixed = 0;
1007
1008 /* we don't implement logging of alignment exceptions */
1009 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1010 fixed = fix_alignment(regs);
1011
1012 if (fixed == 1) {
1013 regs->nip += 4; /* skip over emulated instruction */
1014 emulate_single_step(regs);
1015 return;
1016 }
1017
1018 /* Operand address was bad */
1019 if (fixed == -EFAULT) {
1020 sig = SIGSEGV;
1021 code = SEGV_ACCERR;
1022 } else {
1023 sig = SIGBUS;
1024 code = BUS_ADRALN;
1025 }
1026 if (user_mode(regs))
1027 _exception(sig, regs, code, regs->dar);
1028 else
1029 bad_page_fault(regs, regs->dar, sig);
1030 }
1031
1032 void StackOverflow(struct pt_regs *regs)
1033 {
1034 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1035 current, regs->gpr[1]);
1036 debugger(regs);
1037 show_regs(regs);
1038 panic("kernel stack overflow");
1039 }
1040
1041 void nonrecoverable_exception(struct pt_regs *regs)
1042 {
1043 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1044 regs->nip, regs->msr);
1045 debugger(regs);
1046 die("nonrecoverable exception", regs, SIGKILL);
1047 }
1048
1049 void trace_syscall(struct pt_regs *regs)
1050 {
1051 printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
1052 current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1053 regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1054 }
1055
1056 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1057 {
1058 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1059 "%lx at %lx\n", regs->trap, regs->nip);
1060 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1061 }
1062
1063 void altivec_unavailable_exception(struct pt_regs *regs)
1064 {
1065 if (user_mode(regs)) {
1066 /* A user program has executed an altivec instruction,
1067 but this kernel doesn't support altivec. */
1068 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1069 return;
1070 }
1071
1072 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1073 "%lx at %lx\n", regs->trap, regs->nip);
1074 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1075 }
1076
1077 void vsx_unavailable_exception(struct pt_regs *regs)
1078 {
1079 if (user_mode(regs)) {
1080 /* A user program has executed an vsx instruction,
1081 but this kernel doesn't support vsx. */
1082 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1083 return;
1084 }
1085
1086 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1087 "%lx at %lx\n", regs->trap, regs->nip);
1088 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1089 }
1090
1091 void performance_monitor_exception(struct pt_regs *regs)
1092 {
1093 __get_cpu_var(irq_stat).pmu_irqs++;
1094
1095 perf_irq(regs);
1096 }
1097
1098 #ifdef CONFIG_8xx
1099 void SoftwareEmulation(struct pt_regs *regs)
1100 {
1101 extern int do_mathemu(struct pt_regs *);
1102 extern int Soft_emulate_8xx(struct pt_regs *);
1103 #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1104 int errcode;
1105 #endif
1106
1107 CHECK_FULL_REGS(regs);
1108
1109 if (!user_mode(regs)) {
1110 debugger(regs);
1111 die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1112 }
1113
1114 #ifdef CONFIG_MATH_EMULATION
1115 errcode = do_mathemu(regs);
1116 if (errcode >= 0)
1117 PPC_WARN_EMULATED(math, regs);
1118
1119 switch (errcode) {
1120 case 0:
1121 emulate_single_step(regs);
1122 return;
1123 case 1: {
1124 int code = 0;
1125 code = __parse_fpscr(current->thread.fpscr.val);
1126 _exception(SIGFPE, regs, code, regs->nip);
1127 return;
1128 }
1129 case -EFAULT:
1130 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1131 return;
1132 default:
1133 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1134 return;
1135 }
1136
1137 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1138 errcode = Soft_emulate_8xx(regs);
1139 if (errcode >= 0)
1140 PPC_WARN_EMULATED(8xx, regs);
1141
1142 switch (errcode) {
1143 case 0:
1144 emulate_single_step(regs);
1145 return;
1146 case 1:
1147 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1148 return;
1149 case -EFAULT:
1150 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1151 return;
1152 }
1153 #else
1154 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1155 #endif
1156 }
1157 #endif /* CONFIG_8xx */
1158
1159 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1160 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1161 {
1162 int changed = 0;
1163 /*
1164 * Determine the cause of the debug event, clear the
1165 * event flags and send a trap to the handler. Torez
1166 */
1167 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1168 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1169 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1170 current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1171 #endif
1172 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1173 5);
1174 changed |= 0x01;
1175 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1176 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1177 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1178 6);
1179 changed |= 0x01;
1180 } else if (debug_status & DBSR_IAC1) {
1181 current->thread.dbcr0 &= ~DBCR0_IAC1;
1182 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1183 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1184 1);
1185 changed |= 0x01;
1186 } else if (debug_status & DBSR_IAC2) {
1187 current->thread.dbcr0 &= ~DBCR0_IAC2;
1188 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1189 2);
1190 changed |= 0x01;
1191 } else if (debug_status & DBSR_IAC3) {
1192 current->thread.dbcr0 &= ~DBCR0_IAC3;
1193 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1194 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1195 3);
1196 changed |= 0x01;
1197 } else if (debug_status & DBSR_IAC4) {
1198 current->thread.dbcr0 &= ~DBCR0_IAC4;
1199 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1200 4);
1201 changed |= 0x01;
1202 }
1203 /*
1204 * At the point this routine was called, the MSR(DE) was turned off.
1205 * Check all other debug flags and see if that bit needs to be turned
1206 * back on or not.
1207 */
1208 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1209 regs->msr |= MSR_DE;
1210 else
1211 /* Make sure the IDM flag is off */
1212 current->thread.dbcr0 &= ~DBCR0_IDM;
1213
1214 if (changed & 0x01)
1215 mtspr(SPRN_DBCR0, current->thread.dbcr0);
1216 }
1217
1218 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1219 {
1220 current->thread.dbsr = debug_status;
1221
1222 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1223 * on server, it stops on the target of the branch. In order to simulate
1224 * the server behaviour, we thus restart right away with a single step
1225 * instead of stopping here when hitting a BT
1226 */
1227 if (debug_status & DBSR_BT) {
1228 regs->msr &= ~MSR_DE;
1229
1230 /* Disable BT */
1231 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1232 /* Clear the BT event */
1233 mtspr(SPRN_DBSR, DBSR_BT);
1234
1235 /* Do the single step trick only when coming from userspace */
1236 if (user_mode(regs)) {
1237 current->thread.dbcr0 &= ~DBCR0_BT;
1238 current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1239 regs->msr |= MSR_DE;
1240 return;
1241 }
1242
1243 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1244 5, SIGTRAP) == NOTIFY_STOP) {
1245 return;
1246 }
1247 if (debugger_sstep(regs))
1248 return;
1249 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1250 regs->msr &= ~MSR_DE;
1251
1252 /* Disable instruction completion */
1253 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1254 /* Clear the instruction completion event */
1255 mtspr(SPRN_DBSR, DBSR_IC);
1256
1257 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1258 5, SIGTRAP) == NOTIFY_STOP) {
1259 return;
1260 }
1261
1262 if (debugger_sstep(regs))
1263 return;
1264
1265 if (user_mode(regs)) {
1266 current->thread.dbcr0 &= ~DBCR0_IC;
1267 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1268 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1269 current->thread.dbcr1))
1270 regs->msr |= MSR_DE;
1271 else
1272 /* Make sure the IDM bit is off */
1273 current->thread.dbcr0 &= ~DBCR0_IDM;
1274 #endif
1275 }
1276
1277 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1278 } else
1279 handle_debug(regs, debug_status);
1280 }
1281 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1282
1283 #if !defined(CONFIG_TAU_INT)
1284 void TAUException(struct pt_regs *regs)
1285 {
1286 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1287 regs->nip, regs->msr, regs->trap, print_tainted());
1288 }
1289 #endif /* CONFIG_INT_TAU */
1290
1291 #ifdef CONFIG_ALTIVEC
1292 void altivec_assist_exception(struct pt_regs *regs)
1293 {
1294 int err;
1295
1296 if (!user_mode(regs)) {
1297 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1298 " at %lx\n", regs->nip);
1299 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1300 }
1301
1302 flush_altivec_to_thread(current);
1303
1304 PPC_WARN_EMULATED(altivec, regs);
1305 err = emulate_altivec(regs);
1306 if (err == 0) {
1307 regs->nip += 4; /* skip emulated instruction */
1308 emulate_single_step(regs);
1309 return;
1310 }
1311
1312 if (err == -EFAULT) {
1313 /* got an error reading the instruction */
1314 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1315 } else {
1316 /* didn't recognize the instruction */
1317 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1318 if (printk_ratelimit())
1319 printk(KERN_ERR "Unrecognized altivec instruction "
1320 "in %s at %lx\n", current->comm, regs->nip);
1321 current->thread.vscr.u[3] |= 0x10000;
1322 }
1323 }
1324 #endif /* CONFIG_ALTIVEC */
1325
1326 #ifdef CONFIG_VSX
1327 void vsx_assist_exception(struct pt_regs *regs)
1328 {
1329 if (!user_mode(regs)) {
1330 printk(KERN_EMERG "VSX assist exception in kernel mode"
1331 " at %lx\n", regs->nip);
1332 die("Kernel VSX assist exception", regs, SIGILL);
1333 }
1334
1335 flush_vsx_to_thread(current);
1336 printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1337 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1338 }
1339 #endif /* CONFIG_VSX */
1340
1341 #ifdef CONFIG_FSL_BOOKE
1342 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1343 unsigned long error_code)
1344 {
1345 /* We treat cache locking instructions from the user
1346 * as priv ops, in the future we could try to do
1347 * something smarter
1348 */
1349 if (error_code & (ESR_DLK|ESR_ILK))
1350 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1351 return;
1352 }
1353 #endif /* CONFIG_FSL_BOOKE */
1354
1355 #ifdef CONFIG_SPE
1356 void SPEFloatingPointException(struct pt_regs *regs)
1357 {
1358 extern int do_spe_mathemu(struct pt_regs *regs);
1359 unsigned long spefscr;
1360 int fpexc_mode;
1361 int code = 0;
1362 int err;
1363
1364 preempt_disable();
1365 if (regs->msr & MSR_SPE)
1366 giveup_spe(current);
1367 preempt_enable();
1368
1369 spefscr = current->thread.spefscr;
1370 fpexc_mode = current->thread.fpexc_mode;
1371
1372 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1373 code = FPE_FLTOVF;
1374 }
1375 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1376 code = FPE_FLTUND;
1377 }
1378 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1379 code = FPE_FLTDIV;
1380 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1381 code = FPE_FLTINV;
1382 }
1383 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1384 code = FPE_FLTRES;
1385
1386 err = do_spe_mathemu(regs);
1387 if (err == 0) {
1388 regs->nip += 4; /* skip emulated instruction */
1389 emulate_single_step(regs);
1390 return;
1391 }
1392
1393 if (err == -EFAULT) {
1394 /* got an error reading the instruction */
1395 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1396 } else if (err == -EINVAL) {
1397 /* didn't recognize the instruction */
1398 printk(KERN_ERR "unrecognized spe instruction "
1399 "in %s at %lx\n", current->comm, regs->nip);
1400 } else {
1401 _exception(SIGFPE, regs, code, regs->nip);
1402 }
1403
1404 return;
1405 }
1406
1407 void SPEFloatingPointRoundException(struct pt_regs *regs)
1408 {
1409 extern int speround_handler(struct pt_regs *regs);
1410 int err;
1411
1412 preempt_disable();
1413 if (regs->msr & MSR_SPE)
1414 giveup_spe(current);
1415 preempt_enable();
1416
1417 regs->nip -= 4;
1418 err = speround_handler(regs);
1419 if (err == 0) {
1420 regs->nip += 4; /* skip emulated instruction */
1421 emulate_single_step(regs);
1422 return;
1423 }
1424
1425 if (err == -EFAULT) {
1426 /* got an error reading the instruction */
1427 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1428 } else if (err == -EINVAL) {
1429 /* didn't recognize the instruction */
1430 printk(KERN_ERR "unrecognized spe instruction "
1431 "in %s at %lx\n", current->comm, regs->nip);
1432 } else {
1433 _exception(SIGFPE, regs, 0, regs->nip);
1434 return;
1435 }
1436 }
1437 #endif
1438
1439 /*
1440 * We enter here if we get an unrecoverable exception, that is, one
1441 * that happened at a point where the RI (recoverable interrupt) bit
1442 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1443 * we therefore lost state by taking this exception.
1444 */
1445 void unrecoverable_exception(struct pt_regs *regs)
1446 {
1447 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1448 regs->trap, regs->nip);
1449 die("Unrecoverable exception", regs, SIGABRT);
1450 }
1451
1452 #ifdef CONFIG_BOOKE_WDT
1453 /*
1454 * Default handler for a Watchdog exception,
1455 * spins until a reboot occurs
1456 */
1457 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1458 {
1459 /* Generic WatchdogHandler, implement your own */
1460 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1461 return;
1462 }
1463
1464 void WatchdogException(struct pt_regs *regs)
1465 {
1466 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1467 WatchdogHandler(regs);
1468 }
1469 #endif
1470
1471 /*
1472 * We enter here if we discover during exception entry that we are
1473 * running in supervisor mode with a userspace value in the stack pointer.
1474 */
1475 void kernel_bad_stack(struct pt_regs *regs)
1476 {
1477 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1478 regs->gpr[1], regs->nip);
1479 die("Bad kernel stack pointer", regs, SIGABRT);
1480 }
1481
1482 void __init trap_init(void)
1483 {
1484 }
1485
1486
1487 #ifdef CONFIG_PPC_EMULATED_STATS
1488
1489 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1490
1491 struct ppc_emulated ppc_emulated = {
1492 #ifdef CONFIG_ALTIVEC
1493 WARN_EMULATED_SETUP(altivec),
1494 #endif
1495 WARN_EMULATED_SETUP(dcba),
1496 WARN_EMULATED_SETUP(dcbz),
1497 WARN_EMULATED_SETUP(fp_pair),
1498 WARN_EMULATED_SETUP(isel),
1499 WARN_EMULATED_SETUP(mcrxr),
1500 WARN_EMULATED_SETUP(mfpvr),
1501 WARN_EMULATED_SETUP(multiple),
1502 WARN_EMULATED_SETUP(popcntb),
1503 WARN_EMULATED_SETUP(spe),
1504 WARN_EMULATED_SETUP(string),
1505 WARN_EMULATED_SETUP(unaligned),
1506 #ifdef CONFIG_MATH_EMULATION
1507 WARN_EMULATED_SETUP(math),
1508 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1509 WARN_EMULATED_SETUP(8xx),
1510 #endif
1511 #ifdef CONFIG_VSX
1512 WARN_EMULATED_SETUP(vsx),
1513 #endif
1514 };
1515
1516 u32 ppc_warn_emulated;
1517
1518 void ppc_warn_emulated_print(const char *type)
1519 {
1520 if (printk_ratelimit())
1521 pr_warning("%s used emulated %s instruction\n", current->comm,
1522 type);
1523 }
1524
1525 static int __init ppc_warn_emulated_init(void)
1526 {
1527 struct dentry *dir, *d;
1528 unsigned int i;
1529 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1530
1531 if (!powerpc_debugfs_root)
1532 return -ENODEV;
1533
1534 dir = debugfs_create_dir("emulated_instructions",
1535 powerpc_debugfs_root);
1536 if (!dir)
1537 return -ENOMEM;
1538
1539 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1540 &ppc_warn_emulated);
1541 if (!d)
1542 goto fail;
1543
1544 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1545 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1546 (u32 *)&entries[i].val.counter);
1547 if (!d)
1548 goto fail;
1549 }
1550
1551 return 0;
1552
1553 fail:
1554 debugfs_remove_recursive(dir);
1555 return -ENOMEM;
1556 }
1557
1558 device_initcall(ppc_warn_emulated_init);
1559
1560 #endif /* CONFIG_PPC_EMULATED_STATS */