powerpc: Fix emulation of illegal instructions on PowerNV platform
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #ifdef CONFIG_PPC32
48 #include <asm/reg.h>
49 #endif
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65
66 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
67 int (*__debugger)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
74
75 EXPORT_SYMBOL(__debugger);
76 EXPORT_SYMBOL(__debugger_ipi);
77 EXPORT_SYMBOL(__debugger_bpt);
78 EXPORT_SYMBOL(__debugger_sstep);
79 EXPORT_SYMBOL(__debugger_iabr_match);
80 EXPORT_SYMBOL(__debugger_break_match);
81 EXPORT_SYMBOL(__debugger_fault_handler);
82 #endif
83
84 /* Transactional Memory trap debug */
85 #ifdef TM_DEBUG_SW
86 #define TM_DEBUG(x...) printk(KERN_INFO x)
87 #else
88 #define TM_DEBUG(x...) do { } while(0)
89 #endif
90
91 /*
92 * Trap & Exception support
93 */
94
95 #ifdef CONFIG_PMAC_BACKLIGHT
96 static void pmac_backlight_unblank(void)
97 {
98 mutex_lock(&pmac_backlight_mutex);
99 if (pmac_backlight) {
100 struct backlight_properties *props;
101
102 props = &pmac_backlight->props;
103 props->brightness = props->max_brightness;
104 props->power = FB_BLANK_UNBLANK;
105 backlight_update_status(pmac_backlight);
106 }
107 mutex_unlock(&pmac_backlight_mutex);
108 }
109 #else
110 static inline void pmac_backlight_unblank(void) { }
111 #endif
112
113 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
114 static int die_owner = -1;
115 static unsigned int die_nest_count;
116 static int die_counter;
117
118 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
119 {
120 int cpu;
121 unsigned long flags;
122
123 if (debugger(regs))
124 return 1;
125
126 oops_enter();
127
128 /* racy, but better than risking deadlock. */
129 raw_local_irq_save(flags);
130 cpu = smp_processor_id();
131 if (!arch_spin_trylock(&die_lock)) {
132 if (cpu == die_owner)
133 /* nested oops. should stop eventually */;
134 else
135 arch_spin_lock(&die_lock);
136 }
137 die_nest_count++;
138 die_owner = cpu;
139 console_verbose();
140 bust_spinlocks(1);
141 if (machine_is(powermac))
142 pmac_backlight_unblank();
143 return flags;
144 }
145
146 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
147 int signr)
148 {
149 bust_spinlocks(0);
150 die_owner = -1;
151 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
152 die_nest_count--;
153 oops_exit();
154 printk("\n");
155 if (!die_nest_count)
156 /* Nest count reaches zero, release the lock. */
157 arch_spin_unlock(&die_lock);
158 raw_local_irq_restore(flags);
159
160 crash_fadump(regs, "die oops");
161
162 /*
163 * A system reset (0x100) is a request to dump, so we always send
164 * it through the crashdump code.
165 */
166 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
167 crash_kexec(regs);
168
169 /*
170 * We aren't the primary crash CPU. We need to send it
171 * to a holding pattern to avoid it ending up in the panic
172 * code.
173 */
174 crash_kexec_secondary(regs);
175 }
176
177 if (!signr)
178 return;
179
180 /*
181 * While our oops output is serialised by a spinlock, output
182 * from panic() called below can race and corrupt it. If we
183 * know we are going to panic, delay for 1 second so we have a
184 * chance to get clean backtraces from all CPUs that are oopsing.
185 */
186 if (in_interrupt() || panic_on_oops || !current->pid ||
187 is_global_init(current)) {
188 mdelay(MSEC_PER_SEC);
189 }
190
191 if (in_interrupt())
192 panic("Fatal exception in interrupt");
193 if (panic_on_oops)
194 panic("Fatal exception");
195 do_exit(signr);
196 }
197
198 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
199 {
200 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
201 #ifdef CONFIG_PREEMPT
202 printk("PREEMPT ");
203 #endif
204 #ifdef CONFIG_SMP
205 printk("SMP NR_CPUS=%d ", NR_CPUS);
206 #endif
207 #ifdef CONFIG_DEBUG_PAGEALLOC
208 printk("DEBUG_PAGEALLOC ");
209 #endif
210 #ifdef CONFIG_NUMA
211 printk("NUMA ");
212 #endif
213 printk("%s\n", ppc_md.name ? ppc_md.name : "");
214
215 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
216 return 1;
217
218 print_modules();
219 show_regs(regs);
220
221 return 0;
222 }
223
224 void die(const char *str, struct pt_regs *regs, long err)
225 {
226 unsigned long flags = oops_begin(regs);
227
228 if (__die(str, regs, err))
229 err = 0;
230 oops_end(flags, regs, err);
231 }
232
233 void user_single_step_siginfo(struct task_struct *tsk,
234 struct pt_regs *regs, siginfo_t *info)
235 {
236 memset(info, 0, sizeof(*info));
237 info->si_signo = SIGTRAP;
238 info->si_code = TRAP_TRACE;
239 info->si_addr = (void __user *)regs->nip;
240 }
241
242 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
243 {
244 siginfo_t info;
245 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 "at %08lx nip %08lx lr %08lx code %x\n";
247 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
248 "at %016lx nip %016lx lr %016lx code %x\n";
249
250 if (!user_mode(regs)) {
251 die("Exception in kernel mode", regs, signr);
252 return;
253 }
254
255 if (show_unhandled_signals && unhandled_signal(current, signr)) {
256 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
257 current->comm, current->pid, signr,
258 addr, regs->nip, regs->link, code);
259 }
260
261 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
262 local_irq_enable();
263
264 current->thread.trap_nr = code;
265 memset(&info, 0, sizeof(info));
266 info.si_signo = signr;
267 info.si_code = code;
268 info.si_addr = (void __user *) addr;
269 force_sig_info(signr, &info, current);
270 }
271
272 #ifdef CONFIG_PPC64
273 void system_reset_exception(struct pt_regs *regs)
274 {
275 /* See if any machine dependent calls */
276 if (ppc_md.system_reset_exception) {
277 if (ppc_md.system_reset_exception(regs))
278 return;
279 }
280
281 die("System Reset", regs, SIGABRT);
282
283 /* Must die if the interrupt is not recoverable */
284 if (!(regs->msr & MSR_RI))
285 panic("Unrecoverable System Reset");
286
287 /* What should we do here? We could issue a shutdown or hard reset. */
288 }
289 #endif
290
291 /*
292 * I/O accesses can cause machine checks on powermacs.
293 * Check if the NIP corresponds to the address of a sync
294 * instruction for which there is an entry in the exception
295 * table.
296 * Note that the 601 only takes a machine check on TEA
297 * (transfer error ack) signal assertion, and does not
298 * set any of the top 16 bits of SRR1.
299 * -- paulus.
300 */
301 static inline int check_io_access(struct pt_regs *regs)
302 {
303 #ifdef CONFIG_PPC32
304 unsigned long msr = regs->msr;
305 const struct exception_table_entry *entry;
306 unsigned int *nip = (unsigned int *)regs->nip;
307
308 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
309 && (entry = search_exception_tables(regs->nip)) != NULL) {
310 /*
311 * Check that it's a sync instruction, or somewhere
312 * in the twi; isync; nop sequence that inb/inw/inl uses.
313 * As the address is in the exception table
314 * we should be able to read the instr there.
315 * For the debug message, we look at the preceding
316 * load or store.
317 */
318 if (*nip == 0x60000000) /* nop */
319 nip -= 2;
320 else if (*nip == 0x4c00012c) /* isync */
321 --nip;
322 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
323 /* sync or twi */
324 unsigned int rb;
325
326 --nip;
327 rb = (*nip >> 11) & 0x1f;
328 printk(KERN_DEBUG "%s bad port %lx at %p\n",
329 (*nip & 0x100)? "OUT to": "IN from",
330 regs->gpr[rb] - _IO_BASE, nip);
331 regs->msr |= MSR_RI;
332 regs->nip = entry->fixup;
333 return 1;
334 }
335 }
336 #endif /* CONFIG_PPC32 */
337 return 0;
338 }
339
340 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
341 /* On 4xx, the reason for the machine check or program exception
342 is in the ESR. */
343 #define get_reason(regs) ((regs)->dsisr)
344 #ifndef CONFIG_FSL_BOOKE
345 #define get_mc_reason(regs) ((regs)->dsisr)
346 #else
347 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
348 #endif
349 #define REASON_FP ESR_FP
350 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
351 #define REASON_PRIVILEGED ESR_PPR
352 #define REASON_TRAP ESR_PTR
353
354 /* single-step stuff */
355 #define single_stepping(regs) (current->thread.dbcr0 & DBCR0_IC)
356 #define clear_single_step(regs) (current->thread.dbcr0 &= ~DBCR0_IC)
357
358 #else
359 /* On non-4xx, the reason for the machine check or program
360 exception is in the MSR. */
361 #define get_reason(regs) ((regs)->msr)
362 #define get_mc_reason(regs) ((regs)->msr)
363 #define REASON_TM 0x200000
364 #define REASON_FP 0x100000
365 #define REASON_ILLEGAL 0x80000
366 #define REASON_PRIVILEGED 0x40000
367 #define REASON_TRAP 0x20000
368
369 #define single_stepping(regs) ((regs)->msr & MSR_SE)
370 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
371 #endif
372
373 #if defined(CONFIG_4xx)
374 int machine_check_4xx(struct pt_regs *regs)
375 {
376 unsigned long reason = get_mc_reason(regs);
377
378 if (reason & ESR_IMCP) {
379 printk("Instruction");
380 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
381 } else
382 printk("Data");
383 printk(" machine check in kernel mode.\n");
384
385 return 0;
386 }
387
388 int machine_check_440A(struct pt_regs *regs)
389 {
390 unsigned long reason = get_mc_reason(regs);
391
392 printk("Machine check in kernel mode.\n");
393 if (reason & ESR_IMCP){
394 printk("Instruction Synchronous Machine Check exception\n");
395 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
396 }
397 else {
398 u32 mcsr = mfspr(SPRN_MCSR);
399 if (mcsr & MCSR_IB)
400 printk("Instruction Read PLB Error\n");
401 if (mcsr & MCSR_DRB)
402 printk("Data Read PLB Error\n");
403 if (mcsr & MCSR_DWB)
404 printk("Data Write PLB Error\n");
405 if (mcsr & MCSR_TLBP)
406 printk("TLB Parity Error\n");
407 if (mcsr & MCSR_ICP){
408 flush_instruction_cache();
409 printk("I-Cache Parity Error\n");
410 }
411 if (mcsr & MCSR_DCSP)
412 printk("D-Cache Search Parity Error\n");
413 if (mcsr & MCSR_DCFP)
414 printk("D-Cache Flush Parity Error\n");
415 if (mcsr & MCSR_IMPE)
416 printk("Machine Check exception is imprecise\n");
417
418 /* Clear MCSR */
419 mtspr(SPRN_MCSR, mcsr);
420 }
421 return 0;
422 }
423
424 int machine_check_47x(struct pt_regs *regs)
425 {
426 unsigned long reason = get_mc_reason(regs);
427 u32 mcsr;
428
429 printk(KERN_ERR "Machine check in kernel mode.\n");
430 if (reason & ESR_IMCP) {
431 printk(KERN_ERR
432 "Instruction Synchronous Machine Check exception\n");
433 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
434 return 0;
435 }
436 mcsr = mfspr(SPRN_MCSR);
437 if (mcsr & MCSR_IB)
438 printk(KERN_ERR "Instruction Read PLB Error\n");
439 if (mcsr & MCSR_DRB)
440 printk(KERN_ERR "Data Read PLB Error\n");
441 if (mcsr & MCSR_DWB)
442 printk(KERN_ERR "Data Write PLB Error\n");
443 if (mcsr & MCSR_TLBP)
444 printk(KERN_ERR "TLB Parity Error\n");
445 if (mcsr & MCSR_ICP) {
446 flush_instruction_cache();
447 printk(KERN_ERR "I-Cache Parity Error\n");
448 }
449 if (mcsr & MCSR_DCSP)
450 printk(KERN_ERR "D-Cache Search Parity Error\n");
451 if (mcsr & PPC47x_MCSR_GPR)
452 printk(KERN_ERR "GPR Parity Error\n");
453 if (mcsr & PPC47x_MCSR_FPR)
454 printk(KERN_ERR "FPR Parity Error\n");
455 if (mcsr & PPC47x_MCSR_IPR)
456 printk(KERN_ERR "Machine Check exception is imprecise\n");
457
458 /* Clear MCSR */
459 mtspr(SPRN_MCSR, mcsr);
460
461 return 0;
462 }
463 #elif defined(CONFIG_E500)
464 int machine_check_e500mc(struct pt_regs *regs)
465 {
466 unsigned long mcsr = mfspr(SPRN_MCSR);
467 unsigned long reason = mcsr;
468 int recoverable = 1;
469
470 if (reason & MCSR_LD) {
471 recoverable = fsl_rio_mcheck_exception(regs);
472 if (recoverable == 1)
473 goto silent_out;
474 }
475
476 printk("Machine check in kernel mode.\n");
477 printk("Caused by (from MCSR=%lx): ", reason);
478
479 if (reason & MCSR_MCP)
480 printk("Machine Check Signal\n");
481
482 if (reason & MCSR_ICPERR) {
483 printk("Instruction Cache Parity Error\n");
484
485 /*
486 * This is recoverable by invalidating the i-cache.
487 */
488 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
489 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
490 ;
491
492 /*
493 * This will generally be accompanied by an instruction
494 * fetch error report -- only treat MCSR_IF as fatal
495 * if it wasn't due to an L1 parity error.
496 */
497 reason &= ~MCSR_IF;
498 }
499
500 if (reason & MCSR_DCPERR_MC) {
501 printk("Data Cache Parity Error\n");
502
503 /*
504 * In write shadow mode we auto-recover from the error, but it
505 * may still get logged and cause a machine check. We should
506 * only treat the non-write shadow case as non-recoverable.
507 */
508 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
509 recoverable = 0;
510 }
511
512 if (reason & MCSR_L2MMU_MHIT) {
513 printk("Hit on multiple TLB entries\n");
514 recoverable = 0;
515 }
516
517 if (reason & MCSR_NMI)
518 printk("Non-maskable interrupt\n");
519
520 if (reason & MCSR_IF) {
521 printk("Instruction Fetch Error Report\n");
522 recoverable = 0;
523 }
524
525 if (reason & MCSR_LD) {
526 printk("Load Error Report\n");
527 recoverable = 0;
528 }
529
530 if (reason & MCSR_ST) {
531 printk("Store Error Report\n");
532 recoverable = 0;
533 }
534
535 if (reason & MCSR_LDG) {
536 printk("Guarded Load Error Report\n");
537 recoverable = 0;
538 }
539
540 if (reason & MCSR_TLBSYNC)
541 printk("Simultaneous tlbsync operations\n");
542
543 if (reason & MCSR_BSL2_ERR) {
544 printk("Level 2 Cache Error\n");
545 recoverable = 0;
546 }
547
548 if (reason & MCSR_MAV) {
549 u64 addr;
550
551 addr = mfspr(SPRN_MCAR);
552 addr |= (u64)mfspr(SPRN_MCARU) << 32;
553
554 printk("Machine Check %s Address: %#llx\n",
555 reason & MCSR_MEA ? "Effective" : "Physical", addr);
556 }
557
558 silent_out:
559 mtspr(SPRN_MCSR, mcsr);
560 return mfspr(SPRN_MCSR) == 0 && recoverable;
561 }
562
563 int machine_check_e500(struct pt_regs *regs)
564 {
565 unsigned long reason = get_mc_reason(regs);
566
567 if (reason & MCSR_BUS_RBERR) {
568 if (fsl_rio_mcheck_exception(regs))
569 return 1;
570 }
571
572 printk("Machine check in kernel mode.\n");
573 printk("Caused by (from MCSR=%lx): ", reason);
574
575 if (reason & MCSR_MCP)
576 printk("Machine Check Signal\n");
577 if (reason & MCSR_ICPERR)
578 printk("Instruction Cache Parity Error\n");
579 if (reason & MCSR_DCP_PERR)
580 printk("Data Cache Push Parity Error\n");
581 if (reason & MCSR_DCPERR)
582 printk("Data Cache Parity Error\n");
583 if (reason & MCSR_BUS_IAERR)
584 printk("Bus - Instruction Address Error\n");
585 if (reason & MCSR_BUS_RAERR)
586 printk("Bus - Read Address Error\n");
587 if (reason & MCSR_BUS_WAERR)
588 printk("Bus - Write Address Error\n");
589 if (reason & MCSR_BUS_IBERR)
590 printk("Bus - Instruction Data Error\n");
591 if (reason & MCSR_BUS_RBERR)
592 printk("Bus - Read Data Bus Error\n");
593 if (reason & MCSR_BUS_WBERR)
594 printk("Bus - Read Data Bus Error\n");
595 if (reason & MCSR_BUS_IPERR)
596 printk("Bus - Instruction Parity Error\n");
597 if (reason & MCSR_BUS_RPERR)
598 printk("Bus - Read Parity Error\n");
599
600 return 0;
601 }
602
603 int machine_check_generic(struct pt_regs *regs)
604 {
605 return 0;
606 }
607 #elif defined(CONFIG_E200)
608 int machine_check_e200(struct pt_regs *regs)
609 {
610 unsigned long reason = get_mc_reason(regs);
611
612 printk("Machine check in kernel mode.\n");
613 printk("Caused by (from MCSR=%lx): ", reason);
614
615 if (reason & MCSR_MCP)
616 printk("Machine Check Signal\n");
617 if (reason & MCSR_CP_PERR)
618 printk("Cache Push Parity Error\n");
619 if (reason & MCSR_CPERR)
620 printk("Cache Parity Error\n");
621 if (reason & MCSR_EXCP_ERR)
622 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
623 if (reason & MCSR_BUS_IRERR)
624 printk("Bus - Read Bus Error on instruction fetch\n");
625 if (reason & MCSR_BUS_DRERR)
626 printk("Bus - Read Bus Error on data load\n");
627 if (reason & MCSR_BUS_WRERR)
628 printk("Bus - Write Bus Error on buffered store or cache line push\n");
629
630 return 0;
631 }
632 #else
633 int machine_check_generic(struct pt_regs *regs)
634 {
635 unsigned long reason = get_mc_reason(regs);
636
637 printk("Machine check in kernel mode.\n");
638 printk("Caused by (from SRR1=%lx): ", reason);
639 switch (reason & 0x601F0000) {
640 case 0x80000:
641 printk("Machine check signal\n");
642 break;
643 case 0: /* for 601 */
644 case 0x40000:
645 case 0x140000: /* 7450 MSS error and TEA */
646 printk("Transfer error ack signal\n");
647 break;
648 case 0x20000:
649 printk("Data parity error signal\n");
650 break;
651 case 0x10000:
652 printk("Address parity error signal\n");
653 break;
654 case 0x20000000:
655 printk("L1 Data Cache error\n");
656 break;
657 case 0x40000000:
658 printk("L1 Instruction Cache error\n");
659 break;
660 case 0x00100000:
661 printk("L2 data cache parity error\n");
662 break;
663 default:
664 printk("Unknown values in msr\n");
665 }
666 return 0;
667 }
668 #endif /* everything else */
669
670 void machine_check_exception(struct pt_regs *regs)
671 {
672 enum ctx_state prev_state = exception_enter();
673 int recover = 0;
674
675 __get_cpu_var(irq_stat).mce_exceptions++;
676
677 /* See if any machine dependent calls. In theory, we would want
678 * to call the CPU first, and call the ppc_md. one if the CPU
679 * one returns a positive number. However there is existing code
680 * that assumes the board gets a first chance, so let's keep it
681 * that way for now and fix things later. --BenH.
682 */
683 if (ppc_md.machine_check_exception)
684 recover = ppc_md.machine_check_exception(regs);
685 else if (cur_cpu_spec->machine_check)
686 recover = cur_cpu_spec->machine_check(regs);
687
688 if (recover > 0)
689 goto bail;
690
691 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
692 /* the qspan pci read routines can cause machine checks -- Cort
693 *
694 * yuck !!! that totally needs to go away ! There are better ways
695 * to deal with that than having a wart in the mcheck handler.
696 * -- BenH
697 */
698 bad_page_fault(regs, regs->dar, SIGBUS);
699 goto bail;
700 #endif
701
702 if (debugger_fault_handler(regs))
703 goto bail;
704
705 if (check_io_access(regs))
706 goto bail;
707
708 die("Machine check", regs, SIGBUS);
709
710 /* Must die if the interrupt is not recoverable */
711 if (!(regs->msr & MSR_RI))
712 panic("Unrecoverable Machine check");
713
714 bail:
715 exception_exit(prev_state);
716 }
717
718 void SMIException(struct pt_regs *regs)
719 {
720 die("System Management Interrupt", regs, SIGABRT);
721 }
722
723 void unknown_exception(struct pt_regs *regs)
724 {
725 enum ctx_state prev_state = exception_enter();
726
727 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
728 regs->nip, regs->msr, regs->trap);
729
730 _exception(SIGTRAP, regs, 0, 0);
731
732 exception_exit(prev_state);
733 }
734
735 void instruction_breakpoint_exception(struct pt_regs *regs)
736 {
737 enum ctx_state prev_state = exception_enter();
738
739 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
740 5, SIGTRAP) == NOTIFY_STOP)
741 goto bail;
742 if (debugger_iabr_match(regs))
743 goto bail;
744 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
745
746 bail:
747 exception_exit(prev_state);
748 }
749
750 void RunModeException(struct pt_regs *regs)
751 {
752 _exception(SIGTRAP, regs, 0, 0);
753 }
754
755 void __kprobes single_step_exception(struct pt_regs *regs)
756 {
757 enum ctx_state prev_state = exception_enter();
758
759 clear_single_step(regs);
760
761 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
762 5, SIGTRAP) == NOTIFY_STOP)
763 goto bail;
764 if (debugger_sstep(regs))
765 goto bail;
766
767 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
768
769 bail:
770 exception_exit(prev_state);
771 }
772
773 /*
774 * After we have successfully emulated an instruction, we have to
775 * check if the instruction was being single-stepped, and if so,
776 * pretend we got a single-step exception. This was pointed out
777 * by Kumar Gala. -- paulus
778 */
779 static void emulate_single_step(struct pt_regs *regs)
780 {
781 if (single_stepping(regs))
782 single_step_exception(regs);
783 }
784
785 static inline int __parse_fpscr(unsigned long fpscr)
786 {
787 int ret = 0;
788
789 /* Invalid operation */
790 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
791 ret = FPE_FLTINV;
792
793 /* Overflow */
794 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
795 ret = FPE_FLTOVF;
796
797 /* Underflow */
798 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
799 ret = FPE_FLTUND;
800
801 /* Divide by zero */
802 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
803 ret = FPE_FLTDIV;
804
805 /* Inexact result */
806 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
807 ret = FPE_FLTRES;
808
809 return ret;
810 }
811
812 static void parse_fpe(struct pt_regs *regs)
813 {
814 int code = 0;
815
816 flush_fp_to_thread(current);
817
818 code = __parse_fpscr(current->thread.fpscr.val);
819
820 _exception(SIGFPE, regs, code, regs->nip);
821 }
822
823 /*
824 * Illegal instruction emulation support. Originally written to
825 * provide the PVR to user applications using the mfspr rd, PVR.
826 * Return non-zero if we can't emulate, or -EFAULT if the associated
827 * memory access caused an access fault. Return zero on success.
828 *
829 * There are a couple of ways to do this, either "decode" the instruction
830 * or directly match lots of bits. In this case, matching lots of
831 * bits is faster and easier.
832 *
833 */
834 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
835 {
836 u8 rT = (instword >> 21) & 0x1f;
837 u8 rA = (instword >> 16) & 0x1f;
838 u8 NB_RB = (instword >> 11) & 0x1f;
839 u32 num_bytes;
840 unsigned long EA;
841 int pos = 0;
842
843 /* Early out if we are an invalid form of lswx */
844 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
845 if ((rT == rA) || (rT == NB_RB))
846 return -EINVAL;
847
848 EA = (rA == 0) ? 0 : regs->gpr[rA];
849
850 switch (instword & PPC_INST_STRING_MASK) {
851 case PPC_INST_LSWX:
852 case PPC_INST_STSWX:
853 EA += NB_RB;
854 num_bytes = regs->xer & 0x7f;
855 break;
856 case PPC_INST_LSWI:
857 case PPC_INST_STSWI:
858 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
859 break;
860 default:
861 return -EINVAL;
862 }
863
864 while (num_bytes != 0)
865 {
866 u8 val;
867 u32 shift = 8 * (3 - (pos & 0x3));
868
869 switch ((instword & PPC_INST_STRING_MASK)) {
870 case PPC_INST_LSWX:
871 case PPC_INST_LSWI:
872 if (get_user(val, (u8 __user *)EA))
873 return -EFAULT;
874 /* first time updating this reg,
875 * zero it out */
876 if (pos == 0)
877 regs->gpr[rT] = 0;
878 regs->gpr[rT] |= val << shift;
879 break;
880 case PPC_INST_STSWI:
881 case PPC_INST_STSWX:
882 val = regs->gpr[rT] >> shift;
883 if (put_user(val, (u8 __user *)EA))
884 return -EFAULT;
885 break;
886 }
887 /* move EA to next address */
888 EA += 1;
889 num_bytes--;
890
891 /* manage our position within the register */
892 if (++pos == 4) {
893 pos = 0;
894 if (++rT == 32)
895 rT = 0;
896 }
897 }
898
899 return 0;
900 }
901
902 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
903 {
904 u32 ra,rs;
905 unsigned long tmp;
906
907 ra = (instword >> 16) & 0x1f;
908 rs = (instword >> 21) & 0x1f;
909
910 tmp = regs->gpr[rs];
911 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
912 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
913 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
914 regs->gpr[ra] = tmp;
915
916 return 0;
917 }
918
919 static int emulate_isel(struct pt_regs *regs, u32 instword)
920 {
921 u8 rT = (instword >> 21) & 0x1f;
922 u8 rA = (instword >> 16) & 0x1f;
923 u8 rB = (instword >> 11) & 0x1f;
924 u8 BC = (instword >> 6) & 0x1f;
925 u8 bit;
926 unsigned long tmp;
927
928 tmp = (rA == 0) ? 0 : regs->gpr[rA];
929 bit = (regs->ccr >> (31 - BC)) & 0x1;
930
931 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
932
933 return 0;
934 }
935
936 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
937 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
938 {
939 /* If we're emulating a load/store in an active transaction, we cannot
940 * emulate it as the kernel operates in transaction suspended context.
941 * We need to abort the transaction. This creates a persistent TM
942 * abort so tell the user what caused it with a new code.
943 */
944 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
945 tm_enable();
946 tm_abort(cause);
947 return true;
948 }
949 return false;
950 }
951 #else
952 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
953 {
954 return false;
955 }
956 #endif
957
958 static int emulate_instruction(struct pt_regs *regs)
959 {
960 u32 instword;
961 u32 rd;
962
963 if (!user_mode(regs) || (regs->msr & MSR_LE))
964 return -EINVAL;
965 CHECK_FULL_REGS(regs);
966
967 if (get_user(instword, (u32 __user *)(regs->nip)))
968 return -EFAULT;
969
970 /* Emulate the mfspr rD, PVR. */
971 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
972 PPC_WARN_EMULATED(mfpvr, regs);
973 rd = (instword >> 21) & 0x1f;
974 regs->gpr[rd] = mfspr(SPRN_PVR);
975 return 0;
976 }
977
978 /* Emulating the dcba insn is just a no-op. */
979 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
980 PPC_WARN_EMULATED(dcba, regs);
981 return 0;
982 }
983
984 /* Emulate the mcrxr insn. */
985 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
986 int shift = (instword >> 21) & 0x1c;
987 unsigned long msk = 0xf0000000UL >> shift;
988
989 PPC_WARN_EMULATED(mcrxr, regs);
990 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
991 regs->xer &= ~0xf0000000UL;
992 return 0;
993 }
994
995 /* Emulate load/store string insn. */
996 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
997 if (tm_abort_check(regs,
998 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
999 return -EINVAL;
1000 PPC_WARN_EMULATED(string, regs);
1001 return emulate_string_inst(regs, instword);
1002 }
1003
1004 /* Emulate the popcntb (Population Count Bytes) instruction. */
1005 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1006 PPC_WARN_EMULATED(popcntb, regs);
1007 return emulate_popcntb_inst(regs, instword);
1008 }
1009
1010 /* Emulate isel (Integer Select) instruction */
1011 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1012 PPC_WARN_EMULATED(isel, regs);
1013 return emulate_isel(regs, instword);
1014 }
1015
1016 #ifdef CONFIG_PPC64
1017 /* Emulate the mfspr rD, DSCR. */
1018 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1019 PPC_INST_MFSPR_DSCR_USER) ||
1020 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1021 PPC_INST_MFSPR_DSCR)) &&
1022 cpu_has_feature(CPU_FTR_DSCR)) {
1023 PPC_WARN_EMULATED(mfdscr, regs);
1024 rd = (instword >> 21) & 0x1f;
1025 regs->gpr[rd] = mfspr(SPRN_DSCR);
1026 return 0;
1027 }
1028 /* Emulate the mtspr DSCR, rD. */
1029 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1030 PPC_INST_MTSPR_DSCR_USER) ||
1031 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1032 PPC_INST_MTSPR_DSCR)) &&
1033 cpu_has_feature(CPU_FTR_DSCR)) {
1034 PPC_WARN_EMULATED(mtdscr, regs);
1035 rd = (instword >> 21) & 0x1f;
1036 current->thread.dscr = regs->gpr[rd];
1037 current->thread.dscr_inherit = 1;
1038 mtspr(SPRN_DSCR, current->thread.dscr);
1039 return 0;
1040 }
1041 #endif
1042
1043 return -EINVAL;
1044 }
1045
1046 int is_valid_bugaddr(unsigned long addr)
1047 {
1048 return is_kernel_addr(addr);
1049 }
1050
1051 void __kprobes program_check_exception(struct pt_regs *regs)
1052 {
1053 enum ctx_state prev_state = exception_enter();
1054 unsigned int reason = get_reason(regs);
1055 extern int do_mathemu(struct pt_regs *regs);
1056
1057 /* We can now get here via a FP Unavailable exception if the core
1058 * has no FPU, in that case the reason flags will be 0 */
1059
1060 if (reason & REASON_FP) {
1061 /* IEEE FP exception */
1062 parse_fpe(regs);
1063 goto bail;
1064 }
1065 if (reason & REASON_TRAP) {
1066 /* Debugger is first in line to stop recursive faults in
1067 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1068 if (debugger_bpt(regs))
1069 goto bail;
1070
1071 /* trap exception */
1072 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1073 == NOTIFY_STOP)
1074 goto bail;
1075
1076 if (!(regs->msr & MSR_PR) && /* not user-mode */
1077 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1078 regs->nip += 4;
1079 goto bail;
1080 }
1081 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1082 goto bail;
1083 }
1084 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1085 if (reason & REASON_TM) {
1086 /* This is a TM "Bad Thing Exception" program check.
1087 * This occurs when:
1088 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1089 * transition in TM states.
1090 * - A trechkpt is attempted when transactional.
1091 * - A treclaim is attempted when non transactional.
1092 * - A tend is illegally attempted.
1093 * - writing a TM SPR when transactional.
1094 */
1095 if (!user_mode(regs) &&
1096 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1097 regs->nip += 4;
1098 goto bail;
1099 }
1100 /* If usermode caused this, it's done something illegal and
1101 * gets a SIGILL slap on the wrist. We call it an illegal
1102 * operand to distinguish from the instruction just being bad
1103 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1104 * illegal /placement/ of a valid instruction.
1105 */
1106 if (user_mode(regs)) {
1107 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1108 goto bail;
1109 } else {
1110 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1111 "at %lx (msr 0x%x)\n", regs->nip, reason);
1112 die("Unrecoverable exception", regs, SIGABRT);
1113 }
1114 }
1115 #endif
1116
1117 /* We restore the interrupt state now */
1118 if (!arch_irq_disabled_regs(regs))
1119 local_irq_enable();
1120
1121 #ifdef CONFIG_MATH_EMULATION
1122 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1123 * but there seems to be a hardware bug on the 405GP (RevD)
1124 * that means ESR is sometimes set incorrectly - either to
1125 * ESR_DST (!?) or 0. In the process of chasing this with the
1126 * hardware people - not sure if it can happen on any illegal
1127 * instruction or only on FP instructions, whether there is a
1128 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
1129 switch (do_mathemu(regs)) {
1130 case 0:
1131 emulate_single_step(regs);
1132 goto bail;
1133 case 1: {
1134 int code = 0;
1135 code = __parse_fpscr(current->thread.fpscr.val);
1136 _exception(SIGFPE, regs, code, regs->nip);
1137 goto bail;
1138 }
1139 case -EFAULT:
1140 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1141 goto bail;
1142 }
1143 /* fall through on any other errors */
1144 #endif /* CONFIG_MATH_EMULATION */
1145
1146 /* Try to emulate it if we should. */
1147 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1148 switch (emulate_instruction(regs)) {
1149 case 0:
1150 regs->nip += 4;
1151 emulate_single_step(regs);
1152 goto bail;
1153 case -EFAULT:
1154 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1155 goto bail;
1156 }
1157 }
1158
1159 if (reason & REASON_PRIVILEGED)
1160 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1161 else
1162 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1163
1164 bail:
1165 exception_exit(prev_state);
1166 }
1167
1168 /*
1169 * This occurs when running in hypervisor mode on POWER6 or later
1170 * and an illegal instruction is encountered.
1171 */
1172 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1173 {
1174 regs->msr |= REASON_ILLEGAL;
1175 program_check_exception(regs);
1176 }
1177
1178 void alignment_exception(struct pt_regs *regs)
1179 {
1180 enum ctx_state prev_state = exception_enter();
1181 int sig, code, fixed = 0;
1182
1183 /* We restore the interrupt state now */
1184 if (!arch_irq_disabled_regs(regs))
1185 local_irq_enable();
1186
1187 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1188 goto bail;
1189
1190 /* we don't implement logging of alignment exceptions */
1191 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1192 fixed = fix_alignment(regs);
1193
1194 if (fixed == 1) {
1195 regs->nip += 4; /* skip over emulated instruction */
1196 emulate_single_step(regs);
1197 goto bail;
1198 }
1199
1200 /* Operand address was bad */
1201 if (fixed == -EFAULT) {
1202 sig = SIGSEGV;
1203 code = SEGV_ACCERR;
1204 } else {
1205 sig = SIGBUS;
1206 code = BUS_ADRALN;
1207 }
1208 if (user_mode(regs))
1209 _exception(sig, regs, code, regs->dar);
1210 else
1211 bad_page_fault(regs, regs->dar, sig);
1212
1213 bail:
1214 exception_exit(prev_state);
1215 }
1216
1217 void StackOverflow(struct pt_regs *regs)
1218 {
1219 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1220 current, regs->gpr[1]);
1221 debugger(regs);
1222 show_regs(regs);
1223 panic("kernel stack overflow");
1224 }
1225
1226 void nonrecoverable_exception(struct pt_regs *regs)
1227 {
1228 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1229 regs->nip, regs->msr);
1230 debugger(regs);
1231 die("nonrecoverable exception", regs, SIGKILL);
1232 }
1233
1234 void trace_syscall(struct pt_regs *regs)
1235 {
1236 printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
1237 current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1238 regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1239 }
1240
1241 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1242 {
1243 enum ctx_state prev_state = exception_enter();
1244
1245 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1246 "%lx at %lx\n", regs->trap, regs->nip);
1247 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1248
1249 exception_exit(prev_state);
1250 }
1251
1252 void altivec_unavailable_exception(struct pt_regs *regs)
1253 {
1254 enum ctx_state prev_state = exception_enter();
1255
1256 if (user_mode(regs)) {
1257 /* A user program has executed an altivec instruction,
1258 but this kernel doesn't support altivec. */
1259 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1260 goto bail;
1261 }
1262
1263 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1264 "%lx at %lx\n", regs->trap, regs->nip);
1265 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1266
1267 bail:
1268 exception_exit(prev_state);
1269 }
1270
1271 void vsx_unavailable_exception(struct pt_regs *regs)
1272 {
1273 if (user_mode(regs)) {
1274 /* A user program has executed an vsx instruction,
1275 but this kernel doesn't support vsx. */
1276 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1277 return;
1278 }
1279
1280 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1281 "%lx at %lx\n", regs->trap, regs->nip);
1282 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1283 }
1284
1285 void tm_unavailable_exception(struct pt_regs *regs)
1286 {
1287 /* We restore the interrupt state now */
1288 if (!arch_irq_disabled_regs(regs))
1289 local_irq_enable();
1290
1291 /* Currently we never expect a TMU exception. Catch
1292 * this and kill the process!
1293 */
1294 printk(KERN_EMERG "Unexpected TM unavailable exception at %lx "
1295 "(msr %lx)\n",
1296 regs->nip, regs->msr);
1297
1298 if (user_mode(regs)) {
1299 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1300 return;
1301 }
1302
1303 die("Unexpected TM unavailable exception", regs, SIGABRT);
1304 }
1305
1306 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1307
1308 extern void do_load_up_fpu(struct pt_regs *regs);
1309
1310 void fp_unavailable_tm(struct pt_regs *regs)
1311 {
1312 /* Note: This does not handle any kind of FP laziness. */
1313
1314 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1315 regs->nip, regs->msr);
1316 tm_enable();
1317
1318 /* We can only have got here if the task started using FP after
1319 * beginning the transaction. So, the transactional regs are just a
1320 * copy of the checkpointed ones. But, we still need to recheckpoint
1321 * as we're enabling FP for the process; it will return, abort the
1322 * transaction, and probably retry but now with FP enabled. So the
1323 * checkpointed FP registers need to be loaded.
1324 */
1325 tm_reclaim(&current->thread, current->thread.regs->msr,
1326 TM_CAUSE_FAC_UNAV);
1327 /* Reclaim didn't save out any FPRs to transact_fprs. */
1328
1329 /* Enable FP for the task: */
1330 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1331
1332 /* This loads and recheckpoints the FP registers from
1333 * thread.fpr[]. They will remain in registers after the
1334 * checkpoint so we don't need to reload them after.
1335 */
1336 tm_recheckpoint(&current->thread, regs->msr);
1337 }
1338
1339 #ifdef CONFIG_ALTIVEC
1340 extern void do_load_up_altivec(struct pt_regs *regs);
1341
1342 void altivec_unavailable_tm(struct pt_regs *regs)
1343 {
1344 /* See the comments in fp_unavailable_tm(). This function operates
1345 * the same way.
1346 */
1347
1348 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1349 "MSR=%lx\n",
1350 regs->nip, regs->msr);
1351 tm_enable();
1352 tm_reclaim(&current->thread, current->thread.regs->msr,
1353 TM_CAUSE_FAC_UNAV);
1354 regs->msr |= MSR_VEC;
1355 tm_recheckpoint(&current->thread, regs->msr);
1356 current->thread.used_vr = 1;
1357 }
1358 #endif
1359
1360 #ifdef CONFIG_VSX
1361 void vsx_unavailable_tm(struct pt_regs *regs)
1362 {
1363 /* See the comments in fp_unavailable_tm(). This works similarly,
1364 * though we're loading both FP and VEC registers in here.
1365 *
1366 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1367 * regs. Either way, set MSR_VSX.
1368 */
1369
1370 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1371 "MSR=%lx\n",
1372 regs->nip, regs->msr);
1373
1374 tm_enable();
1375 /* This reclaims FP and/or VR regs if they're already enabled */
1376 tm_reclaim(&current->thread, current->thread.regs->msr,
1377 TM_CAUSE_FAC_UNAV);
1378
1379 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1380 MSR_VSX;
1381 /* This loads & recheckpoints FP and VRs. */
1382 tm_recheckpoint(&current->thread, regs->msr);
1383 current->thread.used_vsr = 1;
1384 }
1385 #endif
1386 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1387
1388 void performance_monitor_exception(struct pt_regs *regs)
1389 {
1390 __get_cpu_var(irq_stat).pmu_irqs++;
1391
1392 perf_irq(regs);
1393 }
1394
1395 #ifdef CONFIG_8xx
1396 void SoftwareEmulation(struct pt_regs *regs)
1397 {
1398 extern int do_mathemu(struct pt_regs *);
1399 extern int Soft_emulate_8xx(struct pt_regs *);
1400 #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1401 int errcode;
1402 #endif
1403
1404 CHECK_FULL_REGS(regs);
1405
1406 if (!user_mode(regs)) {
1407 debugger(regs);
1408 die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1409 }
1410
1411 #ifdef CONFIG_MATH_EMULATION
1412 errcode = do_mathemu(regs);
1413 if (errcode >= 0)
1414 PPC_WARN_EMULATED(math, regs);
1415
1416 switch (errcode) {
1417 case 0:
1418 emulate_single_step(regs);
1419 return;
1420 case 1: {
1421 int code = 0;
1422 code = __parse_fpscr(current->thread.fpscr.val);
1423 _exception(SIGFPE, regs, code, regs->nip);
1424 return;
1425 }
1426 case -EFAULT:
1427 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1428 return;
1429 default:
1430 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1431 return;
1432 }
1433
1434 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1435 errcode = Soft_emulate_8xx(regs);
1436 if (errcode >= 0)
1437 PPC_WARN_EMULATED(8xx, regs);
1438
1439 switch (errcode) {
1440 case 0:
1441 emulate_single_step(regs);
1442 return;
1443 case 1:
1444 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1445 return;
1446 case -EFAULT:
1447 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1448 return;
1449 }
1450 #else
1451 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1452 #endif
1453 }
1454 #endif /* CONFIG_8xx */
1455
1456 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1457 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1458 {
1459 int changed = 0;
1460 /*
1461 * Determine the cause of the debug event, clear the
1462 * event flags and send a trap to the handler. Torez
1463 */
1464 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1465 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1466 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1467 current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1468 #endif
1469 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1470 5);
1471 changed |= 0x01;
1472 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1473 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1474 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1475 6);
1476 changed |= 0x01;
1477 } else if (debug_status & DBSR_IAC1) {
1478 current->thread.dbcr0 &= ~DBCR0_IAC1;
1479 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1480 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1481 1);
1482 changed |= 0x01;
1483 } else if (debug_status & DBSR_IAC2) {
1484 current->thread.dbcr0 &= ~DBCR0_IAC2;
1485 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1486 2);
1487 changed |= 0x01;
1488 } else if (debug_status & DBSR_IAC3) {
1489 current->thread.dbcr0 &= ~DBCR0_IAC3;
1490 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1491 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1492 3);
1493 changed |= 0x01;
1494 } else if (debug_status & DBSR_IAC4) {
1495 current->thread.dbcr0 &= ~DBCR0_IAC4;
1496 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1497 4);
1498 changed |= 0x01;
1499 }
1500 /*
1501 * At the point this routine was called, the MSR(DE) was turned off.
1502 * Check all other debug flags and see if that bit needs to be turned
1503 * back on or not.
1504 */
1505 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1506 regs->msr |= MSR_DE;
1507 else
1508 /* Make sure the IDM flag is off */
1509 current->thread.dbcr0 &= ~DBCR0_IDM;
1510
1511 if (changed & 0x01)
1512 mtspr(SPRN_DBCR0, current->thread.dbcr0);
1513 }
1514
1515 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1516 {
1517 current->thread.dbsr = debug_status;
1518
1519 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1520 * on server, it stops on the target of the branch. In order to simulate
1521 * the server behaviour, we thus restart right away with a single step
1522 * instead of stopping here when hitting a BT
1523 */
1524 if (debug_status & DBSR_BT) {
1525 regs->msr &= ~MSR_DE;
1526
1527 /* Disable BT */
1528 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1529 /* Clear the BT event */
1530 mtspr(SPRN_DBSR, DBSR_BT);
1531
1532 /* Do the single step trick only when coming from userspace */
1533 if (user_mode(regs)) {
1534 current->thread.dbcr0 &= ~DBCR0_BT;
1535 current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1536 regs->msr |= MSR_DE;
1537 return;
1538 }
1539
1540 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1541 5, SIGTRAP) == NOTIFY_STOP) {
1542 return;
1543 }
1544 if (debugger_sstep(regs))
1545 return;
1546 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1547 regs->msr &= ~MSR_DE;
1548
1549 /* Disable instruction completion */
1550 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1551 /* Clear the instruction completion event */
1552 mtspr(SPRN_DBSR, DBSR_IC);
1553
1554 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1555 5, SIGTRAP) == NOTIFY_STOP) {
1556 return;
1557 }
1558
1559 if (debugger_sstep(regs))
1560 return;
1561
1562 if (user_mode(regs)) {
1563 current->thread.dbcr0 &= ~DBCR0_IC;
1564 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1565 current->thread.dbcr1))
1566 regs->msr |= MSR_DE;
1567 else
1568 /* Make sure the IDM bit is off */
1569 current->thread.dbcr0 &= ~DBCR0_IDM;
1570 }
1571
1572 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1573 } else
1574 handle_debug(regs, debug_status);
1575 }
1576 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1577
1578 #if !defined(CONFIG_TAU_INT)
1579 void TAUException(struct pt_regs *regs)
1580 {
1581 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1582 regs->nip, regs->msr, regs->trap, print_tainted());
1583 }
1584 #endif /* CONFIG_INT_TAU */
1585
1586 #ifdef CONFIG_ALTIVEC
1587 void altivec_assist_exception(struct pt_regs *regs)
1588 {
1589 int err;
1590
1591 if (!user_mode(regs)) {
1592 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1593 " at %lx\n", regs->nip);
1594 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1595 }
1596
1597 flush_altivec_to_thread(current);
1598
1599 PPC_WARN_EMULATED(altivec, regs);
1600 err = emulate_altivec(regs);
1601 if (err == 0) {
1602 regs->nip += 4; /* skip emulated instruction */
1603 emulate_single_step(regs);
1604 return;
1605 }
1606
1607 if (err == -EFAULT) {
1608 /* got an error reading the instruction */
1609 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1610 } else {
1611 /* didn't recognize the instruction */
1612 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1613 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1614 "in %s at %lx\n", current->comm, regs->nip);
1615 current->thread.vscr.u[3] |= 0x10000;
1616 }
1617 }
1618 #endif /* CONFIG_ALTIVEC */
1619
1620 #ifdef CONFIG_VSX
1621 void vsx_assist_exception(struct pt_regs *regs)
1622 {
1623 if (!user_mode(regs)) {
1624 printk(KERN_EMERG "VSX assist exception in kernel mode"
1625 " at %lx\n", regs->nip);
1626 die("Kernel VSX assist exception", regs, SIGILL);
1627 }
1628
1629 flush_vsx_to_thread(current);
1630 printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1631 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1632 }
1633 #endif /* CONFIG_VSX */
1634
1635 #ifdef CONFIG_FSL_BOOKE
1636 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1637 unsigned long error_code)
1638 {
1639 /* We treat cache locking instructions from the user
1640 * as priv ops, in the future we could try to do
1641 * something smarter
1642 */
1643 if (error_code & (ESR_DLK|ESR_ILK))
1644 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1645 return;
1646 }
1647 #endif /* CONFIG_FSL_BOOKE */
1648
1649 #ifdef CONFIG_SPE
1650 void SPEFloatingPointException(struct pt_regs *regs)
1651 {
1652 extern int do_spe_mathemu(struct pt_regs *regs);
1653 unsigned long spefscr;
1654 int fpexc_mode;
1655 int code = 0;
1656 int err;
1657
1658 flush_spe_to_thread(current);
1659
1660 spefscr = current->thread.spefscr;
1661 fpexc_mode = current->thread.fpexc_mode;
1662
1663 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1664 code = FPE_FLTOVF;
1665 }
1666 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1667 code = FPE_FLTUND;
1668 }
1669 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1670 code = FPE_FLTDIV;
1671 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1672 code = FPE_FLTINV;
1673 }
1674 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1675 code = FPE_FLTRES;
1676
1677 err = do_spe_mathemu(regs);
1678 if (err == 0) {
1679 regs->nip += 4; /* skip emulated instruction */
1680 emulate_single_step(regs);
1681 return;
1682 }
1683
1684 if (err == -EFAULT) {
1685 /* got an error reading the instruction */
1686 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1687 } else if (err == -EINVAL) {
1688 /* didn't recognize the instruction */
1689 printk(KERN_ERR "unrecognized spe instruction "
1690 "in %s at %lx\n", current->comm, regs->nip);
1691 } else {
1692 _exception(SIGFPE, regs, code, regs->nip);
1693 }
1694
1695 return;
1696 }
1697
1698 void SPEFloatingPointRoundException(struct pt_regs *regs)
1699 {
1700 extern int speround_handler(struct pt_regs *regs);
1701 int err;
1702
1703 preempt_disable();
1704 if (regs->msr & MSR_SPE)
1705 giveup_spe(current);
1706 preempt_enable();
1707
1708 regs->nip -= 4;
1709 err = speround_handler(regs);
1710 if (err == 0) {
1711 regs->nip += 4; /* skip emulated instruction */
1712 emulate_single_step(regs);
1713 return;
1714 }
1715
1716 if (err == -EFAULT) {
1717 /* got an error reading the instruction */
1718 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1719 } else if (err == -EINVAL) {
1720 /* didn't recognize the instruction */
1721 printk(KERN_ERR "unrecognized spe instruction "
1722 "in %s at %lx\n", current->comm, regs->nip);
1723 } else {
1724 _exception(SIGFPE, regs, 0, regs->nip);
1725 return;
1726 }
1727 }
1728 #endif
1729
1730 /*
1731 * We enter here if we get an unrecoverable exception, that is, one
1732 * that happened at a point where the RI (recoverable interrupt) bit
1733 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1734 * we therefore lost state by taking this exception.
1735 */
1736 void unrecoverable_exception(struct pt_regs *regs)
1737 {
1738 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1739 regs->trap, regs->nip);
1740 die("Unrecoverable exception", regs, SIGABRT);
1741 }
1742
1743 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1744 /*
1745 * Default handler for a Watchdog exception,
1746 * spins until a reboot occurs
1747 */
1748 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1749 {
1750 /* Generic WatchdogHandler, implement your own */
1751 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1752 return;
1753 }
1754
1755 void WatchdogException(struct pt_regs *regs)
1756 {
1757 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1758 WatchdogHandler(regs);
1759 }
1760 #endif
1761
1762 /*
1763 * We enter here if we discover during exception entry that we are
1764 * running in supervisor mode with a userspace value in the stack pointer.
1765 */
1766 void kernel_bad_stack(struct pt_regs *regs)
1767 {
1768 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1769 regs->gpr[1], regs->nip);
1770 die("Bad kernel stack pointer", regs, SIGABRT);
1771 }
1772
1773 void __init trap_init(void)
1774 {
1775 }
1776
1777
1778 #ifdef CONFIG_PPC_EMULATED_STATS
1779
1780 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1781
1782 struct ppc_emulated ppc_emulated = {
1783 #ifdef CONFIG_ALTIVEC
1784 WARN_EMULATED_SETUP(altivec),
1785 #endif
1786 WARN_EMULATED_SETUP(dcba),
1787 WARN_EMULATED_SETUP(dcbz),
1788 WARN_EMULATED_SETUP(fp_pair),
1789 WARN_EMULATED_SETUP(isel),
1790 WARN_EMULATED_SETUP(mcrxr),
1791 WARN_EMULATED_SETUP(mfpvr),
1792 WARN_EMULATED_SETUP(multiple),
1793 WARN_EMULATED_SETUP(popcntb),
1794 WARN_EMULATED_SETUP(spe),
1795 WARN_EMULATED_SETUP(string),
1796 WARN_EMULATED_SETUP(unaligned),
1797 #ifdef CONFIG_MATH_EMULATION
1798 WARN_EMULATED_SETUP(math),
1799 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1800 WARN_EMULATED_SETUP(8xx),
1801 #endif
1802 #ifdef CONFIG_VSX
1803 WARN_EMULATED_SETUP(vsx),
1804 #endif
1805 #ifdef CONFIG_PPC64
1806 WARN_EMULATED_SETUP(mfdscr),
1807 WARN_EMULATED_SETUP(mtdscr),
1808 #endif
1809 };
1810
1811 u32 ppc_warn_emulated;
1812
1813 void ppc_warn_emulated_print(const char *type)
1814 {
1815 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1816 type);
1817 }
1818
1819 static int __init ppc_warn_emulated_init(void)
1820 {
1821 struct dentry *dir, *d;
1822 unsigned int i;
1823 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1824
1825 if (!powerpc_debugfs_root)
1826 return -ENODEV;
1827
1828 dir = debugfs_create_dir("emulated_instructions",
1829 powerpc_debugfs_root);
1830 if (!dir)
1831 return -ENOMEM;
1832
1833 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1834 &ppc_warn_emulated);
1835 if (!d)
1836 goto fail;
1837
1838 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1839 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1840 (u32 *)&entries[i].val.counter);
1841 if (!d)
1842 goto fail;
1843 }
1844
1845 return 0;
1846
1847 fail:
1848 debugfs_remove_recursive(dir);
1849 return -ENOMEM;
1850 }
1851
1852 device_initcall(ppc_warn_emulated_init);
1853
1854 #endif /* CONFIG_PPC_EMULATED_STATS */