Merge branches 'gemini' and 'misc' into devel
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
57 #include <asm/trace.h>
58
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
77
78 /* powerpc clocksource/clockevent code */
79
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
82
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
92 };
93
94 static cycle_t timebase_read(struct clocksource *);
95 static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
103 };
104
105 #define DECREMENTER_MAX 0x7fffffff
106
107 static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109 static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
111
112 static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
115 .shift = 0, /* To be filled in */
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
121 };
122
123 struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
126 };
127
128 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
129
130 #ifdef CONFIG_PPC_ISERIES
131 static unsigned long __initdata iSeries_recal_titan;
132 static signed long __initdata iSeries_recal_tb;
133
134 /* Forward declaration is only needed for iSereis compiles */
135 static void __init clocksource_init(void);
136 #endif
137
138 #define XSEC_PER_SEC (1024*1024)
139
140 #ifdef CONFIG_PPC64
141 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142 #else
143 /* compute ((xsec << 12) * max) >> 32 */
144 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145 #endif
146
147 unsigned long tb_ticks_per_jiffy;
148 unsigned long tb_ticks_per_usec = 100; /* sane default */
149 EXPORT_SYMBOL(tb_ticks_per_usec);
150 unsigned long tb_ticks_per_sec;
151 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
152 u64 tb_to_xs;
153 unsigned tb_to_us;
154
155 #define TICKLEN_SCALE NTP_SCALE_SHIFT
156 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
157 static u64 ticklen_to_xs; /* 0.64 fraction */
158
159 /* If last_tick_len corresponds to about 1/HZ seconds, then
160 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
161 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
162
163 DEFINE_SPINLOCK(rtc_lock);
164 EXPORT_SYMBOL_GPL(rtc_lock);
165
166 static u64 tb_to_ns_scale __read_mostly;
167 static unsigned tb_to_ns_shift __read_mostly;
168 static unsigned long boot_tb __read_mostly;
169
170 extern struct timezone sys_tz;
171 static long timezone_offset;
172
173 unsigned long ppc_proc_freq;
174 EXPORT_SYMBOL(ppc_proc_freq);
175 unsigned long ppc_tb_freq;
176
177 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
178 static DEFINE_PER_CPU(u64, last_jiffy);
179
180 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
181 /*
182 * Factors for converting from cputime_t (timebase ticks) to
183 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
184 * These are all stored as 0.64 fixed-point binary fractions.
185 */
186 u64 __cputime_jiffies_factor;
187 EXPORT_SYMBOL(__cputime_jiffies_factor);
188 u64 __cputime_msec_factor;
189 EXPORT_SYMBOL(__cputime_msec_factor);
190 u64 __cputime_sec_factor;
191 EXPORT_SYMBOL(__cputime_sec_factor);
192 u64 __cputime_clockt_factor;
193 EXPORT_SYMBOL(__cputime_clockt_factor);
194 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
195 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
196
197 cputime_t cputime_one_jiffy;
198
199 static void calc_cputime_factors(void)
200 {
201 struct div_result res;
202
203 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
204 __cputime_jiffies_factor = res.result_low;
205 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
206 __cputime_msec_factor = res.result_low;
207 div128_by_32(1, 0, tb_ticks_per_sec, &res);
208 __cputime_sec_factor = res.result_low;
209 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
210 __cputime_clockt_factor = res.result_low;
211 }
212
213 /*
214 * Read the PURR on systems that have it, otherwise the timebase.
215 */
216 static u64 read_purr(void)
217 {
218 if (cpu_has_feature(CPU_FTR_PURR))
219 return mfspr(SPRN_PURR);
220 return mftb();
221 }
222
223 /*
224 * Read the SPURR on systems that have it, otherwise the purr
225 */
226 static u64 read_spurr(u64 purr)
227 {
228 /*
229 * cpus without PURR won't have a SPURR
230 * We already know the former when we use this, so tell gcc
231 */
232 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
233 return mfspr(SPRN_SPURR);
234 return purr;
235 }
236
237 /*
238 * Account time for a transition between system, hard irq
239 * or soft irq state.
240 */
241 void account_system_vtime(struct task_struct *tsk)
242 {
243 u64 now, nowscaled, delta, deltascaled, sys_time;
244 unsigned long flags;
245
246 local_irq_save(flags);
247 now = read_purr();
248 nowscaled = read_spurr(now);
249 delta = now - get_paca()->startpurr;
250 deltascaled = nowscaled - get_paca()->startspurr;
251 get_paca()->startpurr = now;
252 get_paca()->startspurr = nowscaled;
253 if (!in_interrupt()) {
254 /* deltascaled includes both user and system time.
255 * Hence scale it based on the purr ratio to estimate
256 * the system time */
257 sys_time = get_paca()->system_time;
258 if (get_paca()->user_time)
259 deltascaled = deltascaled * sys_time /
260 (sys_time + get_paca()->user_time);
261 delta += sys_time;
262 get_paca()->system_time = 0;
263 }
264 if (in_irq() || idle_task(smp_processor_id()) != tsk)
265 account_system_time(tsk, 0, delta, deltascaled);
266 else
267 account_idle_time(delta);
268 __get_cpu_var(cputime_last_delta) = delta;
269 __get_cpu_var(cputime_scaled_last_delta) = deltascaled;
270 local_irq_restore(flags);
271 }
272 EXPORT_SYMBOL_GPL(account_system_vtime);
273
274 /*
275 * Transfer the user and system times accumulated in the paca
276 * by the exception entry and exit code to the generic process
277 * user and system time records.
278 * Must be called with interrupts disabled.
279 */
280 void account_process_tick(struct task_struct *tsk, int user_tick)
281 {
282 cputime_t utime, utimescaled;
283
284 utime = get_paca()->user_time;
285 get_paca()->user_time = 0;
286 utimescaled = cputime_to_scaled(utime);
287 account_user_time(tsk, utime, utimescaled);
288 }
289
290 /*
291 * Stuff for accounting stolen time.
292 */
293 struct cpu_purr_data {
294 int initialized; /* thread is running */
295 u64 tb; /* last TB value read */
296 u64 purr; /* last PURR value read */
297 u64 spurr; /* last SPURR value read */
298 };
299
300 /*
301 * Each entry in the cpu_purr_data array is manipulated only by its
302 * "owner" cpu -- usually in the timer interrupt but also occasionally
303 * in process context for cpu online. As long as cpus do not touch
304 * each others' cpu_purr_data, disabling local interrupts is
305 * sufficient to serialize accesses.
306 */
307 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
308
309 static void snapshot_tb_and_purr(void *data)
310 {
311 unsigned long flags;
312 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
313
314 local_irq_save(flags);
315 p->tb = get_tb_or_rtc();
316 p->purr = mfspr(SPRN_PURR);
317 wmb();
318 p->initialized = 1;
319 local_irq_restore(flags);
320 }
321
322 /*
323 * Called during boot when all cpus have come up.
324 */
325 void snapshot_timebases(void)
326 {
327 if (!cpu_has_feature(CPU_FTR_PURR))
328 return;
329 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
330 }
331
332 /*
333 * Must be called with interrupts disabled.
334 */
335 void calculate_steal_time(void)
336 {
337 u64 tb, purr;
338 s64 stolen;
339 struct cpu_purr_data *pme;
340
341 pme = &__get_cpu_var(cpu_purr_data);
342 if (!pme->initialized)
343 return; /* !CPU_FTR_PURR or early in early boot */
344 tb = mftb();
345 purr = mfspr(SPRN_PURR);
346 stolen = (tb - pme->tb) - (purr - pme->purr);
347 if (stolen > 0) {
348 if (idle_task(smp_processor_id()) != current)
349 account_steal_time(stolen);
350 else
351 account_idle_time(stolen);
352 }
353 pme->tb = tb;
354 pme->purr = purr;
355 }
356
357 #ifdef CONFIG_PPC_SPLPAR
358 /*
359 * Must be called before the cpu is added to the online map when
360 * a cpu is being brought up at runtime.
361 */
362 static void snapshot_purr(void)
363 {
364 struct cpu_purr_data *pme;
365 unsigned long flags;
366
367 if (!cpu_has_feature(CPU_FTR_PURR))
368 return;
369 local_irq_save(flags);
370 pme = &__get_cpu_var(cpu_purr_data);
371 pme->tb = mftb();
372 pme->purr = mfspr(SPRN_PURR);
373 pme->initialized = 1;
374 local_irq_restore(flags);
375 }
376
377 #endif /* CONFIG_PPC_SPLPAR */
378
379 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
380 #define calc_cputime_factors()
381 #define calculate_steal_time() do { } while (0)
382 #endif
383
384 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
385 #define snapshot_purr() do { } while (0)
386 #endif
387
388 /*
389 * Called when a cpu comes up after the system has finished booting,
390 * i.e. as a result of a hotplug cpu action.
391 */
392 void snapshot_timebase(void)
393 {
394 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
395 snapshot_purr();
396 }
397
398 void __delay(unsigned long loops)
399 {
400 unsigned long start;
401 int diff;
402
403 if (__USE_RTC()) {
404 start = get_rtcl();
405 do {
406 /* the RTCL register wraps at 1000000000 */
407 diff = get_rtcl() - start;
408 if (diff < 0)
409 diff += 1000000000;
410 } while (diff < loops);
411 } else {
412 start = get_tbl();
413 while (get_tbl() - start < loops)
414 HMT_low();
415 HMT_medium();
416 }
417 }
418 EXPORT_SYMBOL(__delay);
419
420 void udelay(unsigned long usecs)
421 {
422 __delay(tb_ticks_per_usec * usecs);
423 }
424 EXPORT_SYMBOL(udelay);
425
426 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
427 u64 new_tb_to_xs)
428 {
429 /*
430 * tb_update_count is used to allow the userspace gettimeofday code
431 * to assure itself that it sees a consistent view of the tb_to_xs and
432 * stamp_xsec variables. It reads the tb_update_count, then reads
433 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
434 * the two values of tb_update_count match and are even then the
435 * tb_to_xs and stamp_xsec values are consistent. If not, then it
436 * loops back and reads them again until this criteria is met.
437 * We expect the caller to have done the first increment of
438 * vdso_data->tb_update_count already.
439 */
440 vdso_data->tb_orig_stamp = new_tb_stamp;
441 vdso_data->stamp_xsec = new_stamp_xsec;
442 vdso_data->tb_to_xs = new_tb_to_xs;
443 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
444 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
445 vdso_data->stamp_xtime = xtime;
446 smp_wmb();
447 ++(vdso_data->tb_update_count);
448 }
449
450 #ifdef CONFIG_SMP
451 unsigned long profile_pc(struct pt_regs *regs)
452 {
453 unsigned long pc = instruction_pointer(regs);
454
455 if (in_lock_functions(pc))
456 return regs->link;
457
458 return pc;
459 }
460 EXPORT_SYMBOL(profile_pc);
461 #endif
462
463 #ifdef CONFIG_PPC_ISERIES
464
465 /*
466 * This function recalibrates the timebase based on the 49-bit time-of-day
467 * value in the Titan chip. The Titan is much more accurate than the value
468 * returned by the service processor for the timebase frequency.
469 */
470
471 static int __init iSeries_tb_recal(void)
472 {
473 struct div_result divres;
474 unsigned long titan, tb;
475
476 /* Make sure we only run on iSeries */
477 if (!firmware_has_feature(FW_FEATURE_ISERIES))
478 return -ENODEV;
479
480 tb = get_tb();
481 titan = HvCallXm_loadTod();
482 if ( iSeries_recal_titan ) {
483 unsigned long tb_ticks = tb - iSeries_recal_tb;
484 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
485 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
486 unsigned long new_tb_ticks_per_jiffy =
487 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
488 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
489 char sign = '+';
490 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
491 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
492
493 if ( tick_diff < 0 ) {
494 tick_diff = -tick_diff;
495 sign = '-';
496 }
497 if ( tick_diff ) {
498 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
499 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
500 new_tb_ticks_per_jiffy, sign, tick_diff );
501 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
502 tb_ticks_per_sec = new_tb_ticks_per_sec;
503 calc_cputime_factors();
504 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
505 tb_to_xs = divres.result_low;
506 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
507 vdso_data->tb_to_xs = tb_to_xs;
508 setup_cputime_one_jiffy();
509 }
510 else {
511 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
512 " new tb_ticks_per_jiffy = %lu\n"
513 " old tb_ticks_per_jiffy = %lu\n",
514 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
515 }
516 }
517 }
518 iSeries_recal_titan = titan;
519 iSeries_recal_tb = tb;
520
521 /* Called here as now we know accurate values for the timebase */
522 clocksource_init();
523 return 0;
524 }
525 late_initcall(iSeries_tb_recal);
526
527 /* Called from platform early init */
528 void __init iSeries_time_init_early(void)
529 {
530 iSeries_recal_tb = get_tb();
531 iSeries_recal_titan = HvCallXm_loadTod();
532 }
533 #endif /* CONFIG_PPC_ISERIES */
534
535 #ifdef CONFIG_PERF_EVENTS
536
537 /*
538 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
539 */
540 #ifdef CONFIG_PPC64
541 static inline unsigned long test_perf_event_pending(void)
542 {
543 unsigned long x;
544
545 asm volatile("lbz %0,%1(13)"
546 : "=r" (x)
547 : "i" (offsetof(struct paca_struct, perf_event_pending)));
548 return x;
549 }
550
551 static inline void set_perf_event_pending_flag(void)
552 {
553 asm volatile("stb %0,%1(13)" : :
554 "r" (1),
555 "i" (offsetof(struct paca_struct, perf_event_pending)));
556 }
557
558 static inline void clear_perf_event_pending(void)
559 {
560 asm volatile("stb %0,%1(13)" : :
561 "r" (0),
562 "i" (offsetof(struct paca_struct, perf_event_pending)));
563 }
564
565 #else /* 32-bit */
566
567 DEFINE_PER_CPU(u8, perf_event_pending);
568
569 #define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
570 #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
571 #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
572
573 #endif /* 32 vs 64 bit */
574
575 void set_perf_event_pending(void)
576 {
577 preempt_disable();
578 set_perf_event_pending_flag();
579 set_dec(1);
580 preempt_enable();
581 }
582
583 #else /* CONFIG_PERF_EVENTS */
584
585 #define test_perf_event_pending() 0
586 #define clear_perf_event_pending()
587
588 #endif /* CONFIG_PERF_EVENTS */
589
590 /*
591 * For iSeries shared processors, we have to let the hypervisor
592 * set the hardware decrementer. We set a virtual decrementer
593 * in the lppaca and call the hypervisor if the virtual
594 * decrementer is less than the current value in the hardware
595 * decrementer. (almost always the new decrementer value will
596 * be greater than the current hardware decementer so the hypervisor
597 * call will not be needed)
598 */
599
600 /*
601 * timer_interrupt - gets called when the decrementer overflows,
602 * with interrupts disabled.
603 */
604 void timer_interrupt(struct pt_regs * regs)
605 {
606 struct pt_regs *old_regs;
607 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
608 struct clock_event_device *evt = &decrementer->event;
609 u64 now;
610
611 trace_timer_interrupt_entry(regs);
612
613 __get_cpu_var(irq_stat).timer_irqs++;
614
615 /* Ensure a positive value is written to the decrementer, or else
616 * some CPUs will continuue to take decrementer exceptions */
617 set_dec(DECREMENTER_MAX);
618
619 #ifdef CONFIG_PPC32
620 if (atomic_read(&ppc_n_lost_interrupts) != 0)
621 do_IRQ(regs);
622 #endif
623
624 now = get_tb_or_rtc();
625 if (now < decrementer->next_tb) {
626 /* not time for this event yet */
627 now = decrementer->next_tb - now;
628 if (now <= DECREMENTER_MAX)
629 set_dec((int)now);
630 trace_timer_interrupt_exit(regs);
631 return;
632 }
633 old_regs = set_irq_regs(regs);
634 irq_enter();
635
636 calculate_steal_time();
637
638 if (test_perf_event_pending()) {
639 clear_perf_event_pending();
640 perf_event_do_pending();
641 }
642
643 #ifdef CONFIG_PPC_ISERIES
644 if (firmware_has_feature(FW_FEATURE_ISERIES))
645 get_lppaca()->int_dword.fields.decr_int = 0;
646 #endif
647
648 if (evt->event_handler)
649 evt->event_handler(evt);
650
651 #ifdef CONFIG_PPC_ISERIES
652 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
653 process_hvlpevents();
654 #endif
655
656 #ifdef CONFIG_PPC64
657 /* collect purr register values often, for accurate calculations */
658 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
659 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
660 cu->current_tb = mfspr(SPRN_PURR);
661 }
662 #endif
663
664 irq_exit();
665 set_irq_regs(old_regs);
666
667 trace_timer_interrupt_exit(regs);
668 }
669
670 void wakeup_decrementer(void)
671 {
672 unsigned long ticks;
673
674 /*
675 * The timebase gets saved on sleep and restored on wakeup,
676 * so all we need to do is to reset the decrementer.
677 */
678 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
679 if (ticks < tb_ticks_per_jiffy)
680 ticks = tb_ticks_per_jiffy - ticks;
681 else
682 ticks = 1;
683 set_dec(ticks);
684 }
685
686 #ifdef CONFIG_SUSPEND
687 void generic_suspend_disable_irqs(void)
688 {
689 preempt_disable();
690
691 /* Disable the decrementer, so that it doesn't interfere
692 * with suspending.
693 */
694
695 set_dec(0x7fffffff);
696 local_irq_disable();
697 set_dec(0x7fffffff);
698 }
699
700 void generic_suspend_enable_irqs(void)
701 {
702 wakeup_decrementer();
703
704 local_irq_enable();
705 preempt_enable();
706 }
707
708 /* Overrides the weak version in kernel/power/main.c */
709 void arch_suspend_disable_irqs(void)
710 {
711 if (ppc_md.suspend_disable_irqs)
712 ppc_md.suspend_disable_irqs();
713 generic_suspend_disable_irqs();
714 }
715
716 /* Overrides the weak version in kernel/power/main.c */
717 void arch_suspend_enable_irqs(void)
718 {
719 generic_suspend_enable_irqs();
720 if (ppc_md.suspend_enable_irqs)
721 ppc_md.suspend_enable_irqs();
722 }
723 #endif
724
725 #ifdef CONFIG_SMP
726 void __init smp_space_timers(unsigned int max_cpus)
727 {
728 int i;
729 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
730
731 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
732 previous_tb -= tb_ticks_per_jiffy;
733
734 for_each_possible_cpu(i) {
735 if (i == boot_cpuid)
736 continue;
737 per_cpu(last_jiffy, i) = previous_tb;
738 }
739 }
740 #endif
741
742 /*
743 * Scheduler clock - returns current time in nanosec units.
744 *
745 * Note: mulhdu(a, b) (multiply high double unsigned) returns
746 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
747 * are 64-bit unsigned numbers.
748 */
749 unsigned long long sched_clock(void)
750 {
751 if (__USE_RTC())
752 return get_rtc();
753 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
754 }
755
756 static int __init get_freq(char *name, int cells, unsigned long *val)
757 {
758 struct device_node *cpu;
759 const unsigned int *fp;
760 int found = 0;
761
762 /* The cpu node should have timebase and clock frequency properties */
763 cpu = of_find_node_by_type(NULL, "cpu");
764
765 if (cpu) {
766 fp = of_get_property(cpu, name, NULL);
767 if (fp) {
768 found = 1;
769 *val = of_read_ulong(fp, cells);
770 }
771
772 of_node_put(cpu);
773 }
774
775 return found;
776 }
777
778 /* should become __cpuinit when secondary_cpu_time_init also is */
779 void start_cpu_decrementer(void)
780 {
781 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
782 /* Clear any pending timer interrupts */
783 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
784
785 /* Enable decrementer interrupt */
786 mtspr(SPRN_TCR, TCR_DIE);
787 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
788 }
789
790 void __init generic_calibrate_decr(void)
791 {
792 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
793
794 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
795 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
796
797 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
798 "(not found)\n");
799 }
800
801 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
802
803 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
804 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
805
806 printk(KERN_ERR "WARNING: Estimating processor frequency "
807 "(not found)\n");
808 }
809 }
810
811 int update_persistent_clock(struct timespec now)
812 {
813 struct rtc_time tm;
814
815 if (!ppc_md.set_rtc_time)
816 return 0;
817
818 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
819 tm.tm_year -= 1900;
820 tm.tm_mon -= 1;
821
822 return ppc_md.set_rtc_time(&tm);
823 }
824
825 static void __read_persistent_clock(struct timespec *ts)
826 {
827 struct rtc_time tm;
828 static int first = 1;
829
830 ts->tv_nsec = 0;
831 /* XXX this is a litle fragile but will work okay in the short term */
832 if (first) {
833 first = 0;
834 if (ppc_md.time_init)
835 timezone_offset = ppc_md.time_init();
836
837 /* get_boot_time() isn't guaranteed to be safe to call late */
838 if (ppc_md.get_boot_time) {
839 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
840 return;
841 }
842 }
843 if (!ppc_md.get_rtc_time) {
844 ts->tv_sec = 0;
845 return;
846 }
847 ppc_md.get_rtc_time(&tm);
848
849 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
850 tm.tm_hour, tm.tm_min, tm.tm_sec);
851 }
852
853 void read_persistent_clock(struct timespec *ts)
854 {
855 __read_persistent_clock(ts);
856
857 /* Sanitize it in case real time clock is set below EPOCH */
858 if (ts->tv_sec < 0) {
859 ts->tv_sec = 0;
860 ts->tv_nsec = 0;
861 }
862
863 }
864
865 /* clocksource code */
866 static cycle_t rtc_read(struct clocksource *cs)
867 {
868 return (cycle_t)get_rtc();
869 }
870
871 static cycle_t timebase_read(struct clocksource *cs)
872 {
873 return (cycle_t)get_tb();
874 }
875
876 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
877 u32 mult)
878 {
879 u64 t2x, stamp_xsec;
880
881 if (clock != &clocksource_timebase)
882 return;
883
884 /* Make userspace gettimeofday spin until we're done. */
885 ++vdso_data->tb_update_count;
886 smp_mb();
887
888 /* XXX this assumes clock->shift == 22 */
889 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
890 t2x = (u64) mult * 4611686018ULL;
891 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
892 do_div(stamp_xsec, 1000000000);
893 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
894 update_gtod(clock->cycle_last, stamp_xsec, t2x);
895 }
896
897 void update_vsyscall_tz(void)
898 {
899 /* Make userspace gettimeofday spin until we're done. */
900 ++vdso_data->tb_update_count;
901 smp_mb();
902 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
903 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
904 smp_mb();
905 ++vdso_data->tb_update_count;
906 }
907
908 static void __init clocksource_init(void)
909 {
910 struct clocksource *clock;
911
912 if (__USE_RTC())
913 clock = &clocksource_rtc;
914 else
915 clock = &clocksource_timebase;
916
917 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
918
919 if (clocksource_register(clock)) {
920 printk(KERN_ERR "clocksource: %s is already registered\n",
921 clock->name);
922 return;
923 }
924
925 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
926 clock->name, clock->mult, clock->shift);
927 }
928
929 static int decrementer_set_next_event(unsigned long evt,
930 struct clock_event_device *dev)
931 {
932 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
933 set_dec(evt);
934 return 0;
935 }
936
937 static void decrementer_set_mode(enum clock_event_mode mode,
938 struct clock_event_device *dev)
939 {
940 if (mode != CLOCK_EVT_MODE_ONESHOT)
941 decrementer_set_next_event(DECREMENTER_MAX, dev);
942 }
943
944 static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
945 int shift)
946 {
947 uint64_t tmp = ((uint64_t)ticks) << shift;
948
949 do_div(tmp, nsec);
950 return tmp;
951 }
952
953 static void __init setup_clockevent_multiplier(unsigned long hz)
954 {
955 u64 mult, shift = 32;
956
957 while (1) {
958 mult = div_sc64(hz, NSEC_PER_SEC, shift);
959 if (mult && (mult >> 32UL) == 0UL)
960 break;
961
962 shift--;
963 }
964
965 decrementer_clockevent.shift = shift;
966 decrementer_clockevent.mult = mult;
967 }
968
969 static void register_decrementer_clockevent(int cpu)
970 {
971 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
972
973 *dec = decrementer_clockevent;
974 dec->cpumask = cpumask_of(cpu);
975
976 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
977 dec->name, dec->mult, dec->shift, cpu);
978
979 clockevents_register_device(dec);
980 }
981
982 static void __init init_decrementer_clockevent(void)
983 {
984 int cpu = smp_processor_id();
985
986 setup_clockevent_multiplier(ppc_tb_freq);
987 decrementer_clockevent.max_delta_ns =
988 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
989 decrementer_clockevent.min_delta_ns =
990 clockevent_delta2ns(2, &decrementer_clockevent);
991
992 register_decrementer_clockevent(cpu);
993 }
994
995 void secondary_cpu_time_init(void)
996 {
997 /* Start the decrementer on CPUs that have manual control
998 * such as BookE
999 */
1000 start_cpu_decrementer();
1001
1002 /* FIME: Should make unrelatred change to move snapshot_timebase
1003 * call here ! */
1004 register_decrementer_clockevent(smp_processor_id());
1005 }
1006
1007 /* This function is only called on the boot processor */
1008 void __init time_init(void)
1009 {
1010 unsigned long flags;
1011 struct div_result res;
1012 u64 scale, x;
1013 unsigned shift;
1014
1015 if (__USE_RTC()) {
1016 /* 601 processor: dec counts down by 128 every 128ns */
1017 ppc_tb_freq = 1000000000;
1018 tb_last_jiffy = get_rtcl();
1019 } else {
1020 /* Normal PowerPC with timebase register */
1021 ppc_md.calibrate_decr();
1022 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1023 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1024 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
1025 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1026 tb_last_jiffy = get_tb();
1027 }
1028
1029 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1030 tb_ticks_per_sec = ppc_tb_freq;
1031 tb_ticks_per_usec = ppc_tb_freq / 1000000;
1032 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
1033 calc_cputime_factors();
1034 setup_cputime_one_jiffy();
1035
1036 /*
1037 * Calculate the length of each tick in ns. It will not be
1038 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
1039 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
1040 * rounded up.
1041 */
1042 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
1043 do_div(x, ppc_tb_freq);
1044 tick_nsec = x;
1045 last_tick_len = x << TICKLEN_SCALE;
1046
1047 /*
1048 * Compute ticklen_to_xs, which is a factor which gets multiplied
1049 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
1050 * It is computed as:
1051 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
1052 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
1053 * which turns out to be N = 51 - SHIFT_HZ.
1054 * This gives the result as a 0.64 fixed-point fraction.
1055 * That value is reduced by an offset amounting to 1 xsec per
1056 * 2^31 timebase ticks to avoid problems with time going backwards
1057 * by 1 xsec when we do timer_recalc_offset due to losing the
1058 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
1059 * since there are 2^20 xsec in a second.
1060 */
1061 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
1062 tb_ticks_per_jiffy << SHIFT_HZ, &res);
1063 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
1064 ticklen_to_xs = res.result_low;
1065
1066 /* Compute tb_to_xs from tick_nsec */
1067 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1068
1069 /*
1070 * Compute scale factor for sched_clock.
1071 * The calibrate_decr() function has set tb_ticks_per_sec,
1072 * which is the timebase frequency.
1073 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1074 * the 128-bit result as a 64.64 fixed-point number.
1075 * We then shift that number right until it is less than 1.0,
1076 * giving us the scale factor and shift count to use in
1077 * sched_clock().
1078 */
1079 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1080 scale = res.result_low;
1081 for (shift = 0; res.result_high != 0; ++shift) {
1082 scale = (scale >> 1) | (res.result_high << 63);
1083 res.result_high >>= 1;
1084 }
1085 tb_to_ns_scale = scale;
1086 tb_to_ns_shift = shift;
1087 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1088 boot_tb = get_tb_or_rtc();
1089
1090 write_seqlock_irqsave(&xtime_lock, flags);
1091
1092 /* If platform provided a timezone (pmac), we correct the time */
1093 if (timezone_offset) {
1094 sys_tz.tz_minuteswest = -timezone_offset / 60;
1095 sys_tz.tz_dsttime = 0;
1096 }
1097
1098 vdso_data->tb_orig_stamp = tb_last_jiffy;
1099 vdso_data->tb_update_count = 0;
1100 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1101 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1102 vdso_data->tb_to_xs = tb_to_xs;
1103
1104 write_sequnlock_irqrestore(&xtime_lock, flags);
1105
1106 /* Start the decrementer on CPUs that have manual control
1107 * such as BookE
1108 */
1109 start_cpu_decrementer();
1110
1111 /* Register the clocksource, if we're not running on iSeries */
1112 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1113 clocksource_init();
1114
1115 init_decrementer_clockevent();
1116 }
1117
1118
1119 #define FEBRUARY 2
1120 #define STARTOFTIME 1970
1121 #define SECDAY 86400L
1122 #define SECYR (SECDAY * 365)
1123 #define leapyear(year) ((year) % 4 == 0 && \
1124 ((year) % 100 != 0 || (year) % 400 == 0))
1125 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1126 #define days_in_month(a) (month_days[(a) - 1])
1127
1128 static int month_days[12] = {
1129 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1130 };
1131
1132 /*
1133 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1134 */
1135 void GregorianDay(struct rtc_time * tm)
1136 {
1137 int leapsToDate;
1138 int lastYear;
1139 int day;
1140 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1141
1142 lastYear = tm->tm_year - 1;
1143
1144 /*
1145 * Number of leap corrections to apply up to end of last year
1146 */
1147 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1148
1149 /*
1150 * This year is a leap year if it is divisible by 4 except when it is
1151 * divisible by 100 unless it is divisible by 400
1152 *
1153 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1154 */
1155 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1156
1157 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1158 tm->tm_mday;
1159
1160 tm->tm_wday = day % 7;
1161 }
1162
1163 void to_tm(int tim, struct rtc_time * tm)
1164 {
1165 register int i;
1166 register long hms, day;
1167
1168 day = tim / SECDAY;
1169 hms = tim % SECDAY;
1170
1171 /* Hours, minutes, seconds are easy */
1172 tm->tm_hour = hms / 3600;
1173 tm->tm_min = (hms % 3600) / 60;
1174 tm->tm_sec = (hms % 3600) % 60;
1175
1176 /* Number of years in days */
1177 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1178 day -= days_in_year(i);
1179 tm->tm_year = i;
1180
1181 /* Number of months in days left */
1182 if (leapyear(tm->tm_year))
1183 days_in_month(FEBRUARY) = 29;
1184 for (i = 1; day >= days_in_month(i); i++)
1185 day -= days_in_month(i);
1186 days_in_month(FEBRUARY) = 28;
1187 tm->tm_mon = i;
1188
1189 /* Days are what is left over (+1) from all that. */
1190 tm->tm_mday = day + 1;
1191
1192 /*
1193 * Determine the day of week
1194 */
1195 GregorianDay(tm);
1196 }
1197
1198 /* Auxiliary function to compute scaling factors */
1199 /* Actually the choice of a timebase running at 1/4 the of the bus
1200 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1201 * It makes this computation very precise (27-28 bits typically) which
1202 * is optimistic considering the stability of most processor clock
1203 * oscillators and the precision with which the timebase frequency
1204 * is measured but does not harm.
1205 */
1206 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1207 {
1208 unsigned mlt=0, tmp, err;
1209 /* No concern for performance, it's done once: use a stupid
1210 * but safe and compact method to find the multiplier.
1211 */
1212
1213 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1214 if (mulhwu(inscale, mlt|tmp) < outscale)
1215 mlt |= tmp;
1216 }
1217
1218 /* We might still be off by 1 for the best approximation.
1219 * A side effect of this is that if outscale is too large
1220 * the returned value will be zero.
1221 * Many corner cases have been checked and seem to work,
1222 * some might have been forgotten in the test however.
1223 */
1224
1225 err = inscale * (mlt+1);
1226 if (err <= inscale/2)
1227 mlt++;
1228 return mlt;
1229 }
1230
1231 /*
1232 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1233 * result.
1234 */
1235 void div128_by_32(u64 dividend_high, u64 dividend_low,
1236 unsigned divisor, struct div_result *dr)
1237 {
1238 unsigned long a, b, c, d;
1239 unsigned long w, x, y, z;
1240 u64 ra, rb, rc;
1241
1242 a = dividend_high >> 32;
1243 b = dividend_high & 0xffffffff;
1244 c = dividend_low >> 32;
1245 d = dividend_low & 0xffffffff;
1246
1247 w = a / divisor;
1248 ra = ((u64)(a - (w * divisor)) << 32) + b;
1249
1250 rb = ((u64) do_div(ra, divisor) << 32) + c;
1251 x = ra;
1252
1253 rc = ((u64) do_div(rb, divisor) << 32) + d;
1254 y = rb;
1255
1256 do_div(rc, divisor);
1257 z = rc;
1258
1259 dr->result_high = ((u64)w << 32) + x;
1260 dr->result_low = ((u64)y << 32) + z;
1261
1262 }
1263
1264 /* We don't need to calibrate delay, we use the CPU timebase for that */
1265 void calibrate_delay(void)
1266 {
1267 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1268 * as the number of __delay(1) in a jiffy, so make it so
1269 */
1270 loops_per_jiffy = tb_ticks_per_jiffy;
1271 }
1272
1273 static int __init rtc_init(void)
1274 {
1275 struct platform_device *pdev;
1276
1277 if (!ppc_md.get_rtc_time)
1278 return -ENODEV;
1279
1280 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1281 if (IS_ERR(pdev))
1282 return PTR_ERR(pdev);
1283
1284 return 0;
1285 }
1286
1287 module_init(rtc_init);