Merge branch 'merge'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54
55 #include <asm/io.h>
56 #include <asm/processor.h>
57 #include <asm/nvram.h>
58 #include <asm/cache.h>
59 #include <asm/machdep.h>
60 #include <asm/uaccess.h>
61 #include <asm/time.h>
62 #include <asm/prom.h>
63 #include <asm/irq.h>
64 #include <asm/div64.h>
65 #include <asm/smp.h>
66 #include <asm/vdso_datapage.h>
67 #ifdef CONFIG_PPC64
68 #include <asm/firmware.h>
69 #endif
70 #ifdef CONFIG_PPC_ISERIES
71 #include <asm/iseries/it_lp_queue.h>
72 #include <asm/iseries/hv_call_xm.h>
73 #endif
74 #include <asm/smp.h>
75
76 /* keep track of when we need to update the rtc */
77 time_t last_rtc_update;
78 #ifdef CONFIG_PPC_ISERIES
79 unsigned long iSeries_recal_titan = 0;
80 unsigned long iSeries_recal_tb = 0;
81 static unsigned long first_settimeofday = 1;
82 #endif
83
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
86
87 #define XSEC_PER_SEC (1024*1024)
88
89 #ifdef CONFIG_PPC64
90 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
91 #else
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
94 #endif
95
96 unsigned long tb_ticks_per_jiffy;
97 unsigned long tb_ticks_per_usec = 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec);
99 unsigned long tb_ticks_per_sec;
100 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
101 u64 tb_to_xs;
102 unsigned tb_to_us;
103
104 #define TICKLEN_SCALE TICK_LENGTH_SHIFT
105 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
106 u64 ticklen_to_xs; /* 0.64 fraction */
107
108 /* If last_tick_len corresponds to about 1/HZ seconds, then
109 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
111
112 DEFINE_SPINLOCK(rtc_lock);
113 EXPORT_SYMBOL_GPL(rtc_lock);
114
115 u64 tb_to_ns_scale;
116 unsigned tb_to_ns_shift;
117
118 struct gettimeofday_struct do_gtod;
119
120 extern unsigned long wall_jiffies;
121
122 extern struct timezone sys_tz;
123 static long timezone_offset;
124
125 unsigned long ppc_proc_freq;
126 unsigned long ppc_tb_freq;
127
128 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
129 static DEFINE_PER_CPU(u64, last_jiffy);
130
131 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
132 /*
133 * Factors for converting from cputime_t (timebase ticks) to
134 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
135 * These are all stored as 0.64 fixed-point binary fractions.
136 */
137 u64 __cputime_jiffies_factor;
138 EXPORT_SYMBOL(__cputime_jiffies_factor);
139 u64 __cputime_msec_factor;
140 EXPORT_SYMBOL(__cputime_msec_factor);
141 u64 __cputime_sec_factor;
142 EXPORT_SYMBOL(__cputime_sec_factor);
143 u64 __cputime_clockt_factor;
144 EXPORT_SYMBOL(__cputime_clockt_factor);
145
146 static void calc_cputime_factors(void)
147 {
148 struct div_result res;
149
150 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
151 __cputime_jiffies_factor = res.result_low;
152 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
153 __cputime_msec_factor = res.result_low;
154 div128_by_32(1, 0, tb_ticks_per_sec, &res);
155 __cputime_sec_factor = res.result_low;
156 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
157 __cputime_clockt_factor = res.result_low;
158 }
159
160 /*
161 * Read the PURR on systems that have it, otherwise the timebase.
162 */
163 static u64 read_purr(void)
164 {
165 if (cpu_has_feature(CPU_FTR_PURR))
166 return mfspr(SPRN_PURR);
167 return mftb();
168 }
169
170 /*
171 * Account time for a transition between system, hard irq
172 * or soft irq state.
173 */
174 void account_system_vtime(struct task_struct *tsk)
175 {
176 u64 now, delta;
177 unsigned long flags;
178
179 local_irq_save(flags);
180 now = read_purr();
181 delta = now - get_paca()->startpurr;
182 get_paca()->startpurr = now;
183 if (!in_interrupt()) {
184 delta += get_paca()->system_time;
185 get_paca()->system_time = 0;
186 }
187 account_system_time(tsk, 0, delta);
188 local_irq_restore(flags);
189 }
190
191 /*
192 * Transfer the user and system times accumulated in the paca
193 * by the exception entry and exit code to the generic process
194 * user and system time records.
195 * Must be called with interrupts disabled.
196 */
197 void account_process_vtime(struct task_struct *tsk)
198 {
199 cputime_t utime;
200
201 utime = get_paca()->user_time;
202 get_paca()->user_time = 0;
203 account_user_time(tsk, utime);
204 }
205
206 static void account_process_time(struct pt_regs *regs)
207 {
208 int cpu = smp_processor_id();
209
210 account_process_vtime(current);
211 run_local_timers();
212 if (rcu_pending(cpu))
213 rcu_check_callbacks(cpu, user_mode(regs));
214 scheduler_tick();
215 run_posix_cpu_timers(current);
216 }
217
218 #ifdef CONFIG_PPC_SPLPAR
219 /*
220 * Stuff for accounting stolen time.
221 */
222 struct cpu_purr_data {
223 int initialized; /* thread is running */
224 u64 tb0; /* timebase at origin time */
225 u64 purr0; /* PURR at origin time */
226 u64 tb; /* last TB value read */
227 u64 purr; /* last PURR value read */
228 u64 stolen; /* stolen time so far */
229 spinlock_t lock;
230 };
231
232 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
233
234 static void snapshot_tb_and_purr(void *data)
235 {
236 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
237
238 p->tb0 = mftb();
239 p->purr0 = mfspr(SPRN_PURR);
240 p->tb = p->tb0;
241 p->purr = 0;
242 wmb();
243 p->initialized = 1;
244 }
245
246 /*
247 * Called during boot when all cpus have come up.
248 */
249 void snapshot_timebases(void)
250 {
251 int cpu;
252
253 if (!cpu_has_feature(CPU_FTR_PURR))
254 return;
255 for_each_possible_cpu(cpu)
256 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
257 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
258 }
259
260 void calculate_steal_time(void)
261 {
262 u64 tb, purr, t0;
263 s64 stolen;
264 struct cpu_purr_data *p0, *pme, *phim;
265 int cpu;
266
267 if (!cpu_has_feature(CPU_FTR_PURR))
268 return;
269 cpu = smp_processor_id();
270 pme = &per_cpu(cpu_purr_data, cpu);
271 if (!pme->initialized)
272 return; /* this can happen in early boot */
273 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
274 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
275 spin_lock(&p0->lock);
276 tb = mftb();
277 purr = mfspr(SPRN_PURR) - pme->purr0;
278 if (!phim->initialized || !cpu_online(cpu ^ 1)) {
279 stolen = (tb - pme->tb) - (purr - pme->purr);
280 } else {
281 t0 = pme->tb0;
282 if (phim->tb0 < t0)
283 t0 = phim->tb0;
284 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
285 }
286 if (stolen > 0) {
287 account_steal_time(current, stolen);
288 p0->stolen += stolen;
289 }
290 pme->tb = tb;
291 pme->purr = purr;
292 spin_unlock(&p0->lock);
293 }
294
295 /*
296 * Must be called before the cpu is added to the online map when
297 * a cpu is being brought up at runtime.
298 */
299 static void snapshot_purr(void)
300 {
301 int cpu;
302 u64 purr;
303 struct cpu_purr_data *p0, *pme, *phim;
304 unsigned long flags;
305
306 if (!cpu_has_feature(CPU_FTR_PURR))
307 return;
308 cpu = smp_processor_id();
309 pme = &per_cpu(cpu_purr_data, cpu);
310 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
311 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
312 spin_lock_irqsave(&p0->lock, flags);
313 pme->tb = pme->tb0 = mftb();
314 purr = mfspr(SPRN_PURR);
315 if (!phim->initialized) {
316 pme->purr = 0;
317 pme->purr0 = purr;
318 } else {
319 /* set p->purr and p->purr0 for no change in p0->stolen */
320 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
321 pme->purr0 = purr - pme->purr;
322 }
323 pme->initialized = 1;
324 spin_unlock_irqrestore(&p0->lock, flags);
325 }
326
327 #endif /* CONFIG_PPC_SPLPAR */
328
329 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
330 #define calc_cputime_factors()
331 #define account_process_time(regs) update_process_times(user_mode(regs))
332 #define calculate_steal_time() do { } while (0)
333 #endif
334
335 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
336 #define snapshot_purr() do { } while (0)
337 #endif
338
339 /*
340 * Called when a cpu comes up after the system has finished booting,
341 * i.e. as a result of a hotplug cpu action.
342 */
343 void snapshot_timebase(void)
344 {
345 __get_cpu_var(last_jiffy) = get_tb();
346 snapshot_purr();
347 }
348
349 void __delay(unsigned long loops)
350 {
351 unsigned long start;
352 int diff;
353
354 if (__USE_RTC()) {
355 start = get_rtcl();
356 do {
357 /* the RTCL register wraps at 1000000000 */
358 diff = get_rtcl() - start;
359 if (diff < 0)
360 diff += 1000000000;
361 } while (diff < loops);
362 } else {
363 start = get_tbl();
364 while (get_tbl() - start < loops)
365 HMT_low();
366 HMT_medium();
367 }
368 }
369 EXPORT_SYMBOL(__delay);
370
371 void udelay(unsigned long usecs)
372 {
373 __delay(tb_ticks_per_usec * usecs);
374 }
375 EXPORT_SYMBOL(udelay);
376
377 static __inline__ void timer_check_rtc(void)
378 {
379 /*
380 * update the rtc when needed, this should be performed on the
381 * right fraction of a second. Half or full second ?
382 * Full second works on mk48t59 clocks, others need testing.
383 * Note that this update is basically only used through
384 * the adjtimex system calls. Setting the HW clock in
385 * any other way is a /dev/rtc and userland business.
386 * This is still wrong by -0.5/+1.5 jiffies because of the
387 * timer interrupt resolution and possible delay, but here we
388 * hit a quantization limit which can only be solved by higher
389 * resolution timers and decoupling time management from timer
390 * interrupts. This is also wrong on the clocks
391 * which require being written at the half second boundary.
392 * We should have an rtc call that only sets the minutes and
393 * seconds like on Intel to avoid problems with non UTC clocks.
394 */
395 if (ppc_md.set_rtc_time && ntp_synced() &&
396 xtime.tv_sec - last_rtc_update >= 659 &&
397 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
398 struct rtc_time tm;
399 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
400 tm.tm_year -= 1900;
401 tm.tm_mon -= 1;
402 if (ppc_md.set_rtc_time(&tm) == 0)
403 last_rtc_update = xtime.tv_sec + 1;
404 else
405 /* Try again one minute later */
406 last_rtc_update += 60;
407 }
408 }
409
410 /*
411 * This version of gettimeofday has microsecond resolution.
412 */
413 static inline void __do_gettimeofday(struct timeval *tv)
414 {
415 unsigned long sec, usec;
416 u64 tb_ticks, xsec;
417 struct gettimeofday_vars *temp_varp;
418 u64 temp_tb_to_xs, temp_stamp_xsec;
419
420 /*
421 * These calculations are faster (gets rid of divides)
422 * if done in units of 1/2^20 rather than microseconds.
423 * The conversion to microseconds at the end is done
424 * without a divide (and in fact, without a multiply)
425 */
426 temp_varp = do_gtod.varp;
427
428 /* Sampling the time base must be done after loading
429 * do_gtod.varp in order to avoid racing with update_gtod.
430 */
431 data_barrier(temp_varp);
432 tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
433 temp_tb_to_xs = temp_varp->tb_to_xs;
434 temp_stamp_xsec = temp_varp->stamp_xsec;
435 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
436 sec = xsec / XSEC_PER_SEC;
437 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
438 usec = SCALE_XSEC(usec, 1000000);
439
440 tv->tv_sec = sec;
441 tv->tv_usec = usec;
442 }
443
444 void do_gettimeofday(struct timeval *tv)
445 {
446 if (__USE_RTC()) {
447 /* do this the old way */
448 unsigned long flags, seq;
449 unsigned int sec, nsec, usec;
450
451 do {
452 seq = read_seqbegin_irqsave(&xtime_lock, flags);
453 sec = xtime.tv_sec;
454 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
455 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
456 usec = nsec / 1000;
457 while (usec >= 1000000) {
458 usec -= 1000000;
459 ++sec;
460 }
461 tv->tv_sec = sec;
462 tv->tv_usec = usec;
463 return;
464 }
465 __do_gettimeofday(tv);
466 }
467
468 EXPORT_SYMBOL(do_gettimeofday);
469
470 /*
471 * There are two copies of tb_to_xs and stamp_xsec so that no
472 * lock is needed to access and use these values in
473 * do_gettimeofday. We alternate the copies and as long as a
474 * reasonable time elapses between changes, there will never
475 * be inconsistent values. ntpd has a minimum of one minute
476 * between updates.
477 */
478 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
479 u64 new_tb_to_xs)
480 {
481 unsigned temp_idx;
482 struct gettimeofday_vars *temp_varp;
483
484 temp_idx = (do_gtod.var_idx == 0);
485 temp_varp = &do_gtod.vars[temp_idx];
486
487 temp_varp->tb_to_xs = new_tb_to_xs;
488 temp_varp->tb_orig_stamp = new_tb_stamp;
489 temp_varp->stamp_xsec = new_stamp_xsec;
490 smp_mb();
491 do_gtod.varp = temp_varp;
492 do_gtod.var_idx = temp_idx;
493
494 /*
495 * tb_update_count is used to allow the userspace gettimeofday code
496 * to assure itself that it sees a consistent view of the tb_to_xs and
497 * stamp_xsec variables. It reads the tb_update_count, then reads
498 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
499 * the two values of tb_update_count match and are even then the
500 * tb_to_xs and stamp_xsec values are consistent. If not, then it
501 * loops back and reads them again until this criteria is met.
502 * We expect the caller to have done the first increment of
503 * vdso_data->tb_update_count already.
504 */
505 vdso_data->tb_orig_stamp = new_tb_stamp;
506 vdso_data->stamp_xsec = new_stamp_xsec;
507 vdso_data->tb_to_xs = new_tb_to_xs;
508 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
509 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
510 smp_wmb();
511 ++(vdso_data->tb_update_count);
512 }
513
514 /*
515 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
516 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
517 * difference tb - tb_orig_stamp small enough to always fit inside a
518 * 32 bits number. This is a requirement of our fast 32 bits userland
519 * implementation in the vdso. If we "miss" a call to this function
520 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
521 * with a too big difference, then the vdso will fallback to calling
522 * the syscall
523 */
524 static __inline__ void timer_recalc_offset(u64 cur_tb)
525 {
526 unsigned long offset;
527 u64 new_stamp_xsec;
528 u64 tlen, t2x;
529 u64 tb, xsec_old, xsec_new;
530 struct gettimeofday_vars *varp;
531
532 if (__USE_RTC())
533 return;
534 tlen = current_tick_length();
535 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
536 if (tlen == last_tick_len && offset < 0x80000000u)
537 return;
538 if (tlen != last_tick_len) {
539 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
540 last_tick_len = tlen;
541 } else
542 t2x = do_gtod.varp->tb_to_xs;
543 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
544 do_div(new_stamp_xsec, 1000000000);
545 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
546
547 ++vdso_data->tb_update_count;
548 smp_mb();
549
550 /*
551 * Make sure time doesn't go backwards for userspace gettimeofday.
552 */
553 tb = get_tb();
554 varp = do_gtod.varp;
555 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
556 + varp->stamp_xsec;
557 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
558 if (xsec_new < xsec_old)
559 new_stamp_xsec += xsec_old - xsec_new;
560
561 update_gtod(cur_tb, new_stamp_xsec, t2x);
562 }
563
564 #ifdef CONFIG_SMP
565 unsigned long profile_pc(struct pt_regs *regs)
566 {
567 unsigned long pc = instruction_pointer(regs);
568
569 if (in_lock_functions(pc))
570 return regs->link;
571
572 return pc;
573 }
574 EXPORT_SYMBOL(profile_pc);
575 #endif
576
577 #ifdef CONFIG_PPC_ISERIES
578
579 /*
580 * This function recalibrates the timebase based on the 49-bit time-of-day
581 * value in the Titan chip. The Titan is much more accurate than the value
582 * returned by the service processor for the timebase frequency.
583 */
584
585 static void iSeries_tb_recal(void)
586 {
587 struct div_result divres;
588 unsigned long titan, tb;
589 tb = get_tb();
590 titan = HvCallXm_loadTod();
591 if ( iSeries_recal_titan ) {
592 unsigned long tb_ticks = tb - iSeries_recal_tb;
593 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
594 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
595 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
596 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
597 char sign = '+';
598 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
599 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
600
601 if ( tick_diff < 0 ) {
602 tick_diff = -tick_diff;
603 sign = '-';
604 }
605 if ( tick_diff ) {
606 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
607 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
608 new_tb_ticks_per_jiffy, sign, tick_diff );
609 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
610 tb_ticks_per_sec = new_tb_ticks_per_sec;
611 calc_cputime_factors();
612 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
613 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
614 tb_to_xs = divres.result_low;
615 do_gtod.varp->tb_to_xs = tb_to_xs;
616 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
617 vdso_data->tb_to_xs = tb_to_xs;
618 }
619 else {
620 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
621 " new tb_ticks_per_jiffy = %lu\n"
622 " old tb_ticks_per_jiffy = %lu\n",
623 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
624 }
625 }
626 }
627 iSeries_recal_titan = titan;
628 iSeries_recal_tb = tb;
629 }
630 #endif
631
632 /*
633 * For iSeries shared processors, we have to let the hypervisor
634 * set the hardware decrementer. We set a virtual decrementer
635 * in the lppaca and call the hypervisor if the virtual
636 * decrementer is less than the current value in the hardware
637 * decrementer. (almost always the new decrementer value will
638 * be greater than the current hardware decementer so the hypervisor
639 * call will not be needed)
640 */
641
642 /*
643 * timer_interrupt - gets called when the decrementer overflows,
644 * with interrupts disabled.
645 */
646 void timer_interrupt(struct pt_regs * regs)
647 {
648 int next_dec;
649 int cpu = smp_processor_id();
650 unsigned long ticks;
651 u64 tb_next_jiffy;
652
653 #ifdef CONFIG_PPC32
654 if (atomic_read(&ppc_n_lost_interrupts) != 0)
655 do_IRQ(regs);
656 #endif
657
658 irq_enter();
659
660 profile_tick(CPU_PROFILING, regs);
661 calculate_steal_time();
662
663 #ifdef CONFIG_PPC_ISERIES
664 get_lppaca()->int_dword.fields.decr_int = 0;
665 #endif
666
667 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
668 >= tb_ticks_per_jiffy) {
669 /* Update last_jiffy */
670 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
671 /* Handle RTCL overflow on 601 */
672 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
673 per_cpu(last_jiffy, cpu) -= 1000000000;
674
675 /*
676 * We cannot disable the decrementer, so in the period
677 * between this cpu's being marked offline in cpu_online_map
678 * and calling stop-self, it is taking timer interrupts.
679 * Avoid calling into the scheduler rebalancing code if this
680 * is the case.
681 */
682 if (!cpu_is_offline(cpu))
683 account_process_time(regs);
684
685 /*
686 * No need to check whether cpu is offline here; boot_cpuid
687 * should have been fixed up by now.
688 */
689 if (cpu != boot_cpuid)
690 continue;
691
692 write_seqlock(&xtime_lock);
693 tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
694 if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
695 tb_last_jiffy = tb_next_jiffy;
696 do_timer(regs);
697 timer_recalc_offset(tb_last_jiffy);
698 timer_check_rtc();
699 }
700 write_sequnlock(&xtime_lock);
701 }
702
703 next_dec = tb_ticks_per_jiffy - ticks;
704 set_dec(next_dec);
705
706 #ifdef CONFIG_PPC_ISERIES
707 if (hvlpevent_is_pending())
708 process_hvlpevents(regs);
709 #endif
710
711 #ifdef CONFIG_PPC64
712 /* collect purr register values often, for accurate calculations */
713 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
714 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
715 cu->current_tb = mfspr(SPRN_PURR);
716 }
717 #endif
718
719 irq_exit();
720 }
721
722 void wakeup_decrementer(void)
723 {
724 unsigned long ticks;
725
726 /*
727 * The timebase gets saved on sleep and restored on wakeup,
728 * so all we need to do is to reset the decrementer.
729 */
730 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
731 if (ticks < tb_ticks_per_jiffy)
732 ticks = tb_ticks_per_jiffy - ticks;
733 else
734 ticks = 1;
735 set_dec(ticks);
736 }
737
738 #ifdef CONFIG_SMP
739 void __init smp_space_timers(unsigned int max_cpus)
740 {
741 int i;
742 unsigned long half = tb_ticks_per_jiffy / 2;
743 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
744 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
745
746 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
747 previous_tb -= tb_ticks_per_jiffy;
748 /*
749 * The stolen time calculation for POWER5 shared-processor LPAR
750 * systems works better if the two threads' timebase interrupts
751 * are staggered by half a jiffy with respect to each other.
752 */
753 for_each_possible_cpu(i) {
754 if (i == boot_cpuid)
755 continue;
756 if (i == (boot_cpuid ^ 1))
757 per_cpu(last_jiffy, i) =
758 per_cpu(last_jiffy, boot_cpuid) - half;
759 else if (i & 1)
760 per_cpu(last_jiffy, i) =
761 per_cpu(last_jiffy, i ^ 1) + half;
762 else {
763 previous_tb += offset;
764 per_cpu(last_jiffy, i) = previous_tb;
765 }
766 }
767 }
768 #endif
769
770 /*
771 * Scheduler clock - returns current time in nanosec units.
772 *
773 * Note: mulhdu(a, b) (multiply high double unsigned) returns
774 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
775 * are 64-bit unsigned numbers.
776 */
777 unsigned long long sched_clock(void)
778 {
779 if (__USE_RTC())
780 return get_rtc();
781 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
782 }
783
784 int do_settimeofday(struct timespec *tv)
785 {
786 time_t wtm_sec, new_sec = tv->tv_sec;
787 long wtm_nsec, new_nsec = tv->tv_nsec;
788 unsigned long flags;
789 u64 new_xsec;
790 unsigned long tb_delta;
791
792 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
793 return -EINVAL;
794
795 write_seqlock_irqsave(&xtime_lock, flags);
796
797 /*
798 * Updating the RTC is not the job of this code. If the time is
799 * stepped under NTP, the RTC will be updated after STA_UNSYNC
800 * is cleared. Tools like clock/hwclock either copy the RTC
801 * to the system time, in which case there is no point in writing
802 * to the RTC again, or write to the RTC but then they don't call
803 * settimeofday to perform this operation.
804 */
805 #ifdef CONFIG_PPC_ISERIES
806 if (first_settimeofday) {
807 iSeries_tb_recal();
808 first_settimeofday = 0;
809 }
810 #endif
811
812 /* Make userspace gettimeofday spin until we're done. */
813 ++vdso_data->tb_update_count;
814 smp_mb();
815
816 /*
817 * Subtract off the number of nanoseconds since the
818 * beginning of the last tick.
819 * Note that since we don't increment jiffies_64 anywhere other
820 * than in do_timer (since we don't have a lost tick problem),
821 * wall_jiffies will always be the same as jiffies,
822 * and therefore the (jiffies - wall_jiffies) computation
823 * has been removed.
824 */
825 tb_delta = tb_ticks_since(tb_last_jiffy);
826 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
827 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
828
829 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
830 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
831
832 set_normalized_timespec(&xtime, new_sec, new_nsec);
833 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
834
835 /* In case of a large backwards jump in time with NTP, we want the
836 * clock to be updated as soon as the PLL is again in lock.
837 */
838 last_rtc_update = new_sec - 658;
839
840 ntp_clear();
841
842 new_xsec = xtime.tv_nsec;
843 if (new_xsec != 0) {
844 new_xsec *= XSEC_PER_SEC;
845 do_div(new_xsec, NSEC_PER_SEC);
846 }
847 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
848 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
849
850 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
851 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
852
853 write_sequnlock_irqrestore(&xtime_lock, flags);
854 clock_was_set();
855 return 0;
856 }
857
858 EXPORT_SYMBOL(do_settimeofday);
859
860 static int __init get_freq(char *name, int cells, unsigned long *val)
861 {
862 struct device_node *cpu;
863 const unsigned int *fp;
864 int found = 0;
865
866 /* The cpu node should have timebase and clock frequency properties */
867 cpu = of_find_node_by_type(NULL, "cpu");
868
869 if (cpu) {
870 fp = get_property(cpu, name, NULL);
871 if (fp) {
872 found = 1;
873 *val = 0;
874 while (cells--)
875 *val = (*val << 32) | *fp++;
876 }
877
878 of_node_put(cpu);
879 }
880
881 return found;
882 }
883
884 void __init generic_calibrate_decr(void)
885 {
886 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
887
888 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
889 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
890
891 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
892 "(not found)\n");
893 }
894
895 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
896
897 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
898 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
899
900 printk(KERN_ERR "WARNING: Estimating processor frequency "
901 "(not found)\n");
902 }
903
904 #ifdef CONFIG_BOOKE
905 /* Set the time base to zero */
906 mtspr(SPRN_TBWL, 0);
907 mtspr(SPRN_TBWU, 0);
908
909 /* Clear any pending timer interrupts */
910 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
911
912 /* Enable decrementer interrupt */
913 mtspr(SPRN_TCR, TCR_DIE);
914 #endif
915 }
916
917 unsigned long get_boot_time(void)
918 {
919 struct rtc_time tm;
920
921 if (ppc_md.get_boot_time)
922 return ppc_md.get_boot_time();
923 if (!ppc_md.get_rtc_time)
924 return 0;
925 ppc_md.get_rtc_time(&tm);
926 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
927 tm.tm_hour, tm.tm_min, tm.tm_sec);
928 }
929
930 /* This function is only called on the boot processor */
931 void __init time_init(void)
932 {
933 unsigned long flags;
934 unsigned long tm = 0;
935 struct div_result res;
936 u64 scale, x;
937 unsigned shift;
938
939 if (ppc_md.time_init != NULL)
940 timezone_offset = ppc_md.time_init();
941
942 if (__USE_RTC()) {
943 /* 601 processor: dec counts down by 128 every 128ns */
944 ppc_tb_freq = 1000000000;
945 tb_last_jiffy = get_rtcl();
946 } else {
947 /* Normal PowerPC with timebase register */
948 ppc_md.calibrate_decr();
949 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
950 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
951 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
952 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
953 tb_last_jiffy = get_tb();
954 }
955
956 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
957 tb_ticks_per_sec = ppc_tb_freq;
958 tb_ticks_per_usec = ppc_tb_freq / 1000000;
959 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
960 calc_cputime_factors();
961
962 /*
963 * Calculate the length of each tick in ns. It will not be
964 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
965 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
966 * rounded up.
967 */
968 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
969 do_div(x, ppc_tb_freq);
970 tick_nsec = x;
971 last_tick_len = x << TICKLEN_SCALE;
972
973 /*
974 * Compute ticklen_to_xs, which is a factor which gets multiplied
975 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
976 * It is computed as:
977 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
978 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
979 * which turns out to be N = 51 - SHIFT_HZ.
980 * This gives the result as a 0.64 fixed-point fraction.
981 * That value is reduced by an offset amounting to 1 xsec per
982 * 2^31 timebase ticks to avoid problems with time going backwards
983 * by 1 xsec when we do timer_recalc_offset due to losing the
984 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
985 * since there are 2^20 xsec in a second.
986 */
987 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
988 tb_ticks_per_jiffy << SHIFT_HZ, &res);
989 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
990 ticklen_to_xs = res.result_low;
991
992 /* Compute tb_to_xs from tick_nsec */
993 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
994
995 /*
996 * Compute scale factor for sched_clock.
997 * The calibrate_decr() function has set tb_ticks_per_sec,
998 * which is the timebase frequency.
999 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1000 * the 128-bit result as a 64.64 fixed-point number.
1001 * We then shift that number right until it is less than 1.0,
1002 * giving us the scale factor and shift count to use in
1003 * sched_clock().
1004 */
1005 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1006 scale = res.result_low;
1007 for (shift = 0; res.result_high != 0; ++shift) {
1008 scale = (scale >> 1) | (res.result_high << 63);
1009 res.result_high >>= 1;
1010 }
1011 tb_to_ns_scale = scale;
1012 tb_to_ns_shift = shift;
1013
1014 tm = get_boot_time();
1015
1016 write_seqlock_irqsave(&xtime_lock, flags);
1017
1018 /* If platform provided a timezone (pmac), we correct the time */
1019 if (timezone_offset) {
1020 sys_tz.tz_minuteswest = -timezone_offset / 60;
1021 sys_tz.tz_dsttime = 0;
1022 tm -= timezone_offset;
1023 }
1024
1025 xtime.tv_sec = tm;
1026 xtime.tv_nsec = 0;
1027 do_gtod.varp = &do_gtod.vars[0];
1028 do_gtod.var_idx = 0;
1029 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
1030 __get_cpu_var(last_jiffy) = tb_last_jiffy;
1031 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1032 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1033 do_gtod.varp->tb_to_xs = tb_to_xs;
1034 do_gtod.tb_to_us = tb_to_us;
1035
1036 vdso_data->tb_orig_stamp = tb_last_jiffy;
1037 vdso_data->tb_update_count = 0;
1038 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1039 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1040 vdso_data->tb_to_xs = tb_to_xs;
1041
1042 time_freq = 0;
1043
1044 last_rtc_update = xtime.tv_sec;
1045 set_normalized_timespec(&wall_to_monotonic,
1046 -xtime.tv_sec, -xtime.tv_nsec);
1047 write_sequnlock_irqrestore(&xtime_lock, flags);
1048
1049 /* Not exact, but the timer interrupt takes care of this */
1050 set_dec(tb_ticks_per_jiffy);
1051 }
1052
1053
1054 #define FEBRUARY 2
1055 #define STARTOFTIME 1970
1056 #define SECDAY 86400L
1057 #define SECYR (SECDAY * 365)
1058 #define leapyear(year) ((year) % 4 == 0 && \
1059 ((year) % 100 != 0 || (year) % 400 == 0))
1060 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1061 #define days_in_month(a) (month_days[(a) - 1])
1062
1063 static int month_days[12] = {
1064 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1065 };
1066
1067 /*
1068 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1069 */
1070 void GregorianDay(struct rtc_time * tm)
1071 {
1072 int leapsToDate;
1073 int lastYear;
1074 int day;
1075 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1076
1077 lastYear = tm->tm_year - 1;
1078
1079 /*
1080 * Number of leap corrections to apply up to end of last year
1081 */
1082 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1083
1084 /*
1085 * This year is a leap year if it is divisible by 4 except when it is
1086 * divisible by 100 unless it is divisible by 400
1087 *
1088 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1089 */
1090 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1091
1092 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1093 tm->tm_mday;
1094
1095 tm->tm_wday = day % 7;
1096 }
1097
1098 void to_tm(int tim, struct rtc_time * tm)
1099 {
1100 register int i;
1101 register long hms, day;
1102
1103 day = tim / SECDAY;
1104 hms = tim % SECDAY;
1105
1106 /* Hours, minutes, seconds are easy */
1107 tm->tm_hour = hms / 3600;
1108 tm->tm_min = (hms % 3600) / 60;
1109 tm->tm_sec = (hms % 3600) % 60;
1110
1111 /* Number of years in days */
1112 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1113 day -= days_in_year(i);
1114 tm->tm_year = i;
1115
1116 /* Number of months in days left */
1117 if (leapyear(tm->tm_year))
1118 days_in_month(FEBRUARY) = 29;
1119 for (i = 1; day >= days_in_month(i); i++)
1120 day -= days_in_month(i);
1121 days_in_month(FEBRUARY) = 28;
1122 tm->tm_mon = i;
1123
1124 /* Days are what is left over (+1) from all that. */
1125 tm->tm_mday = day + 1;
1126
1127 /*
1128 * Determine the day of week
1129 */
1130 GregorianDay(tm);
1131 }
1132
1133 /* Auxiliary function to compute scaling factors */
1134 /* Actually the choice of a timebase running at 1/4 the of the bus
1135 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1136 * It makes this computation very precise (27-28 bits typically) which
1137 * is optimistic considering the stability of most processor clock
1138 * oscillators and the precision with which the timebase frequency
1139 * is measured but does not harm.
1140 */
1141 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1142 {
1143 unsigned mlt=0, tmp, err;
1144 /* No concern for performance, it's done once: use a stupid
1145 * but safe and compact method to find the multiplier.
1146 */
1147
1148 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1149 if (mulhwu(inscale, mlt|tmp) < outscale)
1150 mlt |= tmp;
1151 }
1152
1153 /* We might still be off by 1 for the best approximation.
1154 * A side effect of this is that if outscale is too large
1155 * the returned value will be zero.
1156 * Many corner cases have been checked and seem to work,
1157 * some might have been forgotten in the test however.
1158 */
1159
1160 err = inscale * (mlt+1);
1161 if (err <= inscale/2)
1162 mlt++;
1163 return mlt;
1164 }
1165
1166 /*
1167 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1168 * result.
1169 */
1170 void div128_by_32(u64 dividend_high, u64 dividend_low,
1171 unsigned divisor, struct div_result *dr)
1172 {
1173 unsigned long a, b, c, d;
1174 unsigned long w, x, y, z;
1175 u64 ra, rb, rc;
1176
1177 a = dividend_high >> 32;
1178 b = dividend_high & 0xffffffff;
1179 c = dividend_low >> 32;
1180 d = dividend_low & 0xffffffff;
1181
1182 w = a / divisor;
1183 ra = ((u64)(a - (w * divisor)) << 32) + b;
1184
1185 rb = ((u64) do_div(ra, divisor) << 32) + c;
1186 x = ra;
1187
1188 rc = ((u64) do_div(rb, divisor) << 32) + d;
1189 y = rb;
1190
1191 do_div(rc, divisor);
1192 z = rc;
1193
1194 dr->result_high = ((u64)w << 32) + x;
1195 dr->result_low = ((u64)y << 32) + z;
1196
1197 }