[POWERPC] Make struct property's value a void *
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / prom.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/stringify.h>
27 #include <linux/delay.h>
28 #include <linux/initrd.h>
29 #include <linux/bitops.h>
30 #include <linux/module.h>
31 #include <linux/kexec.h>
32 #include <linux/debugfs.h>
33 #include <linux/irq.h>
34
35 #include <asm/prom.h>
36 #include <asm/rtas.h>
37 #include <asm/lmb.h>
38 #include <asm/page.h>
39 #include <asm/processor.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 #include <asm/kdump.h>
43 #include <asm/smp.h>
44 #include <asm/system.h>
45 #include <asm/mmu.h>
46 #include <asm/pgtable.h>
47 #include <asm/pci.h>
48 #include <asm/iommu.h>
49 #include <asm/btext.h>
50 #include <asm/sections.h>
51 #include <asm/machdep.h>
52 #include <asm/pSeries_reconfig.h>
53 #include <asm/pci-bridge.h>
54 #include <asm/kexec.h>
55
56 #ifdef DEBUG
57 #define DBG(fmt...) printk(KERN_ERR fmt)
58 #else
59 #define DBG(fmt...)
60 #endif
61
62
63 static int __initdata dt_root_addr_cells;
64 static int __initdata dt_root_size_cells;
65
66 #ifdef CONFIG_PPC64
67 int __initdata iommu_is_off;
68 int __initdata iommu_force_on;
69 unsigned long tce_alloc_start, tce_alloc_end;
70 #endif
71
72 typedef u32 cell_t;
73
74 #if 0
75 static struct boot_param_header *initial_boot_params __initdata;
76 #else
77 struct boot_param_header *initial_boot_params;
78 #endif
79
80 static struct device_node *allnodes = NULL;
81
82 /* use when traversing tree through the allnext, child, sibling,
83 * or parent members of struct device_node.
84 */
85 static DEFINE_RWLOCK(devtree_lock);
86
87 /* export that to outside world */
88 struct device_node *of_chosen;
89
90 static inline char *find_flat_dt_string(u32 offset)
91 {
92 return ((char *)initial_boot_params) +
93 initial_boot_params->off_dt_strings + offset;
94 }
95
96 /**
97 * This function is used to scan the flattened device-tree, it is
98 * used to extract the memory informations at boot before we can
99 * unflatten the tree
100 */
101 int __init of_scan_flat_dt(int (*it)(unsigned long node,
102 const char *uname, int depth,
103 void *data),
104 void *data)
105 {
106 unsigned long p = ((unsigned long)initial_boot_params) +
107 initial_boot_params->off_dt_struct;
108 int rc = 0;
109 int depth = -1;
110
111 do {
112 u32 tag = *((u32 *)p);
113 char *pathp;
114
115 p += 4;
116 if (tag == OF_DT_END_NODE) {
117 depth --;
118 continue;
119 }
120 if (tag == OF_DT_NOP)
121 continue;
122 if (tag == OF_DT_END)
123 break;
124 if (tag == OF_DT_PROP) {
125 u32 sz = *((u32 *)p);
126 p += 8;
127 if (initial_boot_params->version < 0x10)
128 p = _ALIGN(p, sz >= 8 ? 8 : 4);
129 p += sz;
130 p = _ALIGN(p, 4);
131 continue;
132 }
133 if (tag != OF_DT_BEGIN_NODE) {
134 printk(KERN_WARNING "Invalid tag %x scanning flattened"
135 " device tree !\n", tag);
136 return -EINVAL;
137 }
138 depth++;
139 pathp = (char *)p;
140 p = _ALIGN(p + strlen(pathp) + 1, 4);
141 if ((*pathp) == '/') {
142 char *lp, *np;
143 for (lp = NULL, np = pathp; *np; np++)
144 if ((*np) == '/')
145 lp = np+1;
146 if (lp != NULL)
147 pathp = lp;
148 }
149 rc = it(p, pathp, depth, data);
150 if (rc != 0)
151 break;
152 } while(1);
153
154 return rc;
155 }
156
157 unsigned long __init of_get_flat_dt_root(void)
158 {
159 unsigned long p = ((unsigned long)initial_boot_params) +
160 initial_boot_params->off_dt_struct;
161
162 while(*((u32 *)p) == OF_DT_NOP)
163 p += 4;
164 BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
165 p += 4;
166 return _ALIGN(p + strlen((char *)p) + 1, 4);
167 }
168
169 /**
170 * This function can be used within scan_flattened_dt callback to get
171 * access to properties
172 */
173 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
174 unsigned long *size)
175 {
176 unsigned long p = node;
177
178 do {
179 u32 tag = *((u32 *)p);
180 u32 sz, noff;
181 const char *nstr;
182
183 p += 4;
184 if (tag == OF_DT_NOP)
185 continue;
186 if (tag != OF_DT_PROP)
187 return NULL;
188
189 sz = *((u32 *)p);
190 noff = *((u32 *)(p + 4));
191 p += 8;
192 if (initial_boot_params->version < 0x10)
193 p = _ALIGN(p, sz >= 8 ? 8 : 4);
194
195 nstr = find_flat_dt_string(noff);
196 if (nstr == NULL) {
197 printk(KERN_WARNING "Can't find property index"
198 " name !\n");
199 return NULL;
200 }
201 if (strcmp(name, nstr) == 0) {
202 if (size)
203 *size = sz;
204 return (void *)p;
205 }
206 p += sz;
207 p = _ALIGN(p, 4);
208 } while(1);
209 }
210
211 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
212 {
213 const char* cp;
214 unsigned long cplen, l;
215
216 cp = of_get_flat_dt_prop(node, "compatible", &cplen);
217 if (cp == NULL)
218 return 0;
219 while (cplen > 0) {
220 if (strncasecmp(cp, compat, strlen(compat)) == 0)
221 return 1;
222 l = strlen(cp) + 1;
223 cp += l;
224 cplen -= l;
225 }
226
227 return 0;
228 }
229
230 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
231 unsigned long align)
232 {
233 void *res;
234
235 *mem = _ALIGN(*mem, align);
236 res = (void *)*mem;
237 *mem += size;
238
239 return res;
240 }
241
242 static unsigned long __init unflatten_dt_node(unsigned long mem,
243 unsigned long *p,
244 struct device_node *dad,
245 struct device_node ***allnextpp,
246 unsigned long fpsize)
247 {
248 struct device_node *np;
249 struct property *pp, **prev_pp = NULL;
250 char *pathp;
251 u32 tag;
252 unsigned int l, allocl;
253 int has_name = 0;
254 int new_format = 0;
255
256 tag = *((u32 *)(*p));
257 if (tag != OF_DT_BEGIN_NODE) {
258 printk("Weird tag at start of node: %x\n", tag);
259 return mem;
260 }
261 *p += 4;
262 pathp = (char *)*p;
263 l = allocl = strlen(pathp) + 1;
264 *p = _ALIGN(*p + l, 4);
265
266 /* version 0x10 has a more compact unit name here instead of the full
267 * path. we accumulate the full path size using "fpsize", we'll rebuild
268 * it later. We detect this because the first character of the name is
269 * not '/'.
270 */
271 if ((*pathp) != '/') {
272 new_format = 1;
273 if (fpsize == 0) {
274 /* root node: special case. fpsize accounts for path
275 * plus terminating zero. root node only has '/', so
276 * fpsize should be 2, but we want to avoid the first
277 * level nodes to have two '/' so we use fpsize 1 here
278 */
279 fpsize = 1;
280 allocl = 2;
281 } else {
282 /* account for '/' and path size minus terminal 0
283 * already in 'l'
284 */
285 fpsize += l;
286 allocl = fpsize;
287 }
288 }
289
290
291 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
292 __alignof__(struct device_node));
293 if (allnextpp) {
294 memset(np, 0, sizeof(*np));
295 np->full_name = ((char*)np) + sizeof(struct device_node);
296 if (new_format) {
297 char *p = np->full_name;
298 /* rebuild full path for new format */
299 if (dad && dad->parent) {
300 strcpy(p, dad->full_name);
301 #ifdef DEBUG
302 if ((strlen(p) + l + 1) != allocl) {
303 DBG("%s: p: %d, l: %d, a: %d\n",
304 pathp, (int)strlen(p), l, allocl);
305 }
306 #endif
307 p += strlen(p);
308 }
309 *(p++) = '/';
310 memcpy(p, pathp, l);
311 } else
312 memcpy(np->full_name, pathp, l);
313 prev_pp = &np->properties;
314 **allnextpp = np;
315 *allnextpp = &np->allnext;
316 if (dad != NULL) {
317 np->parent = dad;
318 /* we temporarily use the next field as `last_child'*/
319 if (dad->next == 0)
320 dad->child = np;
321 else
322 dad->next->sibling = np;
323 dad->next = np;
324 }
325 kref_init(&np->kref);
326 }
327 while(1) {
328 u32 sz, noff;
329 char *pname;
330
331 tag = *((u32 *)(*p));
332 if (tag == OF_DT_NOP) {
333 *p += 4;
334 continue;
335 }
336 if (tag != OF_DT_PROP)
337 break;
338 *p += 4;
339 sz = *((u32 *)(*p));
340 noff = *((u32 *)((*p) + 4));
341 *p += 8;
342 if (initial_boot_params->version < 0x10)
343 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
344
345 pname = find_flat_dt_string(noff);
346 if (pname == NULL) {
347 printk("Can't find property name in list !\n");
348 break;
349 }
350 if (strcmp(pname, "name") == 0)
351 has_name = 1;
352 l = strlen(pname) + 1;
353 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
354 __alignof__(struct property));
355 if (allnextpp) {
356 if (strcmp(pname, "linux,phandle") == 0) {
357 np->node = *((u32 *)*p);
358 if (np->linux_phandle == 0)
359 np->linux_phandle = np->node;
360 }
361 if (strcmp(pname, "ibm,phandle") == 0)
362 np->linux_phandle = *((u32 *)*p);
363 pp->name = pname;
364 pp->length = sz;
365 pp->value = (void *)*p;
366 *prev_pp = pp;
367 prev_pp = &pp->next;
368 }
369 *p = _ALIGN((*p) + sz, 4);
370 }
371 /* with version 0x10 we may not have the name property, recreate
372 * it here from the unit name if absent
373 */
374 if (!has_name) {
375 char *p = pathp, *ps = pathp, *pa = NULL;
376 int sz;
377
378 while (*p) {
379 if ((*p) == '@')
380 pa = p;
381 if ((*p) == '/')
382 ps = p + 1;
383 p++;
384 }
385 if (pa < ps)
386 pa = p;
387 sz = (pa - ps) + 1;
388 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
389 __alignof__(struct property));
390 if (allnextpp) {
391 pp->name = "name";
392 pp->length = sz;
393 pp->value = pp + 1;
394 *prev_pp = pp;
395 prev_pp = &pp->next;
396 memcpy(pp->value, ps, sz - 1);
397 ((char *)pp->value)[sz - 1] = 0;
398 DBG("fixed up name for %s -> %s\n", pathp,
399 (char *)pp->value);
400 }
401 }
402 if (allnextpp) {
403 *prev_pp = NULL;
404 np->name = of_get_property(np, "name", NULL);
405 np->type = of_get_property(np, "device_type", NULL);
406
407 if (!np->name)
408 np->name = "<NULL>";
409 if (!np->type)
410 np->type = "<NULL>";
411 }
412 while (tag == OF_DT_BEGIN_NODE) {
413 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
414 tag = *((u32 *)(*p));
415 }
416 if (tag != OF_DT_END_NODE) {
417 printk("Weird tag at end of node: %x\n", tag);
418 return mem;
419 }
420 *p += 4;
421 return mem;
422 }
423
424 static int __init early_parse_mem(char *p)
425 {
426 if (!p)
427 return 1;
428
429 memory_limit = PAGE_ALIGN(memparse(p, &p));
430 DBG("memory limit = 0x%lx\n", memory_limit);
431
432 return 0;
433 }
434 early_param("mem", early_parse_mem);
435
436 /*
437 * The device tree may be allocated below our memory limit, or inside the
438 * crash kernel region for kdump. If so, move it out now.
439 */
440 static void move_device_tree(void)
441 {
442 unsigned long start, size;
443 void *p;
444
445 DBG("-> move_device_tree\n");
446
447 start = __pa(initial_boot_params);
448 size = initial_boot_params->totalsize;
449
450 if ((memory_limit && (start + size) > memory_limit) ||
451 overlaps_crashkernel(start, size)) {
452 p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size));
453 memcpy(p, initial_boot_params, size);
454 initial_boot_params = (struct boot_param_header *)p;
455 DBG("Moved device tree to 0x%p\n", p);
456 }
457
458 DBG("<- move_device_tree\n");
459 }
460
461 /**
462 * unflattens the device-tree passed by the firmware, creating the
463 * tree of struct device_node. It also fills the "name" and "type"
464 * pointers of the nodes so the normal device-tree walking functions
465 * can be used (this used to be done by finish_device_tree)
466 */
467 void __init unflatten_device_tree(void)
468 {
469 unsigned long start, mem, size;
470 struct device_node **allnextp = &allnodes;
471
472 DBG(" -> unflatten_device_tree()\n");
473
474 /* First pass, scan for size */
475 start = ((unsigned long)initial_boot_params) +
476 initial_boot_params->off_dt_struct;
477 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
478 size = (size | 3) + 1;
479
480 DBG(" size is %lx, allocating...\n", size);
481
482 /* Allocate memory for the expanded device tree */
483 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
484 mem = (unsigned long) __va(mem);
485
486 ((u32 *)mem)[size / 4] = 0xdeadbeef;
487
488 DBG(" unflattening %lx...\n", mem);
489
490 /* Second pass, do actual unflattening */
491 start = ((unsigned long)initial_boot_params) +
492 initial_boot_params->off_dt_struct;
493 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
494 if (*((u32 *)start) != OF_DT_END)
495 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
496 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
497 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
498 ((u32 *)mem)[size / 4] );
499 *allnextp = NULL;
500
501 /* Get pointer to OF "/chosen" node for use everywhere */
502 of_chosen = of_find_node_by_path("/chosen");
503 if (of_chosen == NULL)
504 of_chosen = of_find_node_by_path("/chosen@0");
505
506 DBG(" <- unflatten_device_tree()\n");
507 }
508
509 /*
510 * ibm,pa-features is a per-cpu property that contains a string of
511 * attribute descriptors, each of which has a 2 byte header plus up
512 * to 254 bytes worth of processor attribute bits. First header
513 * byte specifies the number of bytes following the header.
514 * Second header byte is an "attribute-specifier" type, of which
515 * zero is the only currently-defined value.
516 * Implementation: Pass in the byte and bit offset for the feature
517 * that we are interested in. The function will return -1 if the
518 * pa-features property is missing, or a 1/0 to indicate if the feature
519 * is supported/not supported. Note that the bit numbers are
520 * big-endian to match the definition in PAPR.
521 */
522 static struct ibm_pa_feature {
523 unsigned long cpu_features; /* CPU_FTR_xxx bit */
524 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
525 unsigned char pabyte; /* byte number in ibm,pa-features */
526 unsigned char pabit; /* bit number (big-endian) */
527 unsigned char invert; /* if 1, pa bit set => clear feature */
528 } ibm_pa_features[] __initdata = {
529 {0, PPC_FEATURE_HAS_MMU, 0, 0, 0},
530 {0, PPC_FEATURE_HAS_FPU, 0, 1, 0},
531 {CPU_FTR_SLB, 0, 0, 2, 0},
532 {CPU_FTR_CTRL, 0, 0, 3, 0},
533 {CPU_FTR_NOEXECUTE, 0, 0, 6, 0},
534 {CPU_FTR_NODSISRALIGN, 0, 1, 1, 1},
535 #if 0
536 /* put this back once we know how to test if firmware does 64k IO */
537 {CPU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0},
538 #endif
539 {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
540 };
541
542 static void __init scan_features(unsigned long node, unsigned char *ftrs,
543 unsigned long tablelen,
544 struct ibm_pa_feature *fp,
545 unsigned long ft_size)
546 {
547 unsigned long i, len, bit;
548
549 /* find descriptor with type == 0 */
550 for (;;) {
551 if (tablelen < 3)
552 return;
553 len = 2 + ftrs[0];
554 if (tablelen < len)
555 return; /* descriptor 0 not found */
556 if (ftrs[1] == 0)
557 break;
558 tablelen -= len;
559 ftrs += len;
560 }
561
562 /* loop over bits we know about */
563 for (i = 0; i < ft_size; ++i, ++fp) {
564 if (fp->pabyte >= ftrs[0])
565 continue;
566 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
567 if (bit ^ fp->invert) {
568 cur_cpu_spec->cpu_features |= fp->cpu_features;
569 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
570 } else {
571 cur_cpu_spec->cpu_features &= ~fp->cpu_features;
572 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
573 }
574 }
575 }
576
577 static void __init check_cpu_pa_features(unsigned long node)
578 {
579 unsigned char *pa_ftrs;
580 unsigned long tablelen;
581
582 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
583 if (pa_ftrs == NULL)
584 return;
585
586 scan_features(node, pa_ftrs, tablelen,
587 ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
588 }
589
590 static struct feature_property {
591 const char *name;
592 u32 min_value;
593 unsigned long cpu_feature;
594 unsigned long cpu_user_ftr;
595 } feature_properties[] __initdata = {
596 #ifdef CONFIG_ALTIVEC
597 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
598 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
599 #endif /* CONFIG_ALTIVEC */
600 #ifdef CONFIG_PPC64
601 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
602 {"ibm,purr", 1, CPU_FTR_PURR, 0},
603 {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
604 #endif /* CONFIG_PPC64 */
605 };
606
607 static void __init check_cpu_feature_properties(unsigned long node)
608 {
609 unsigned long i;
610 struct feature_property *fp = feature_properties;
611 const u32 *prop;
612
613 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
614 prop = of_get_flat_dt_prop(node, fp->name, NULL);
615 if (prop && *prop >= fp->min_value) {
616 cur_cpu_spec->cpu_features |= fp->cpu_feature;
617 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
618 }
619 }
620 }
621
622 static int __init early_init_dt_scan_cpus(unsigned long node,
623 const char *uname, int depth,
624 void *data)
625 {
626 static int logical_cpuid = 0;
627 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
628 const u32 *prop;
629 const u32 *intserv;
630 int i, nthreads;
631 unsigned long len;
632 int found = 0;
633
634 /* We are scanning "cpu" nodes only */
635 if (type == NULL || strcmp(type, "cpu") != 0)
636 return 0;
637
638 /* Get physical cpuid */
639 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
640 if (intserv) {
641 nthreads = len / sizeof(int);
642 } else {
643 intserv = of_get_flat_dt_prop(node, "reg", NULL);
644 nthreads = 1;
645 }
646
647 /*
648 * Now see if any of these threads match our boot cpu.
649 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
650 */
651 for (i = 0; i < nthreads; i++) {
652 /*
653 * version 2 of the kexec param format adds the phys cpuid of
654 * booted proc.
655 */
656 if (initial_boot_params && initial_boot_params->version >= 2) {
657 if (intserv[i] ==
658 initial_boot_params->boot_cpuid_phys) {
659 found = 1;
660 break;
661 }
662 } else {
663 /*
664 * Check if it's the boot-cpu, set it's hw index now,
665 * unfortunately this format did not support booting
666 * off secondary threads.
667 */
668 if (of_get_flat_dt_prop(node,
669 "linux,boot-cpu", NULL) != NULL) {
670 found = 1;
671 break;
672 }
673 }
674
675 #ifdef CONFIG_SMP
676 /* logical cpu id is always 0 on UP kernels */
677 logical_cpuid++;
678 #endif
679 }
680
681 if (found) {
682 DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
683 intserv[i]);
684 boot_cpuid = logical_cpuid;
685 set_hard_smp_processor_id(boot_cpuid, intserv[i]);
686
687 /*
688 * PAPR defines "logical" PVR values for cpus that
689 * meet various levels of the architecture:
690 * 0x0f000001 Architecture version 2.04
691 * 0x0f000002 Architecture version 2.05
692 * If the cpu-version property in the cpu node contains
693 * such a value, we call identify_cpu again with the
694 * logical PVR value in order to use the cpu feature
695 * bits appropriate for the architecture level.
696 *
697 * A POWER6 partition in "POWER6 architected" mode
698 * uses the 0x0f000002 PVR value; in POWER5+ mode
699 * it uses 0x0f000001.
700 */
701 prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
702 if (prop && (*prop & 0xff000000) == 0x0f000000)
703 identify_cpu(0, *prop);
704 }
705
706 check_cpu_feature_properties(node);
707 check_cpu_pa_features(node);
708
709 #ifdef CONFIG_PPC_PSERIES
710 if (nthreads > 1)
711 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
712 else
713 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
714 #endif
715
716 return 0;
717 }
718
719 static int __init early_init_dt_scan_chosen(unsigned long node,
720 const char *uname, int depth, void *data)
721 {
722 unsigned long *lprop;
723 u32 *prop;
724 unsigned long l;
725 char *p;
726
727 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
728
729 if (depth != 1 ||
730 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
731 return 0;
732
733 #ifdef CONFIG_PPC64
734 /* check if iommu is forced on or off */
735 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
736 iommu_is_off = 1;
737 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
738 iommu_force_on = 1;
739 #endif
740
741 /* mem=x on the command line is the preferred mechanism */
742 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
743 if (lprop)
744 memory_limit = *lprop;
745
746 #ifdef CONFIG_PPC64
747 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
748 if (lprop)
749 tce_alloc_start = *lprop;
750 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
751 if (lprop)
752 tce_alloc_end = *lprop;
753 #endif
754
755 #ifdef CONFIG_KEXEC
756 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
757 if (lprop)
758 crashk_res.start = *lprop;
759
760 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
761 if (lprop)
762 crashk_res.end = crashk_res.start + *lprop - 1;
763 #endif
764
765 #ifdef CONFIG_BLK_DEV_INITRD
766 DBG("Looking for initrd properties... ");
767 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &l);
768 if (prop) {
769 initrd_start = (unsigned long)__va(of_read_ulong(prop, l/4));
770 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &l);
771 if (prop) {
772 initrd_end = (unsigned long)__va(of_read_ulong(prop, l/4));
773 initrd_below_start_ok = 1;
774 } else {
775 initrd_start = 0;
776 }
777 }
778 DBG("initrd_start=0x%lx initrd_end=0x%lx\n", initrd_start, initrd_end);
779 #endif /* CONFIG_BLK_DEV_INITRD */
780
781 /* Retreive command line */
782 p = of_get_flat_dt_prop(node, "bootargs", &l);
783 if (p != NULL && l > 0)
784 strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
785
786 #ifdef CONFIG_CMDLINE
787 if (p == NULL || l == 0 || (l == 1 && (*p) == 0))
788 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
789 #endif /* CONFIG_CMDLINE */
790
791 DBG("Command line is: %s\n", cmd_line);
792
793 /* break now */
794 return 1;
795 }
796
797 static int __init early_init_dt_scan_root(unsigned long node,
798 const char *uname, int depth, void *data)
799 {
800 u32 *prop;
801
802 if (depth != 0)
803 return 0;
804
805 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
806 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
807 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
808
809 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
810 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
811 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
812
813 /* break now */
814 return 1;
815 }
816
817 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
818 {
819 cell_t *p = *cellp;
820
821 *cellp = p + s;
822 return of_read_ulong(p, s);
823 }
824
825 #ifdef CONFIG_PPC_PSERIES
826 /*
827 * Interpret the ibm,dynamic-memory property in the
828 * /ibm,dynamic-reconfiguration-memory node.
829 * This contains a list of memory blocks along with NUMA affinity
830 * information.
831 */
832 static int __init early_init_dt_scan_drconf_memory(unsigned long node)
833 {
834 cell_t *dm, *ls;
835 unsigned long l, n;
836 unsigned long base, size, lmb_size, flags;
837
838 ls = (cell_t *)of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
839 if (ls == NULL || l < dt_root_size_cells * sizeof(cell_t))
840 return 0;
841 lmb_size = dt_mem_next_cell(dt_root_size_cells, &ls);
842
843 dm = (cell_t *)of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
844 if (dm == NULL || l < sizeof(cell_t))
845 return 0;
846
847 n = *dm++; /* number of entries */
848 if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(cell_t))
849 return 0;
850
851 for (; n != 0; --n) {
852 base = dt_mem_next_cell(dt_root_addr_cells, &dm);
853 flags = dm[3];
854 /* skip DRC index, pad, assoc. list index, flags */
855 dm += 4;
856 /* skip this block if the reserved bit is set in flags (0x80)
857 or if the block is not assigned to this partition (0x8) */
858 if ((flags & 0x80) || !(flags & 0x8))
859 continue;
860 size = lmb_size;
861 if (iommu_is_off) {
862 if (base >= 0x80000000ul)
863 continue;
864 if ((base + size) > 0x80000000ul)
865 size = 0x80000000ul - base;
866 }
867 lmb_add(base, size);
868 }
869 lmb_dump_all();
870 return 0;
871 }
872 #else
873 #define early_init_dt_scan_drconf_memory(node) 0
874 #endif /* CONFIG_PPC_PSERIES */
875
876 static int __init early_init_dt_scan_memory(unsigned long node,
877 const char *uname, int depth, void *data)
878 {
879 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
880 cell_t *reg, *endp;
881 unsigned long l;
882
883 /* Look for the ibm,dynamic-reconfiguration-memory node */
884 if (depth == 1 &&
885 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
886 return early_init_dt_scan_drconf_memory(node);
887
888 /* We are scanning "memory" nodes only */
889 if (type == NULL) {
890 /*
891 * The longtrail doesn't have a device_type on the
892 * /memory node, so look for the node called /memory@0.
893 */
894 if (depth != 1 || strcmp(uname, "memory@0") != 0)
895 return 0;
896 } else if (strcmp(type, "memory") != 0)
897 return 0;
898
899 reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
900 if (reg == NULL)
901 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
902 if (reg == NULL)
903 return 0;
904
905 endp = reg + (l / sizeof(cell_t));
906
907 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
908 uname, l, reg[0], reg[1], reg[2], reg[3]);
909
910 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
911 unsigned long base, size;
912
913 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
914 size = dt_mem_next_cell(dt_root_size_cells, &reg);
915
916 if (size == 0)
917 continue;
918 DBG(" - %lx , %lx\n", base, size);
919 #ifdef CONFIG_PPC64
920 if (iommu_is_off) {
921 if (base >= 0x80000000ul)
922 continue;
923 if ((base + size) > 0x80000000ul)
924 size = 0x80000000ul - base;
925 }
926 #endif
927 lmb_add(base, size);
928 }
929 return 0;
930 }
931
932 static void __init early_reserve_mem(void)
933 {
934 u64 base, size;
935 u64 *reserve_map;
936 unsigned long self_base;
937 unsigned long self_size;
938
939 reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
940 initial_boot_params->off_mem_rsvmap);
941
942 /* before we do anything, lets reserve the dt blob */
943 self_base = __pa((unsigned long)initial_boot_params);
944 self_size = initial_boot_params->totalsize;
945 lmb_reserve(self_base, self_size);
946
947 #ifdef CONFIG_BLK_DEV_INITRD
948 /* then reserve the initrd, if any */
949 if (initrd_start && (initrd_end > initrd_start))
950 lmb_reserve(__pa(initrd_start), initrd_end - initrd_start);
951 #endif /* CONFIG_BLK_DEV_INITRD */
952
953 #ifdef CONFIG_PPC32
954 /*
955 * Handle the case where we might be booting from an old kexec
956 * image that setup the mem_rsvmap as pairs of 32-bit values
957 */
958 if (*reserve_map > 0xffffffffull) {
959 u32 base_32, size_32;
960 u32 *reserve_map_32 = (u32 *)reserve_map;
961
962 while (1) {
963 base_32 = *(reserve_map_32++);
964 size_32 = *(reserve_map_32++);
965 if (size_32 == 0)
966 break;
967 /* skip if the reservation is for the blob */
968 if (base_32 == self_base && size_32 == self_size)
969 continue;
970 DBG("reserving: %x -> %x\n", base_32, size_32);
971 lmb_reserve(base_32, size_32);
972 }
973 return;
974 }
975 #endif
976 while (1) {
977 base = *(reserve_map++);
978 size = *(reserve_map++);
979 if (size == 0)
980 break;
981 DBG("reserving: %llx -> %llx\n", base, size);
982 lmb_reserve(base, size);
983 }
984
985 #if 0
986 DBG("memory reserved, lmbs :\n");
987 lmb_dump_all();
988 #endif
989 }
990
991 void __init early_init_devtree(void *params)
992 {
993 DBG(" -> early_init_devtree()\n");
994
995 /* Setup flat device-tree pointer */
996 initial_boot_params = params;
997
998 #ifdef CONFIG_PPC_RTAS
999 /* Some machines might need RTAS info for debugging, grab it now. */
1000 of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
1001 #endif
1002
1003 /* Retrieve various informations from the /chosen node of the
1004 * device-tree, including the platform type, initrd location and
1005 * size, TCE reserve, and more ...
1006 */
1007 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1008
1009 /* Scan memory nodes and rebuild LMBs */
1010 lmb_init();
1011 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1012 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1013
1014 /* Save command line for /proc/cmdline and then parse parameters */
1015 strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
1016 parse_early_param();
1017
1018 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1019 lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1020 reserve_kdump_trampoline();
1021 reserve_crashkernel();
1022 early_reserve_mem();
1023
1024 lmb_enforce_memory_limit(memory_limit);
1025 lmb_analyze();
1026
1027 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1028
1029 /* We may need to relocate the flat tree, do it now.
1030 * FIXME .. and the initrd too? */
1031 move_device_tree();
1032
1033 DBG("Scanning CPUs ...\n");
1034
1035 /* Retreive CPU related informations from the flat tree
1036 * (altivec support, boot CPU ID, ...)
1037 */
1038 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1039
1040 DBG(" <- early_init_devtree()\n");
1041 }
1042
1043 #undef printk
1044
1045 int of_n_addr_cells(struct device_node* np)
1046 {
1047 const int *ip;
1048 do {
1049 if (np->parent)
1050 np = np->parent;
1051 ip = of_get_property(np, "#address-cells", NULL);
1052 if (ip != NULL)
1053 return *ip;
1054 } while (np->parent);
1055 /* No #address-cells property for the root node, default to 1 */
1056 return 1;
1057 }
1058 EXPORT_SYMBOL(of_n_addr_cells);
1059
1060 int of_n_size_cells(struct device_node* np)
1061 {
1062 const int* ip;
1063 do {
1064 if (np->parent)
1065 np = np->parent;
1066 ip = of_get_property(np, "#size-cells", NULL);
1067 if (ip != NULL)
1068 return *ip;
1069 } while (np->parent);
1070 /* No #size-cells property for the root node, default to 1 */
1071 return 1;
1072 }
1073 EXPORT_SYMBOL(of_n_size_cells);
1074
1075 /**
1076 * Construct and return a list of the device_nodes with a given name.
1077 */
1078 struct device_node *find_devices(const char *name)
1079 {
1080 struct device_node *head, **prevp, *np;
1081
1082 prevp = &head;
1083 for (np = allnodes; np != 0; np = np->allnext) {
1084 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1085 *prevp = np;
1086 prevp = &np->next;
1087 }
1088 }
1089 *prevp = NULL;
1090 return head;
1091 }
1092 EXPORT_SYMBOL(find_devices);
1093
1094 /**
1095 * Construct and return a list of the device_nodes with a given type.
1096 */
1097 struct device_node *find_type_devices(const char *type)
1098 {
1099 struct device_node *head, **prevp, *np;
1100
1101 prevp = &head;
1102 for (np = allnodes; np != 0; np = np->allnext) {
1103 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1104 *prevp = np;
1105 prevp = &np->next;
1106 }
1107 }
1108 *prevp = NULL;
1109 return head;
1110 }
1111 EXPORT_SYMBOL(find_type_devices);
1112
1113 /**
1114 * Returns all nodes linked together
1115 */
1116 struct device_node *find_all_nodes(void)
1117 {
1118 struct device_node *head, **prevp, *np;
1119
1120 prevp = &head;
1121 for (np = allnodes; np != 0; np = np->allnext) {
1122 *prevp = np;
1123 prevp = &np->next;
1124 }
1125 *prevp = NULL;
1126 return head;
1127 }
1128 EXPORT_SYMBOL(find_all_nodes);
1129
1130 /** Checks if the given "compat" string matches one of the strings in
1131 * the device's "compatible" property
1132 */
1133 int of_device_is_compatible(const struct device_node *device,
1134 const char *compat)
1135 {
1136 const char* cp;
1137 int cplen, l;
1138
1139 cp = of_get_property(device, "compatible", &cplen);
1140 if (cp == NULL)
1141 return 0;
1142 while (cplen > 0) {
1143 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1144 return 1;
1145 l = strlen(cp) + 1;
1146 cp += l;
1147 cplen -= l;
1148 }
1149
1150 return 0;
1151 }
1152 EXPORT_SYMBOL(of_device_is_compatible);
1153
1154
1155 /**
1156 * Indicates whether the root node has a given value in its
1157 * compatible property.
1158 */
1159 int machine_is_compatible(const char *compat)
1160 {
1161 struct device_node *root;
1162 int rc = 0;
1163
1164 root = of_find_node_by_path("/");
1165 if (root) {
1166 rc = of_device_is_compatible(root, compat);
1167 of_node_put(root);
1168 }
1169 return rc;
1170 }
1171 EXPORT_SYMBOL(machine_is_compatible);
1172
1173 /**
1174 * Construct and return a list of the device_nodes with a given type
1175 * and compatible property.
1176 */
1177 struct device_node *find_compatible_devices(const char *type,
1178 const char *compat)
1179 {
1180 struct device_node *head, **prevp, *np;
1181
1182 prevp = &head;
1183 for (np = allnodes; np != 0; np = np->allnext) {
1184 if (type != NULL
1185 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1186 continue;
1187 if (of_device_is_compatible(np, compat)) {
1188 *prevp = np;
1189 prevp = &np->next;
1190 }
1191 }
1192 *prevp = NULL;
1193 return head;
1194 }
1195 EXPORT_SYMBOL(find_compatible_devices);
1196
1197 /**
1198 * Find the device_node with a given full_name.
1199 */
1200 struct device_node *find_path_device(const char *path)
1201 {
1202 struct device_node *np;
1203
1204 for (np = allnodes; np != 0; np = np->allnext)
1205 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1206 return np;
1207 return NULL;
1208 }
1209 EXPORT_SYMBOL(find_path_device);
1210
1211 /*******
1212 *
1213 * New implementation of the OF "find" APIs, return a refcounted
1214 * object, call of_node_put() when done. The device tree and list
1215 * are protected by a rw_lock.
1216 *
1217 * Note that property management will need some locking as well,
1218 * this isn't dealt with yet.
1219 *
1220 *******/
1221
1222 /**
1223 * of_find_node_by_name - Find a node by its "name" property
1224 * @from: The node to start searching from or NULL, the node
1225 * you pass will not be searched, only the next one
1226 * will; typically, you pass what the previous call
1227 * returned. of_node_put() will be called on it
1228 * @name: The name string to match against
1229 *
1230 * Returns a node pointer with refcount incremented, use
1231 * of_node_put() on it when done.
1232 */
1233 struct device_node *of_find_node_by_name(struct device_node *from,
1234 const char *name)
1235 {
1236 struct device_node *np;
1237
1238 read_lock(&devtree_lock);
1239 np = from ? from->allnext : allnodes;
1240 for (; np != NULL; np = np->allnext)
1241 if (np->name != NULL && strcasecmp(np->name, name) == 0
1242 && of_node_get(np))
1243 break;
1244 of_node_put(from);
1245 read_unlock(&devtree_lock);
1246 return np;
1247 }
1248 EXPORT_SYMBOL(of_find_node_by_name);
1249
1250 /**
1251 * of_find_node_by_type - Find a node by its "device_type" property
1252 * @from: The node to start searching from or NULL, the node
1253 * you pass will not be searched, only the next one
1254 * will; typically, you pass what the previous call
1255 * returned. of_node_put() will be called on it
1256 * @name: The type string to match against
1257 *
1258 * Returns a node pointer with refcount incremented, use
1259 * of_node_put() on it when done.
1260 */
1261 struct device_node *of_find_node_by_type(struct device_node *from,
1262 const char *type)
1263 {
1264 struct device_node *np;
1265
1266 read_lock(&devtree_lock);
1267 np = from ? from->allnext : allnodes;
1268 for (; np != 0; np = np->allnext)
1269 if (np->type != 0 && strcasecmp(np->type, type) == 0
1270 && of_node_get(np))
1271 break;
1272 of_node_put(from);
1273 read_unlock(&devtree_lock);
1274 return np;
1275 }
1276 EXPORT_SYMBOL(of_find_node_by_type);
1277
1278 /**
1279 * of_find_compatible_node - Find a node based on type and one of the
1280 * tokens in its "compatible" property
1281 * @from: The node to start searching from or NULL, the node
1282 * you pass will not be searched, only the next one
1283 * will; typically, you pass what the previous call
1284 * returned. of_node_put() will be called on it
1285 * @type: The type string to match "device_type" or NULL to ignore
1286 * @compatible: The string to match to one of the tokens in the device
1287 * "compatible" list.
1288 *
1289 * Returns a node pointer with refcount incremented, use
1290 * of_node_put() on it when done.
1291 */
1292 struct device_node *of_find_compatible_node(struct device_node *from,
1293 const char *type, const char *compatible)
1294 {
1295 struct device_node *np;
1296
1297 read_lock(&devtree_lock);
1298 np = from ? from->allnext : allnodes;
1299 for (; np != 0; np = np->allnext) {
1300 if (type != NULL
1301 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1302 continue;
1303 if (of_device_is_compatible(np, compatible) && of_node_get(np))
1304 break;
1305 }
1306 of_node_put(from);
1307 read_unlock(&devtree_lock);
1308 return np;
1309 }
1310 EXPORT_SYMBOL(of_find_compatible_node);
1311
1312 /**
1313 * of_find_node_by_path - Find a node matching a full OF path
1314 * @path: The full path to match
1315 *
1316 * Returns a node pointer with refcount incremented, use
1317 * of_node_put() on it when done.
1318 */
1319 struct device_node *of_find_node_by_path(const char *path)
1320 {
1321 struct device_node *np = allnodes;
1322
1323 read_lock(&devtree_lock);
1324 for (; np != 0; np = np->allnext) {
1325 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1326 && of_node_get(np))
1327 break;
1328 }
1329 read_unlock(&devtree_lock);
1330 return np;
1331 }
1332 EXPORT_SYMBOL(of_find_node_by_path);
1333
1334 /**
1335 * of_find_node_by_phandle - Find a node given a phandle
1336 * @handle: phandle of the node to find
1337 *
1338 * Returns a node pointer with refcount incremented, use
1339 * of_node_put() on it when done.
1340 */
1341 struct device_node *of_find_node_by_phandle(phandle handle)
1342 {
1343 struct device_node *np;
1344
1345 read_lock(&devtree_lock);
1346 for (np = allnodes; np != 0; np = np->allnext)
1347 if (np->linux_phandle == handle)
1348 break;
1349 of_node_get(np);
1350 read_unlock(&devtree_lock);
1351 return np;
1352 }
1353 EXPORT_SYMBOL(of_find_node_by_phandle);
1354
1355 /**
1356 * of_find_all_nodes - Get next node in global list
1357 * @prev: Previous node or NULL to start iteration
1358 * of_node_put() will be called on it
1359 *
1360 * Returns a node pointer with refcount incremented, use
1361 * of_node_put() on it when done.
1362 */
1363 struct device_node *of_find_all_nodes(struct device_node *prev)
1364 {
1365 struct device_node *np;
1366
1367 read_lock(&devtree_lock);
1368 np = prev ? prev->allnext : allnodes;
1369 for (; np != 0; np = np->allnext)
1370 if (of_node_get(np))
1371 break;
1372 of_node_put(prev);
1373 read_unlock(&devtree_lock);
1374 return np;
1375 }
1376 EXPORT_SYMBOL(of_find_all_nodes);
1377
1378 /**
1379 * of_get_parent - Get a node's parent if any
1380 * @node: Node to get parent
1381 *
1382 * Returns a node pointer with refcount incremented, use
1383 * of_node_put() on it when done.
1384 */
1385 struct device_node *of_get_parent(const struct device_node *node)
1386 {
1387 struct device_node *np;
1388
1389 if (!node)
1390 return NULL;
1391
1392 read_lock(&devtree_lock);
1393 np = of_node_get(node->parent);
1394 read_unlock(&devtree_lock);
1395 return np;
1396 }
1397 EXPORT_SYMBOL(of_get_parent);
1398
1399 /**
1400 * of_get_next_child - Iterate a node childs
1401 * @node: parent node
1402 * @prev: previous child of the parent node, or NULL to get first
1403 *
1404 * Returns a node pointer with refcount incremented, use
1405 * of_node_put() on it when done.
1406 */
1407 struct device_node *of_get_next_child(const struct device_node *node,
1408 struct device_node *prev)
1409 {
1410 struct device_node *next;
1411
1412 read_lock(&devtree_lock);
1413 next = prev ? prev->sibling : node->child;
1414 for (; next != 0; next = next->sibling)
1415 if (of_node_get(next))
1416 break;
1417 of_node_put(prev);
1418 read_unlock(&devtree_lock);
1419 return next;
1420 }
1421 EXPORT_SYMBOL(of_get_next_child);
1422
1423 /**
1424 * of_node_get - Increment refcount of a node
1425 * @node: Node to inc refcount, NULL is supported to
1426 * simplify writing of callers
1427 *
1428 * Returns node.
1429 */
1430 struct device_node *of_node_get(struct device_node *node)
1431 {
1432 if (node)
1433 kref_get(&node->kref);
1434 return node;
1435 }
1436 EXPORT_SYMBOL(of_node_get);
1437
1438 static inline struct device_node * kref_to_device_node(struct kref *kref)
1439 {
1440 return container_of(kref, struct device_node, kref);
1441 }
1442
1443 /**
1444 * of_node_release - release a dynamically allocated node
1445 * @kref: kref element of the node to be released
1446 *
1447 * In of_node_put() this function is passed to kref_put()
1448 * as the destructor.
1449 */
1450 static void of_node_release(struct kref *kref)
1451 {
1452 struct device_node *node = kref_to_device_node(kref);
1453 struct property *prop = node->properties;
1454
1455 if (!OF_IS_DYNAMIC(node))
1456 return;
1457 while (prop) {
1458 struct property *next = prop->next;
1459 kfree(prop->name);
1460 kfree(prop->value);
1461 kfree(prop);
1462 prop = next;
1463
1464 if (!prop) {
1465 prop = node->deadprops;
1466 node->deadprops = NULL;
1467 }
1468 }
1469 kfree(node->full_name);
1470 kfree(node->data);
1471 kfree(node);
1472 }
1473
1474 /**
1475 * of_node_put - Decrement refcount of a node
1476 * @node: Node to dec refcount, NULL is supported to
1477 * simplify writing of callers
1478 *
1479 */
1480 void of_node_put(struct device_node *node)
1481 {
1482 if (node)
1483 kref_put(&node->kref, of_node_release);
1484 }
1485 EXPORT_SYMBOL(of_node_put);
1486
1487 /*
1488 * Plug a device node into the tree and global list.
1489 */
1490 void of_attach_node(struct device_node *np)
1491 {
1492 write_lock(&devtree_lock);
1493 np->sibling = np->parent->child;
1494 np->allnext = allnodes;
1495 np->parent->child = np;
1496 allnodes = np;
1497 write_unlock(&devtree_lock);
1498 }
1499
1500 /*
1501 * "Unplug" a node from the device tree. The caller must hold
1502 * a reference to the node. The memory associated with the node
1503 * is not freed until its refcount goes to zero.
1504 */
1505 void of_detach_node(const struct device_node *np)
1506 {
1507 struct device_node *parent;
1508
1509 write_lock(&devtree_lock);
1510
1511 parent = np->parent;
1512
1513 if (allnodes == np)
1514 allnodes = np->allnext;
1515 else {
1516 struct device_node *prev;
1517 for (prev = allnodes;
1518 prev->allnext != np;
1519 prev = prev->allnext)
1520 ;
1521 prev->allnext = np->allnext;
1522 }
1523
1524 if (parent->child == np)
1525 parent->child = np->sibling;
1526 else {
1527 struct device_node *prevsib;
1528 for (prevsib = np->parent->child;
1529 prevsib->sibling != np;
1530 prevsib = prevsib->sibling)
1531 ;
1532 prevsib->sibling = np->sibling;
1533 }
1534
1535 write_unlock(&devtree_lock);
1536 }
1537
1538 #ifdef CONFIG_PPC_PSERIES
1539 /*
1540 * Fix up the uninitialized fields in a new device node:
1541 * name, type and pci-specific fields
1542 */
1543
1544 static int of_finish_dynamic_node(struct device_node *node)
1545 {
1546 struct device_node *parent = of_get_parent(node);
1547 int err = 0;
1548 const phandle *ibm_phandle;
1549
1550 node->name = of_get_property(node, "name", NULL);
1551 node->type = of_get_property(node, "device_type", NULL);
1552
1553 if (!parent) {
1554 err = -ENODEV;
1555 goto out;
1556 }
1557
1558 /* We don't support that function on PowerMac, at least
1559 * not yet
1560 */
1561 if (machine_is(powermac))
1562 return -ENODEV;
1563
1564 /* fix up new node's linux_phandle field */
1565 if ((ibm_phandle = of_get_property(node, "ibm,phandle", NULL)))
1566 node->linux_phandle = *ibm_phandle;
1567
1568 out:
1569 of_node_put(parent);
1570 return err;
1571 }
1572
1573 static int prom_reconfig_notifier(struct notifier_block *nb,
1574 unsigned long action, void *node)
1575 {
1576 int err;
1577
1578 switch (action) {
1579 case PSERIES_RECONFIG_ADD:
1580 err = of_finish_dynamic_node(node);
1581 if (err < 0) {
1582 printk(KERN_ERR "finish_node returned %d\n", err);
1583 err = NOTIFY_BAD;
1584 }
1585 break;
1586 default:
1587 err = NOTIFY_DONE;
1588 break;
1589 }
1590 return err;
1591 }
1592
1593 static struct notifier_block prom_reconfig_nb = {
1594 .notifier_call = prom_reconfig_notifier,
1595 .priority = 10, /* This one needs to run first */
1596 };
1597
1598 static int __init prom_reconfig_setup(void)
1599 {
1600 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1601 }
1602 __initcall(prom_reconfig_setup);
1603 #endif
1604
1605 struct property *of_find_property(const struct device_node *np,
1606 const char *name,
1607 int *lenp)
1608 {
1609 struct property *pp;
1610
1611 read_lock(&devtree_lock);
1612 for (pp = np->properties; pp != 0; pp = pp->next)
1613 if (strcmp(pp->name, name) == 0) {
1614 if (lenp != 0)
1615 *lenp = pp->length;
1616 break;
1617 }
1618 read_unlock(&devtree_lock);
1619
1620 return pp;
1621 }
1622 EXPORT_SYMBOL(of_find_property);
1623
1624 /*
1625 * Find a property with a given name for a given node
1626 * and return the value.
1627 */
1628 const void *of_get_property(const struct device_node *np, const char *name,
1629 int *lenp)
1630 {
1631 struct property *pp = of_find_property(np,name,lenp);
1632 return pp ? pp->value : NULL;
1633 }
1634 EXPORT_SYMBOL(of_get_property);
1635
1636 /*
1637 * Add a property to a node
1638 */
1639 int prom_add_property(struct device_node* np, struct property* prop)
1640 {
1641 struct property **next;
1642
1643 prop->next = NULL;
1644 write_lock(&devtree_lock);
1645 next = &np->properties;
1646 while (*next) {
1647 if (strcmp(prop->name, (*next)->name) == 0) {
1648 /* duplicate ! don't insert it */
1649 write_unlock(&devtree_lock);
1650 return -1;
1651 }
1652 next = &(*next)->next;
1653 }
1654 *next = prop;
1655 write_unlock(&devtree_lock);
1656
1657 #ifdef CONFIG_PROC_DEVICETREE
1658 /* try to add to proc as well if it was initialized */
1659 if (np->pde)
1660 proc_device_tree_add_prop(np->pde, prop);
1661 #endif /* CONFIG_PROC_DEVICETREE */
1662
1663 return 0;
1664 }
1665
1666 /*
1667 * Remove a property from a node. Note that we don't actually
1668 * remove it, since we have given out who-knows-how-many pointers
1669 * to the data using get-property. Instead we just move the property
1670 * to the "dead properties" list, so it won't be found any more.
1671 */
1672 int prom_remove_property(struct device_node *np, struct property *prop)
1673 {
1674 struct property **next;
1675 int found = 0;
1676
1677 write_lock(&devtree_lock);
1678 next = &np->properties;
1679 while (*next) {
1680 if (*next == prop) {
1681 /* found the node */
1682 *next = prop->next;
1683 prop->next = np->deadprops;
1684 np->deadprops = prop;
1685 found = 1;
1686 break;
1687 }
1688 next = &(*next)->next;
1689 }
1690 write_unlock(&devtree_lock);
1691
1692 if (!found)
1693 return -ENODEV;
1694
1695 #ifdef CONFIG_PROC_DEVICETREE
1696 /* try to remove the proc node as well */
1697 if (np->pde)
1698 proc_device_tree_remove_prop(np->pde, prop);
1699 #endif /* CONFIG_PROC_DEVICETREE */
1700
1701 return 0;
1702 }
1703
1704 /*
1705 * Update a property in a node. Note that we don't actually
1706 * remove it, since we have given out who-knows-how-many pointers
1707 * to the data using get-property. Instead we just move the property
1708 * to the "dead properties" list, and add the new property to the
1709 * property list
1710 */
1711 int prom_update_property(struct device_node *np,
1712 struct property *newprop,
1713 struct property *oldprop)
1714 {
1715 struct property **next;
1716 int found = 0;
1717
1718 write_lock(&devtree_lock);
1719 next = &np->properties;
1720 while (*next) {
1721 if (*next == oldprop) {
1722 /* found the node */
1723 newprop->next = oldprop->next;
1724 *next = newprop;
1725 oldprop->next = np->deadprops;
1726 np->deadprops = oldprop;
1727 found = 1;
1728 break;
1729 }
1730 next = &(*next)->next;
1731 }
1732 write_unlock(&devtree_lock);
1733
1734 if (!found)
1735 return -ENODEV;
1736
1737 #ifdef CONFIG_PROC_DEVICETREE
1738 /* try to add to proc as well if it was initialized */
1739 if (np->pde)
1740 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1741 #endif /* CONFIG_PROC_DEVICETREE */
1742
1743 return 0;
1744 }
1745
1746
1747 /* Find the device node for a given logical cpu number, also returns the cpu
1748 * local thread number (index in ibm,interrupt-server#s) if relevant and
1749 * asked for (non NULL)
1750 */
1751 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
1752 {
1753 int hardid;
1754 struct device_node *np;
1755
1756 hardid = get_hard_smp_processor_id(cpu);
1757
1758 for_each_node_by_type(np, "cpu") {
1759 const u32 *intserv;
1760 unsigned int plen, t;
1761
1762 /* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
1763 * fallback to "reg" property and assume no threads
1764 */
1765 intserv = of_get_property(np, "ibm,ppc-interrupt-server#s",
1766 &plen);
1767 if (intserv == NULL) {
1768 const u32 *reg = of_get_property(np, "reg", NULL);
1769 if (reg == NULL)
1770 continue;
1771 if (*reg == hardid) {
1772 if (thread)
1773 *thread = 0;
1774 return np;
1775 }
1776 } else {
1777 plen /= sizeof(u32);
1778 for (t = 0; t < plen; t++) {
1779 if (hardid == intserv[t]) {
1780 if (thread)
1781 *thread = t;
1782 return np;
1783 }
1784 }
1785 }
1786 }
1787 return NULL;
1788 }
1789 EXPORT_SYMBOL(of_get_cpu_node);
1790
1791 #ifdef DEBUG
1792 static struct debugfs_blob_wrapper flat_dt_blob;
1793
1794 static int __init export_flat_device_tree(void)
1795 {
1796 struct dentry *d;
1797
1798 d = debugfs_create_dir("powerpc", NULL);
1799 if (!d)
1800 return 1;
1801
1802 flat_dt_blob.data = initial_boot_params;
1803 flat_dt_blob.size = initial_boot_params->totalsize;
1804
1805 d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
1806 d, &flat_dt_blob);
1807 if (!d)
1808 return 1;
1809
1810 return 0;
1811 }
1812 __initcall(export_flat_device_tree);
1813 #endif