de69fb37c7313ce83d450bdbd6f5a15eb621bdd0
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
1 /*
2 * arch/ppc/kernel/process.c
3 *
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
6 *
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
9 *
10 * PowerPC version
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19 #include <linux/config.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/prctl.h>
34 #include <linux/init_task.h>
35 #include <linux/module.h>
36 #include <linux/kallsyms.h>
37 #include <linux/mqueue.h>
38 #include <linux/hardirq.h>
39 #include <linux/utsname.h>
40 #include <linux/kprobes.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #ifdef CONFIG_PPC64
51 #include <asm/firmware.h>
52 #include <asm/time.h>
53 #endif
54
55 extern unsigned long _get_SP(void);
56
57 #ifndef CONFIG_SMP
58 struct task_struct *last_task_used_math = NULL;
59 struct task_struct *last_task_used_altivec = NULL;
60 struct task_struct *last_task_used_spe = NULL;
61 #endif
62
63 /*
64 * Make sure the floating-point register state in the
65 * the thread_struct is up to date for task tsk.
66 */
67 void flush_fp_to_thread(struct task_struct *tsk)
68 {
69 if (tsk->thread.regs) {
70 /*
71 * We need to disable preemption here because if we didn't,
72 * another process could get scheduled after the regs->msr
73 * test but before we have finished saving the FP registers
74 * to the thread_struct. That process could take over the
75 * FPU, and then when we get scheduled again we would store
76 * bogus values for the remaining FP registers.
77 */
78 preempt_disable();
79 if (tsk->thread.regs->msr & MSR_FP) {
80 #ifdef CONFIG_SMP
81 /*
82 * This should only ever be called for current or
83 * for a stopped child process. Since we save away
84 * the FP register state on context switch on SMP,
85 * there is something wrong if a stopped child appears
86 * to still have its FP state in the CPU registers.
87 */
88 BUG_ON(tsk != current);
89 #endif
90 giveup_fpu(current);
91 }
92 preempt_enable();
93 }
94 }
95
96 void enable_kernel_fp(void)
97 {
98 WARN_ON(preemptible());
99
100 #ifdef CONFIG_SMP
101 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
102 giveup_fpu(current);
103 else
104 giveup_fpu(NULL); /* just enables FP for kernel */
105 #else
106 giveup_fpu(last_task_used_math);
107 #endif /* CONFIG_SMP */
108 }
109 EXPORT_SYMBOL(enable_kernel_fp);
110
111 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
112 {
113 if (!tsk->thread.regs)
114 return 0;
115 flush_fp_to_thread(current);
116
117 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
118
119 return 1;
120 }
121
122 #ifdef CONFIG_ALTIVEC
123 void enable_kernel_altivec(void)
124 {
125 WARN_ON(preemptible());
126
127 #ifdef CONFIG_SMP
128 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
129 giveup_altivec(current);
130 else
131 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
132 #else
133 giveup_altivec(last_task_used_altivec);
134 #endif /* CONFIG_SMP */
135 }
136 EXPORT_SYMBOL(enable_kernel_altivec);
137
138 /*
139 * Make sure the VMX/Altivec register state in the
140 * the thread_struct is up to date for task tsk.
141 */
142 void flush_altivec_to_thread(struct task_struct *tsk)
143 {
144 if (tsk->thread.regs) {
145 preempt_disable();
146 if (tsk->thread.regs->msr & MSR_VEC) {
147 #ifdef CONFIG_SMP
148 BUG_ON(tsk != current);
149 #endif
150 giveup_altivec(current);
151 }
152 preempt_enable();
153 }
154 }
155
156 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
157 {
158 flush_altivec_to_thread(current);
159 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
160 return 1;
161 }
162 #endif /* CONFIG_ALTIVEC */
163
164 #ifdef CONFIG_SPE
165
166 void enable_kernel_spe(void)
167 {
168 WARN_ON(preemptible());
169
170 #ifdef CONFIG_SMP
171 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
172 giveup_spe(current);
173 else
174 giveup_spe(NULL); /* just enable SPE for kernel - force */
175 #else
176 giveup_spe(last_task_used_spe);
177 #endif /* __SMP __ */
178 }
179 EXPORT_SYMBOL(enable_kernel_spe);
180
181 void flush_spe_to_thread(struct task_struct *tsk)
182 {
183 if (tsk->thread.regs) {
184 preempt_disable();
185 if (tsk->thread.regs->msr & MSR_SPE) {
186 #ifdef CONFIG_SMP
187 BUG_ON(tsk != current);
188 #endif
189 giveup_spe(current);
190 }
191 preempt_enable();
192 }
193 }
194
195 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
196 {
197 flush_spe_to_thread(current);
198 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
199 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
200 return 1;
201 }
202 #endif /* CONFIG_SPE */
203
204 int set_dabr(unsigned long dabr)
205 {
206 if (ppc_md.set_dabr)
207 return ppc_md.set_dabr(dabr);
208
209 mtspr(SPRN_DABR, dabr);
210 return 0;
211 }
212
213 #ifdef CONFIG_PPC64
214 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
215 static DEFINE_PER_CPU(unsigned long, current_dabr);
216 #endif
217
218 struct task_struct *__switch_to(struct task_struct *prev,
219 struct task_struct *new)
220 {
221 struct thread_struct *new_thread, *old_thread;
222 unsigned long flags;
223 struct task_struct *last;
224
225 #ifdef CONFIG_SMP
226 /* avoid complexity of lazy save/restore of fpu
227 * by just saving it every time we switch out if
228 * this task used the fpu during the last quantum.
229 *
230 * If it tries to use the fpu again, it'll trap and
231 * reload its fp regs. So we don't have to do a restore
232 * every switch, just a save.
233 * -- Cort
234 */
235 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
236 giveup_fpu(prev);
237 #ifdef CONFIG_ALTIVEC
238 /*
239 * If the previous thread used altivec in the last quantum
240 * (thus changing altivec regs) then save them.
241 * We used to check the VRSAVE register but not all apps
242 * set it, so we don't rely on it now (and in fact we need
243 * to save & restore VSCR even if VRSAVE == 0). -- paulus
244 *
245 * On SMP we always save/restore altivec regs just to avoid the
246 * complexity of changing processors.
247 * -- Cort
248 */
249 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
250 giveup_altivec(prev);
251 #endif /* CONFIG_ALTIVEC */
252 #ifdef CONFIG_SPE
253 /*
254 * If the previous thread used spe in the last quantum
255 * (thus changing spe regs) then save them.
256 *
257 * On SMP we always save/restore spe regs just to avoid the
258 * complexity of changing processors.
259 */
260 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
261 giveup_spe(prev);
262 #endif /* CONFIG_SPE */
263
264 #else /* CONFIG_SMP */
265 #ifdef CONFIG_ALTIVEC
266 /* Avoid the trap. On smp this this never happens since
267 * we don't set last_task_used_altivec -- Cort
268 */
269 if (new->thread.regs && last_task_used_altivec == new)
270 new->thread.regs->msr |= MSR_VEC;
271 #endif /* CONFIG_ALTIVEC */
272 #ifdef CONFIG_SPE
273 /* Avoid the trap. On smp this this never happens since
274 * we don't set last_task_used_spe
275 */
276 if (new->thread.regs && last_task_used_spe == new)
277 new->thread.regs->msr |= MSR_SPE;
278 #endif /* CONFIG_SPE */
279
280 #endif /* CONFIG_SMP */
281
282 #ifdef CONFIG_PPC64 /* for now */
283 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
284 set_dabr(new->thread.dabr);
285 __get_cpu_var(current_dabr) = new->thread.dabr;
286 }
287
288 flush_tlb_pending();
289 #endif
290
291 new_thread = &new->thread;
292 old_thread = &current->thread;
293
294 #ifdef CONFIG_PPC64
295 /*
296 * Collect processor utilization data per process
297 */
298 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
299 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
300 long unsigned start_tb, current_tb;
301 start_tb = old_thread->start_tb;
302 cu->current_tb = current_tb = mfspr(SPRN_PURR);
303 old_thread->accum_tb += (current_tb - start_tb);
304 new_thread->start_tb = current_tb;
305 }
306 #endif
307
308 local_irq_save(flags);
309 last = _switch(old_thread, new_thread);
310
311 local_irq_restore(flags);
312
313 return last;
314 }
315
316 static int instructions_to_print = 16;
317
318 #ifdef CONFIG_PPC64
319 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \
320 (REGION_ID(pc) != VMALLOC_REGION_ID))
321 #else
322 #define BAD_PC(pc) ((pc) < KERNELBASE)
323 #endif
324
325 static void show_instructions(struct pt_regs *regs)
326 {
327 int i;
328 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
329 sizeof(int));
330
331 printk("Instruction dump:");
332
333 for (i = 0; i < instructions_to_print; i++) {
334 int instr;
335
336 if (!(i % 8))
337 printk("\n");
338
339 if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
340 printk("XXXXXXXX ");
341 } else {
342 if (regs->nip == pc)
343 printk("<%08x> ", instr);
344 else
345 printk("%08x ", instr);
346 }
347
348 pc += sizeof(int);
349 }
350
351 printk("\n");
352 }
353
354 static struct regbit {
355 unsigned long bit;
356 const char *name;
357 } msr_bits[] = {
358 {MSR_EE, "EE"},
359 {MSR_PR, "PR"},
360 {MSR_FP, "FP"},
361 {MSR_ME, "ME"},
362 {MSR_IR, "IR"},
363 {MSR_DR, "DR"},
364 {0, NULL}
365 };
366
367 static void printbits(unsigned long val, struct regbit *bits)
368 {
369 const char *sep = "";
370
371 printk("<");
372 for (; bits->bit; ++bits)
373 if (val & bits->bit) {
374 printk("%s%s", sep, bits->name);
375 sep = ",";
376 }
377 printk(">");
378 }
379
380 #ifdef CONFIG_PPC64
381 #define REG "%016lX"
382 #define REGS_PER_LINE 4
383 #define LAST_VOLATILE 13
384 #else
385 #define REG "%08lX"
386 #define REGS_PER_LINE 8
387 #define LAST_VOLATILE 12
388 #endif
389
390 void show_regs(struct pt_regs * regs)
391 {
392 int i, trap;
393
394 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
395 regs->nip, regs->link, regs->ctr);
396 printk("REGS: %p TRAP: %04lx %s (%s)\n",
397 regs, regs->trap, print_tainted(), system_utsname.release);
398 printk("MSR: "REG" ", regs->msr);
399 printbits(regs->msr, msr_bits);
400 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
401 trap = TRAP(regs);
402 if (trap == 0x300 || trap == 0x600)
403 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
404 printk("TASK = %p[%d] '%s' THREAD: %p",
405 current, current->pid, current->comm, current->thread_info);
406
407 #ifdef CONFIG_SMP
408 printk(" CPU: %d", smp_processor_id());
409 #endif /* CONFIG_SMP */
410
411 for (i = 0; i < 32; i++) {
412 if ((i % REGS_PER_LINE) == 0)
413 printk("\n" KERN_INFO "GPR%02d: ", i);
414 printk(REG " ", regs->gpr[i]);
415 if (i == LAST_VOLATILE && !FULL_REGS(regs))
416 break;
417 }
418 printk("\n");
419 #ifdef CONFIG_KALLSYMS
420 /*
421 * Lookup NIP late so we have the best change of getting the
422 * above info out without failing
423 */
424 printk("NIP ["REG"] ", regs->nip);
425 print_symbol("%s\n", regs->nip);
426 printk("LR ["REG"] ", regs->link);
427 print_symbol("%s\n", regs->link);
428 #endif
429 show_stack(current, (unsigned long *) regs->gpr[1]);
430 if (!user_mode(regs))
431 show_instructions(regs);
432 }
433
434 void exit_thread(void)
435 {
436 kprobe_flush_task(current);
437
438 #ifndef CONFIG_SMP
439 if (last_task_used_math == current)
440 last_task_used_math = NULL;
441 #ifdef CONFIG_ALTIVEC
442 if (last_task_used_altivec == current)
443 last_task_used_altivec = NULL;
444 #endif /* CONFIG_ALTIVEC */
445 #ifdef CONFIG_SPE
446 if (last_task_used_spe == current)
447 last_task_used_spe = NULL;
448 #endif
449 #endif /* CONFIG_SMP */
450 }
451
452 void flush_thread(void)
453 {
454 #ifdef CONFIG_PPC64
455 struct thread_info *t = current_thread_info();
456
457 if (t->flags & _TIF_ABI_PENDING)
458 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
459 #endif
460 kprobe_flush_task(current);
461
462 #ifndef CONFIG_SMP
463 if (last_task_used_math == current)
464 last_task_used_math = NULL;
465 #ifdef CONFIG_ALTIVEC
466 if (last_task_used_altivec == current)
467 last_task_used_altivec = NULL;
468 #endif /* CONFIG_ALTIVEC */
469 #ifdef CONFIG_SPE
470 if (last_task_used_spe == current)
471 last_task_used_spe = NULL;
472 #endif
473 #endif /* CONFIG_SMP */
474
475 #ifdef CONFIG_PPC64 /* for now */
476 if (current->thread.dabr) {
477 current->thread.dabr = 0;
478 set_dabr(0);
479 }
480 #endif
481 }
482
483 void
484 release_thread(struct task_struct *t)
485 {
486 }
487
488 /*
489 * This gets called before we allocate a new thread and copy
490 * the current task into it.
491 */
492 void prepare_to_copy(struct task_struct *tsk)
493 {
494 flush_fp_to_thread(current);
495 flush_altivec_to_thread(current);
496 flush_spe_to_thread(current);
497 }
498
499 /*
500 * Copy a thread..
501 */
502 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
503 unsigned long unused, struct task_struct *p,
504 struct pt_regs *regs)
505 {
506 struct pt_regs *childregs, *kregs;
507 extern void ret_from_fork(void);
508 unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
509
510 CHECK_FULL_REGS(regs);
511 /* Copy registers */
512 sp -= sizeof(struct pt_regs);
513 childregs = (struct pt_regs *) sp;
514 *childregs = *regs;
515 if ((childregs->msr & MSR_PR) == 0) {
516 /* for kernel thread, set `current' and stackptr in new task */
517 childregs->gpr[1] = sp + sizeof(struct pt_regs);
518 #ifdef CONFIG_PPC32
519 childregs->gpr[2] = (unsigned long) p;
520 #else
521 clear_ti_thread_flag(p->thread_info, TIF_32BIT);
522 #endif
523 p->thread.regs = NULL; /* no user register state */
524 } else {
525 childregs->gpr[1] = usp;
526 p->thread.regs = childregs;
527 if (clone_flags & CLONE_SETTLS) {
528 #ifdef CONFIG_PPC64
529 if (!test_thread_flag(TIF_32BIT))
530 childregs->gpr[13] = childregs->gpr[6];
531 else
532 #endif
533 childregs->gpr[2] = childregs->gpr[6];
534 }
535 }
536 childregs->gpr[3] = 0; /* Result from fork() */
537 sp -= STACK_FRAME_OVERHEAD;
538
539 /*
540 * The way this works is that at some point in the future
541 * some task will call _switch to switch to the new task.
542 * That will pop off the stack frame created below and start
543 * the new task running at ret_from_fork. The new task will
544 * do some house keeping and then return from the fork or clone
545 * system call, using the stack frame created above.
546 */
547 sp -= sizeof(struct pt_regs);
548 kregs = (struct pt_regs *) sp;
549 sp -= STACK_FRAME_OVERHEAD;
550 p->thread.ksp = sp;
551
552 #ifdef CONFIG_PPC64
553 if (cpu_has_feature(CPU_FTR_SLB)) {
554 unsigned long sp_vsid = get_kernel_vsid(sp);
555 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
556
557 sp_vsid <<= SLB_VSID_SHIFT;
558 sp_vsid |= SLB_VSID_KERNEL | llp;
559 p->thread.ksp_vsid = sp_vsid;
560 }
561
562 /*
563 * The PPC64 ABI makes use of a TOC to contain function
564 * pointers. The function (ret_from_except) is actually a pointer
565 * to the TOC entry. The first entry is a pointer to the actual
566 * function.
567 */
568 kregs->nip = *((unsigned long *)ret_from_fork);
569 #else
570 kregs->nip = (unsigned long)ret_from_fork;
571 p->thread.last_syscall = -1;
572 #endif
573
574 return 0;
575 }
576
577 /*
578 * Set up a thread for executing a new program
579 */
580 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
581 {
582 #ifdef CONFIG_PPC64
583 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
584 #endif
585
586 set_fs(USER_DS);
587
588 /*
589 * If we exec out of a kernel thread then thread.regs will not be
590 * set. Do it now.
591 */
592 if (!current->thread.regs) {
593 unsigned long childregs = (unsigned long)current->thread_info +
594 THREAD_SIZE;
595 childregs -= sizeof(struct pt_regs);
596 current->thread.regs = (struct pt_regs *)childregs;
597 }
598
599 memset(regs->gpr, 0, sizeof(regs->gpr));
600 regs->ctr = 0;
601 regs->link = 0;
602 regs->xer = 0;
603 regs->ccr = 0;
604 regs->gpr[1] = sp;
605
606 #ifdef CONFIG_PPC32
607 regs->mq = 0;
608 regs->nip = start;
609 regs->msr = MSR_USER;
610 #else
611 if (!test_thread_flag(TIF_32BIT)) {
612 unsigned long entry, toc;
613
614 /* start is a relocated pointer to the function descriptor for
615 * the elf _start routine. The first entry in the function
616 * descriptor is the entry address of _start and the second
617 * entry is the TOC value we need to use.
618 */
619 __get_user(entry, (unsigned long __user *)start);
620 __get_user(toc, (unsigned long __user *)start+1);
621
622 /* Check whether the e_entry function descriptor entries
623 * need to be relocated before we can use them.
624 */
625 if (load_addr != 0) {
626 entry += load_addr;
627 toc += load_addr;
628 }
629 regs->nip = entry;
630 regs->gpr[2] = toc;
631 regs->msr = MSR_USER64;
632 } else {
633 regs->nip = start;
634 regs->gpr[2] = 0;
635 regs->msr = MSR_USER32;
636 }
637 #endif
638
639 #ifndef CONFIG_SMP
640 if (last_task_used_math == current)
641 last_task_used_math = NULL;
642 #ifdef CONFIG_ALTIVEC
643 if (last_task_used_altivec == current)
644 last_task_used_altivec = NULL;
645 #endif
646 #ifdef CONFIG_SPE
647 if (last_task_used_spe == current)
648 last_task_used_spe = NULL;
649 #endif
650 #endif /* CONFIG_SMP */
651 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
652 current->thread.fpscr.val = 0;
653 #ifdef CONFIG_ALTIVEC
654 memset(current->thread.vr, 0, sizeof(current->thread.vr));
655 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
656 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
657 current->thread.vrsave = 0;
658 current->thread.used_vr = 0;
659 #endif /* CONFIG_ALTIVEC */
660 #ifdef CONFIG_SPE
661 memset(current->thread.evr, 0, sizeof(current->thread.evr));
662 current->thread.acc = 0;
663 current->thread.spefscr = 0;
664 current->thread.used_spe = 0;
665 #endif /* CONFIG_SPE */
666 }
667
668 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
669 | PR_FP_EXC_RES | PR_FP_EXC_INV)
670
671 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
672 {
673 struct pt_regs *regs = tsk->thread.regs;
674
675 /* This is a bit hairy. If we are an SPE enabled processor
676 * (have embedded fp) we store the IEEE exception enable flags in
677 * fpexc_mode. fpexc_mode is also used for setting FP exception
678 * mode (asyn, precise, disabled) for 'Classic' FP. */
679 if (val & PR_FP_EXC_SW_ENABLE) {
680 #ifdef CONFIG_SPE
681 tsk->thread.fpexc_mode = val &
682 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
683 return 0;
684 #else
685 return -EINVAL;
686 #endif
687 }
688
689 /* on a CONFIG_SPE this does not hurt us. The bits that
690 * __pack_fe01 use do not overlap with bits used for
691 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
692 * on CONFIG_SPE implementations are reserved so writing to
693 * them does not change anything */
694 if (val > PR_FP_EXC_PRECISE)
695 return -EINVAL;
696 tsk->thread.fpexc_mode = __pack_fe01(val);
697 if (regs != NULL && (regs->msr & MSR_FP) != 0)
698 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
699 | tsk->thread.fpexc_mode;
700 return 0;
701 }
702
703 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
704 {
705 unsigned int val;
706
707 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
708 #ifdef CONFIG_SPE
709 val = tsk->thread.fpexc_mode;
710 #else
711 return -EINVAL;
712 #endif
713 else
714 val = __unpack_fe01(tsk->thread.fpexc_mode);
715 return put_user(val, (unsigned int __user *) adr);
716 }
717
718 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
719
720 int sys_clone(unsigned long clone_flags, unsigned long usp,
721 int __user *parent_tidp, void __user *child_threadptr,
722 int __user *child_tidp, int p6,
723 struct pt_regs *regs)
724 {
725 CHECK_FULL_REGS(regs);
726 if (usp == 0)
727 usp = regs->gpr[1]; /* stack pointer for child */
728 #ifdef CONFIG_PPC64
729 if (test_thread_flag(TIF_32BIT)) {
730 parent_tidp = TRUNC_PTR(parent_tidp);
731 child_tidp = TRUNC_PTR(child_tidp);
732 }
733 #endif
734 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
735 }
736
737 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
738 unsigned long p4, unsigned long p5, unsigned long p6,
739 struct pt_regs *regs)
740 {
741 CHECK_FULL_REGS(regs);
742 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
743 }
744
745 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
746 unsigned long p4, unsigned long p5, unsigned long p6,
747 struct pt_regs *regs)
748 {
749 CHECK_FULL_REGS(regs);
750 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
751 regs, 0, NULL, NULL);
752 }
753
754 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
755 unsigned long a3, unsigned long a4, unsigned long a5,
756 struct pt_regs *regs)
757 {
758 int error;
759 char *filename;
760
761 filename = getname((char __user *) a0);
762 error = PTR_ERR(filename);
763 if (IS_ERR(filename))
764 goto out;
765 flush_fp_to_thread(current);
766 flush_altivec_to_thread(current);
767 flush_spe_to_thread(current);
768 error = do_execve(filename, (char __user * __user *) a1,
769 (char __user * __user *) a2, regs);
770 if (error == 0) {
771 task_lock(current);
772 current->ptrace &= ~PT_DTRACE;
773 task_unlock(current);
774 }
775 putname(filename);
776 out:
777 return error;
778 }
779
780 static int validate_sp(unsigned long sp, struct task_struct *p,
781 unsigned long nbytes)
782 {
783 unsigned long stack_page = (unsigned long)p->thread_info;
784
785 if (sp >= stack_page + sizeof(struct thread_struct)
786 && sp <= stack_page + THREAD_SIZE - nbytes)
787 return 1;
788
789 #ifdef CONFIG_IRQSTACKS
790 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
791 if (sp >= stack_page + sizeof(struct thread_struct)
792 && sp <= stack_page + THREAD_SIZE - nbytes)
793 return 1;
794
795 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
796 if (sp >= stack_page + sizeof(struct thread_struct)
797 && sp <= stack_page + THREAD_SIZE - nbytes)
798 return 1;
799 #endif
800
801 return 0;
802 }
803
804 #ifdef CONFIG_PPC64
805 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
806 #define FRAME_LR_SAVE 2
807 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
808 #define REGS_MARKER 0x7265677368657265ul
809 #define FRAME_MARKER 12
810 #else
811 #define MIN_STACK_FRAME 16
812 #define FRAME_LR_SAVE 1
813 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
814 #define REGS_MARKER 0x72656773ul
815 #define FRAME_MARKER 2
816 #endif
817
818 unsigned long get_wchan(struct task_struct *p)
819 {
820 unsigned long ip, sp;
821 int count = 0;
822
823 if (!p || p == current || p->state == TASK_RUNNING)
824 return 0;
825
826 sp = p->thread.ksp;
827 if (!validate_sp(sp, p, MIN_STACK_FRAME))
828 return 0;
829
830 do {
831 sp = *(unsigned long *)sp;
832 if (!validate_sp(sp, p, MIN_STACK_FRAME))
833 return 0;
834 if (count > 0) {
835 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
836 if (!in_sched_functions(ip))
837 return ip;
838 }
839 } while (count++ < 16);
840 return 0;
841 }
842 EXPORT_SYMBOL(get_wchan);
843
844 static int kstack_depth_to_print = 64;
845
846 void show_stack(struct task_struct *tsk, unsigned long *stack)
847 {
848 unsigned long sp, ip, lr, newsp;
849 int count = 0;
850 int firstframe = 1;
851
852 sp = (unsigned long) stack;
853 if (tsk == NULL)
854 tsk = current;
855 if (sp == 0) {
856 if (tsk == current)
857 asm("mr %0,1" : "=r" (sp));
858 else
859 sp = tsk->thread.ksp;
860 }
861
862 lr = 0;
863 printk("Call Trace:\n");
864 do {
865 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
866 return;
867
868 stack = (unsigned long *) sp;
869 newsp = stack[0];
870 ip = stack[FRAME_LR_SAVE];
871 if (!firstframe || ip != lr) {
872 printk("["REG"] ["REG"] ", sp, ip);
873 print_symbol("%s", ip);
874 if (firstframe)
875 printk(" (unreliable)");
876 printk("\n");
877 }
878 firstframe = 0;
879
880 /*
881 * See if this is an exception frame.
882 * We look for the "regshere" marker in the current frame.
883 */
884 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
885 && stack[FRAME_MARKER] == REGS_MARKER) {
886 struct pt_regs *regs = (struct pt_regs *)
887 (sp + STACK_FRAME_OVERHEAD);
888 printk("--- Exception: %lx", regs->trap);
889 print_symbol(" at %s\n", regs->nip);
890 lr = regs->link;
891 print_symbol(" LR = %s\n", lr);
892 firstframe = 1;
893 }
894
895 sp = newsp;
896 } while (count++ < kstack_depth_to_print);
897 }
898
899 void dump_stack(void)
900 {
901 show_stack(current, NULL);
902 }
903 EXPORT_SYMBOL(dump_stack);