powerpc: Add reclaim and recheckpoint functions for context switching transactional...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 /*
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
80 */
81 void flush_fp_to_thread(struct task_struct *tsk)
82 {
83 if (tsk->thread.regs) {
84 /*
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
91 */
92 preempt_disable();
93 if (tsk->thread.regs->msr & MSR_FP) {
94 #ifdef CONFIG_SMP
95 /*
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
101 */
102 BUG_ON(tsk != current);
103 #endif
104 giveup_fpu(tsk);
105 }
106 preempt_enable();
107 }
108 }
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110
111 void enable_kernel_fp(void)
112 {
113 WARN_ON(preemptible());
114
115 #ifdef CONFIG_SMP
116 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117 giveup_fpu(current);
118 else
119 giveup_fpu(NULL); /* just enables FP for kernel */
120 #else
121 giveup_fpu(last_task_used_math);
122 #endif /* CONFIG_SMP */
123 }
124 EXPORT_SYMBOL(enable_kernel_fp);
125
126 #ifdef CONFIG_ALTIVEC
127 void enable_kernel_altivec(void)
128 {
129 WARN_ON(preemptible());
130
131 #ifdef CONFIG_SMP
132 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133 giveup_altivec(current);
134 else
135 giveup_altivec_notask();
136 #else
137 giveup_altivec(last_task_used_altivec);
138 #endif /* CONFIG_SMP */
139 }
140 EXPORT_SYMBOL(enable_kernel_altivec);
141
142 /*
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
145 */
146 void flush_altivec_to_thread(struct task_struct *tsk)
147 {
148 if (tsk->thread.regs) {
149 preempt_disable();
150 if (tsk->thread.regs->msr & MSR_VEC) {
151 #ifdef CONFIG_SMP
152 BUG_ON(tsk != current);
153 #endif
154 giveup_altivec(tsk);
155 }
156 preempt_enable();
157 }
158 }
159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
160 #endif /* CONFIG_ALTIVEC */
161
162 #ifdef CONFIG_VSX
163 #if 0
164 /* not currently used, but some crazy RAID module might want to later */
165 void enable_kernel_vsx(void)
166 {
167 WARN_ON(preemptible());
168
169 #ifdef CONFIG_SMP
170 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171 giveup_vsx(current);
172 else
173 giveup_vsx(NULL); /* just enable vsx for kernel - force */
174 #else
175 giveup_vsx(last_task_used_vsx);
176 #endif /* CONFIG_SMP */
177 }
178 EXPORT_SYMBOL(enable_kernel_vsx);
179 #endif
180
181 void giveup_vsx(struct task_struct *tsk)
182 {
183 giveup_fpu(tsk);
184 giveup_altivec(tsk);
185 __giveup_vsx(tsk);
186 }
187
188 void flush_vsx_to_thread(struct task_struct *tsk)
189 {
190 if (tsk->thread.regs) {
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_VSX) {
193 #ifdef CONFIG_SMP
194 BUG_ON(tsk != current);
195 #endif
196 giveup_vsx(tsk);
197 }
198 preempt_enable();
199 }
200 }
201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
202 #endif /* CONFIG_VSX */
203
204 #ifdef CONFIG_SPE
205
206 void enable_kernel_spe(void)
207 {
208 WARN_ON(preemptible());
209
210 #ifdef CONFIG_SMP
211 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212 giveup_spe(current);
213 else
214 giveup_spe(NULL); /* just enable SPE for kernel - force */
215 #else
216 giveup_spe(last_task_used_spe);
217 #endif /* __SMP __ */
218 }
219 EXPORT_SYMBOL(enable_kernel_spe);
220
221 void flush_spe_to_thread(struct task_struct *tsk)
222 {
223 if (tsk->thread.regs) {
224 preempt_disable();
225 if (tsk->thread.regs->msr & MSR_SPE) {
226 #ifdef CONFIG_SMP
227 BUG_ON(tsk != current);
228 #endif
229 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
230 giveup_spe(tsk);
231 }
232 preempt_enable();
233 }
234 }
235 #endif /* CONFIG_SPE */
236
237 #ifndef CONFIG_SMP
238 /*
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
241 */
242 void discard_lazy_cpu_state(void)
243 {
244 preempt_disable();
245 if (last_task_used_math == current)
246 last_task_used_math = NULL;
247 #ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec == current)
249 last_task_used_altivec = NULL;
250 #endif /* CONFIG_ALTIVEC */
251 #ifdef CONFIG_VSX
252 if (last_task_used_vsx == current)
253 last_task_used_vsx = NULL;
254 #endif /* CONFIG_VSX */
255 #ifdef CONFIG_SPE
256 if (last_task_used_spe == current)
257 last_task_used_spe = NULL;
258 #endif
259 preempt_enable();
260 }
261 #endif /* CONFIG_SMP */
262
263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
264 void do_send_trap(struct pt_regs *regs, unsigned long address,
265 unsigned long error_code, int signal_code, int breakpt)
266 {
267 siginfo_t info;
268
269 current->thread.trap_nr = signal_code;
270 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271 11, SIGSEGV) == NOTIFY_STOP)
272 return;
273
274 /* Deliver the signal to userspace */
275 info.si_signo = SIGTRAP;
276 info.si_errno = breakpt; /* breakpoint or watchpoint id */
277 info.si_code = signal_code;
278 info.si_addr = (void __user *)address;
279 force_sig_info(SIGTRAP, &info, current);
280 }
281 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
282 void do_break (struct pt_regs *regs, unsigned long address,
283 unsigned long error_code)
284 {
285 siginfo_t info;
286
287 current->thread.trap_nr = TRAP_HWBKPT;
288 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289 11, SIGSEGV) == NOTIFY_STOP)
290 return;
291
292 if (debugger_break_match(regs))
293 return;
294
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
297
298 /* Deliver the signal to userspace */
299 info.si_signo = SIGTRAP;
300 info.si_errno = 0;
301 info.si_code = TRAP_HWBKPT;
302 info.si_addr = (void __user *)address;
303 force_sig_info(SIGTRAP, &info, current);
304 }
305 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
306
307 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
308
309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
310 /*
311 * Set the debug registers back to their default "safe" values.
312 */
313 static void set_debug_reg_defaults(struct thread_struct *thread)
314 {
315 thread->iac1 = thread->iac2 = 0;
316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread->iac3 = thread->iac4 = 0;
318 #endif
319 thread->dac1 = thread->dac2 = 0;
320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread->dvc1 = thread->dvc2 = 0;
322 #endif
323 thread->dbcr0 = 0;
324 #ifdef CONFIG_BOOKE
325 /*
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327 */
328 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
329 DBCR1_IAC3US | DBCR1_IAC4US;
330 /*
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333 */
334 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335 #else
336 thread->dbcr1 = 0;
337 #endif
338 }
339
340 static void prime_debug_regs(struct thread_struct *thread)
341 {
342 mtspr(SPRN_IAC1, thread->iac1);
343 mtspr(SPRN_IAC2, thread->iac2);
344 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
345 mtspr(SPRN_IAC3, thread->iac3);
346 mtspr(SPRN_IAC4, thread->iac4);
347 #endif
348 mtspr(SPRN_DAC1, thread->dac1);
349 mtspr(SPRN_DAC2, thread->dac2);
350 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
351 mtspr(SPRN_DVC1, thread->dvc1);
352 mtspr(SPRN_DVC2, thread->dvc2);
353 #endif
354 mtspr(SPRN_DBCR0, thread->dbcr0);
355 mtspr(SPRN_DBCR1, thread->dbcr1);
356 #ifdef CONFIG_BOOKE
357 mtspr(SPRN_DBCR2, thread->dbcr2);
358 #endif
359 }
360 /*
361 * Unless neither the old or new thread are making use of the
362 * debug registers, set the debug registers from the values
363 * stored in the new thread.
364 */
365 static void switch_booke_debug_regs(struct thread_struct *new_thread)
366 {
367 if ((current->thread.dbcr0 & DBCR0_IDM)
368 || (new_thread->dbcr0 & DBCR0_IDM))
369 prime_debug_regs(new_thread);
370 }
371 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
372 #ifndef CONFIG_HAVE_HW_BREAKPOINT
373 static void set_debug_reg_defaults(struct thread_struct *thread)
374 {
375 thread->hw_brk.address = 0;
376 thread->hw_brk.type = 0;
377 set_breakpoint(&thread->hw_brk);
378 }
379 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
380 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
381
382 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
383 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
384 {
385 mtspr(SPRN_DAC1, dabr);
386 #ifdef CONFIG_PPC_47x
387 isync();
388 #endif
389 return 0;
390 }
391 #elif defined(CONFIG_PPC_BOOK3S)
392 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393 {
394 mtspr(SPRN_DABR, dabr);
395 mtspr(SPRN_DABRX, dabrx);
396 return 0;
397 }
398 #else
399 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400 {
401 return -EINVAL;
402 }
403 #endif
404
405 static inline int set_dabr(struct arch_hw_breakpoint *brk)
406 {
407 unsigned long dabr, dabrx;
408
409 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
410 dabrx = ((brk->type >> 3) & 0x7);
411
412 if (ppc_md.set_dabr)
413 return ppc_md.set_dabr(dabr, dabrx);
414
415 return __set_dabr(dabr, dabrx);
416 }
417
418 static inline int set_dawr(struct arch_hw_breakpoint *brk)
419 {
420 unsigned long dawr, dawrx, mrd;
421
422 dawr = brk->address;
423
424 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
425 << (63 - 58); //* read/write bits */
426 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
427 << (63 - 59); //* translate */
428 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
429 >> 3; //* PRIM bits */
430 /* dawr length is stored in field MDR bits 48:53. Matches range in
431 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
432 0b111111=64DW.
433 brk->len is in bytes.
434 This aligns up to double word size, shifts and does the bias.
435 */
436 mrd = ((brk->len + 7) >> 3) - 1;
437 dawrx |= (mrd & 0x3f) << (63 - 53);
438
439 if (ppc_md.set_dawr)
440 return ppc_md.set_dawr(dawr, dawrx);
441 mtspr(SPRN_DAWR, dawr);
442 mtspr(SPRN_DAWRX, dawrx);
443 return 0;
444 }
445
446 int set_breakpoint(struct arch_hw_breakpoint *brk)
447 {
448 __get_cpu_var(current_brk) = *brk;
449
450 if (cpu_has_feature(CPU_FTR_DAWR))
451 return set_dawr(brk);
452
453 return set_dabr(brk);
454 }
455
456 #ifdef CONFIG_PPC64
457 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
458 #endif
459
460 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
461 struct arch_hw_breakpoint *b)
462 {
463 if (a->address != b->address)
464 return false;
465 if (a->type != b->type)
466 return false;
467 if (a->len != b->len)
468 return false;
469 return true;
470 }
471 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
472 static inline void tm_reclaim_task(struct task_struct *tsk)
473 {
474 /* We have to work out if we're switching from/to a task that's in the
475 * middle of a transaction.
476 *
477 * In switching we need to maintain a 2nd register state as
478 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
479 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
480 * (current) FPRs into oldtask->thread.transact_fpr[].
481 *
482 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
483 */
484 struct thread_struct *thr = &tsk->thread;
485
486 if (!thr->regs)
487 return;
488
489 if (!MSR_TM_ACTIVE(thr->regs->msr))
490 goto out_and_saveregs;
491
492 /* Stash the original thread MSR, as giveup_fpu et al will
493 * modify it. We hold onto it to see whether the task used
494 * FP & vector regs.
495 */
496 thr->tm_orig_msr = thr->regs->msr;
497
498 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
499 "ccr=%lx, msr=%lx, trap=%lx)\n",
500 tsk->pid, thr->regs->nip,
501 thr->regs->ccr, thr->regs->msr,
502 thr->regs->trap);
503
504 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
505
506 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
507 tsk->pid);
508
509 out_and_saveregs:
510 /* Always save the regs here, even if a transaction's not active.
511 * This context-switches a thread's TM info SPRs. We do it here to
512 * be consistent with the restore path (in recheckpoint) which
513 * cannot happen later in _switch().
514 */
515 tm_save_sprs(thr);
516 }
517
518 static inline void __maybe_unused tm_recheckpoint_new_task(struct task_struct *new)
519 {
520 unsigned long msr;
521
522 if (!cpu_has_feature(CPU_FTR_TM))
523 return;
524
525 /* Recheckpoint the registers of the thread we're about to switch to.
526 *
527 * If the task was using FP, we non-lazily reload both the original and
528 * the speculative FP register states. This is because the kernel
529 * doesn't see if/when a TM rollback occurs, so if we take an FP
530 * unavoidable later, we are unable to determine which set of FP regs
531 * need to be restored.
532 */
533 if (!new->thread.regs)
534 return;
535
536 /* The TM SPRs are restored here, so that TEXASR.FS can be set
537 * before the trecheckpoint and no explosion occurs.
538 */
539 tm_restore_sprs(&new->thread);
540
541 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
542 return;
543 msr = new->thread.tm_orig_msr;
544 /* Recheckpoint to restore original checkpointed register state. */
545 TM_DEBUG("*** tm_recheckpoint of pid %d "
546 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
547 new->pid, new->thread.regs->msr, msr);
548
549 /* This loads the checkpointed FP/VEC state, if used */
550 tm_recheckpoint(&new->thread, msr);
551
552 /* This loads the speculative FP/VEC state, if used */
553 if (msr & MSR_FP) {
554 do_load_up_transact_fpu(&new->thread);
555 new->thread.regs->msr |=
556 (MSR_FP | new->thread.fpexc_mode);
557 }
558 if (msr & MSR_VEC) {
559 do_load_up_transact_altivec(&new->thread);
560 new->thread.regs->msr |= MSR_VEC;
561 }
562 /* We may as well turn on VSX too since all the state is restored now */
563 if (msr & MSR_VSX)
564 new->thread.regs->msr |= MSR_VSX;
565
566 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
567 "(kernel msr 0x%lx)\n",
568 new->pid, mfmsr());
569 }
570
571 static inline void __switch_to_tm(struct task_struct *prev)
572 {
573 if (cpu_has_feature(CPU_FTR_TM)) {
574 tm_enable();
575 tm_reclaim_task(prev);
576 }
577 }
578 #else
579 #define tm_recheckpoint_new_task(new)
580 #define __switch_to_tm(prev)
581 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
582
583 struct task_struct *__switch_to(struct task_struct *prev,
584 struct task_struct *new)
585 {
586 struct thread_struct *new_thread, *old_thread;
587 unsigned long flags;
588 struct task_struct *last;
589 #ifdef CONFIG_PPC_BOOK3S_64
590 struct ppc64_tlb_batch *batch;
591 #endif
592
593 #ifdef CONFIG_SMP
594 /* avoid complexity of lazy save/restore of fpu
595 * by just saving it every time we switch out if
596 * this task used the fpu during the last quantum.
597 *
598 * If it tries to use the fpu again, it'll trap and
599 * reload its fp regs. So we don't have to do a restore
600 * every switch, just a save.
601 * -- Cort
602 */
603 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
604 giveup_fpu(prev);
605 #ifdef CONFIG_ALTIVEC
606 /*
607 * If the previous thread used altivec in the last quantum
608 * (thus changing altivec regs) then save them.
609 * We used to check the VRSAVE register but not all apps
610 * set it, so we don't rely on it now (and in fact we need
611 * to save & restore VSCR even if VRSAVE == 0). -- paulus
612 *
613 * On SMP we always save/restore altivec regs just to avoid the
614 * complexity of changing processors.
615 * -- Cort
616 */
617 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
618 giveup_altivec(prev);
619 #endif /* CONFIG_ALTIVEC */
620 #ifdef CONFIG_VSX
621 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
622 /* VMX and FPU registers are already save here */
623 __giveup_vsx(prev);
624 #endif /* CONFIG_VSX */
625 #ifdef CONFIG_SPE
626 /*
627 * If the previous thread used spe in the last quantum
628 * (thus changing spe regs) then save them.
629 *
630 * On SMP we always save/restore spe regs just to avoid the
631 * complexity of changing processors.
632 */
633 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
634 giveup_spe(prev);
635 #endif /* CONFIG_SPE */
636
637 #else /* CONFIG_SMP */
638 #ifdef CONFIG_ALTIVEC
639 /* Avoid the trap. On smp this this never happens since
640 * we don't set last_task_used_altivec -- Cort
641 */
642 if (new->thread.regs && last_task_used_altivec == new)
643 new->thread.regs->msr |= MSR_VEC;
644 #endif /* CONFIG_ALTIVEC */
645 #ifdef CONFIG_VSX
646 if (new->thread.regs && last_task_used_vsx == new)
647 new->thread.regs->msr |= MSR_VSX;
648 #endif /* CONFIG_VSX */
649 #ifdef CONFIG_SPE
650 /* Avoid the trap. On smp this this never happens since
651 * we don't set last_task_used_spe
652 */
653 if (new->thread.regs && last_task_used_spe == new)
654 new->thread.regs->msr |= MSR_SPE;
655 #endif /* CONFIG_SPE */
656
657 #endif /* CONFIG_SMP */
658
659 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
660 switch_booke_debug_regs(&new->thread);
661 #else
662 /*
663 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
664 * schedule DABR
665 */
666 #ifndef CONFIG_HAVE_HW_BREAKPOINT
667 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
668 set_breakpoint(&new->thread.hw_brk);
669 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
670 #endif
671
672
673 new_thread = &new->thread;
674 old_thread = &current->thread;
675
676 #ifdef CONFIG_PPC64
677 /*
678 * Collect processor utilization data per process
679 */
680 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
681 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
682 long unsigned start_tb, current_tb;
683 start_tb = old_thread->start_tb;
684 cu->current_tb = current_tb = mfspr(SPRN_PURR);
685 old_thread->accum_tb += (current_tb - start_tb);
686 new_thread->start_tb = current_tb;
687 }
688 #endif /* CONFIG_PPC64 */
689
690 #ifdef CONFIG_PPC_BOOK3S_64
691 batch = &__get_cpu_var(ppc64_tlb_batch);
692 if (batch->active) {
693 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
694 if (batch->index)
695 __flush_tlb_pending(batch);
696 batch->active = 0;
697 }
698 #endif /* CONFIG_PPC_BOOK3S_64 */
699
700 local_irq_save(flags);
701
702 /*
703 * We can't take a PMU exception inside _switch() since there is a
704 * window where the kernel stack SLB and the kernel stack are out
705 * of sync. Hard disable here.
706 */
707 hard_irq_disable();
708 last = _switch(old_thread, new_thread);
709
710 #ifdef CONFIG_PPC_BOOK3S_64
711 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
712 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
713 batch = &__get_cpu_var(ppc64_tlb_batch);
714 batch->active = 1;
715 }
716 #endif /* CONFIG_PPC_BOOK3S_64 */
717
718 local_irq_restore(flags);
719
720 return last;
721 }
722
723 static int instructions_to_print = 16;
724
725 static void show_instructions(struct pt_regs *regs)
726 {
727 int i;
728 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
729 sizeof(int));
730
731 printk("Instruction dump:");
732
733 for (i = 0; i < instructions_to_print; i++) {
734 int instr;
735
736 if (!(i % 8))
737 printk("\n");
738
739 #if !defined(CONFIG_BOOKE)
740 /* If executing with the IMMU off, adjust pc rather
741 * than print XXXXXXXX.
742 */
743 if (!(regs->msr & MSR_IR))
744 pc = (unsigned long)phys_to_virt(pc);
745 #endif
746
747 /* We use __get_user here *only* to avoid an OOPS on a
748 * bad address because the pc *should* only be a
749 * kernel address.
750 */
751 if (!__kernel_text_address(pc) ||
752 __get_user(instr, (unsigned int __user *)pc)) {
753 printk(KERN_CONT "XXXXXXXX ");
754 } else {
755 if (regs->nip == pc)
756 printk(KERN_CONT "<%08x> ", instr);
757 else
758 printk(KERN_CONT "%08x ", instr);
759 }
760
761 pc += sizeof(int);
762 }
763
764 printk("\n");
765 }
766
767 static struct regbit {
768 unsigned long bit;
769 const char *name;
770 } msr_bits[] = {
771 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
772 {MSR_SF, "SF"},
773 {MSR_HV, "HV"},
774 #endif
775 {MSR_VEC, "VEC"},
776 {MSR_VSX, "VSX"},
777 #ifdef CONFIG_BOOKE
778 {MSR_CE, "CE"},
779 #endif
780 {MSR_EE, "EE"},
781 {MSR_PR, "PR"},
782 {MSR_FP, "FP"},
783 {MSR_ME, "ME"},
784 #ifdef CONFIG_BOOKE
785 {MSR_DE, "DE"},
786 #else
787 {MSR_SE, "SE"},
788 {MSR_BE, "BE"},
789 #endif
790 {MSR_IR, "IR"},
791 {MSR_DR, "DR"},
792 {MSR_PMM, "PMM"},
793 #ifndef CONFIG_BOOKE
794 {MSR_RI, "RI"},
795 {MSR_LE, "LE"},
796 #endif
797 {0, NULL}
798 };
799
800 static void printbits(unsigned long val, struct regbit *bits)
801 {
802 const char *sep = "";
803
804 printk("<");
805 for (; bits->bit; ++bits)
806 if (val & bits->bit) {
807 printk("%s%s", sep, bits->name);
808 sep = ",";
809 }
810 printk(">");
811 }
812
813 #ifdef CONFIG_PPC64
814 #define REG "%016lx"
815 #define REGS_PER_LINE 4
816 #define LAST_VOLATILE 13
817 #else
818 #define REG "%08lx"
819 #define REGS_PER_LINE 8
820 #define LAST_VOLATILE 12
821 #endif
822
823 void show_regs(struct pt_regs * regs)
824 {
825 int i, trap;
826
827 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
828 regs->nip, regs->link, regs->ctr);
829 printk("REGS: %p TRAP: %04lx %s (%s)\n",
830 regs, regs->trap, print_tainted(), init_utsname()->release);
831 printk("MSR: "REG" ", regs->msr);
832 printbits(regs->msr, msr_bits);
833 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
834 #ifdef CONFIG_PPC64
835 printk("SOFTE: %ld\n", regs->softe);
836 #endif
837 trap = TRAP(regs);
838 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
839 printk("CFAR: "REG"\n", regs->orig_gpr3);
840 if (trap == 0x300 || trap == 0x600)
841 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
842 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
843 #else
844 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
845 #endif
846 printk("TASK = %p[%d] '%s' THREAD: %p",
847 current, task_pid_nr(current), current->comm, task_thread_info(current));
848
849 #ifdef CONFIG_SMP
850 printk(" CPU: %d", raw_smp_processor_id());
851 #endif /* CONFIG_SMP */
852
853 for (i = 0; i < 32; i++) {
854 if ((i % REGS_PER_LINE) == 0)
855 printk("\nGPR%02d: ", i);
856 printk(REG " ", regs->gpr[i]);
857 if (i == LAST_VOLATILE && !FULL_REGS(regs))
858 break;
859 }
860 printk("\n");
861 #ifdef CONFIG_KALLSYMS
862 /*
863 * Lookup NIP late so we have the best change of getting the
864 * above info out without failing
865 */
866 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
867 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
868 #endif
869 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
870 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
871 #endif
872 show_stack(current, (unsigned long *) regs->gpr[1]);
873 if (!user_mode(regs))
874 show_instructions(regs);
875 }
876
877 void exit_thread(void)
878 {
879 discard_lazy_cpu_state();
880 }
881
882 void flush_thread(void)
883 {
884 discard_lazy_cpu_state();
885
886 #ifdef CONFIG_HAVE_HW_BREAKPOINT
887 flush_ptrace_hw_breakpoint(current);
888 #else /* CONFIG_HAVE_HW_BREAKPOINT */
889 set_debug_reg_defaults(&current->thread);
890 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
891 }
892
893 void
894 release_thread(struct task_struct *t)
895 {
896 }
897
898 /*
899 * this gets called so that we can store coprocessor state into memory and
900 * copy the current task into the new thread.
901 */
902 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
903 {
904 flush_fp_to_thread(src);
905 flush_altivec_to_thread(src);
906 flush_vsx_to_thread(src);
907 flush_spe_to_thread(src);
908 #ifdef CONFIG_HAVE_HW_BREAKPOINT
909 flush_ptrace_hw_breakpoint(src);
910 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
911
912 *dst = *src;
913 return 0;
914 }
915
916 /*
917 * Copy a thread..
918 */
919 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
920
921 int copy_thread(unsigned long clone_flags, unsigned long usp,
922 unsigned long arg, struct task_struct *p)
923 {
924 struct pt_regs *childregs, *kregs;
925 extern void ret_from_fork(void);
926 extern void ret_from_kernel_thread(void);
927 void (*f)(void);
928 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
929
930 /* Copy registers */
931 sp -= sizeof(struct pt_regs);
932 childregs = (struct pt_regs *) sp;
933 if (unlikely(p->flags & PF_KTHREAD)) {
934 struct thread_info *ti = (void *)task_stack_page(p);
935 memset(childregs, 0, sizeof(struct pt_regs));
936 childregs->gpr[1] = sp + sizeof(struct pt_regs);
937 childregs->gpr[14] = usp; /* function */
938 #ifdef CONFIG_PPC64
939 clear_tsk_thread_flag(p, TIF_32BIT);
940 childregs->softe = 1;
941 #endif
942 childregs->gpr[15] = arg;
943 p->thread.regs = NULL; /* no user register state */
944 ti->flags |= _TIF_RESTOREALL;
945 f = ret_from_kernel_thread;
946 } else {
947 struct pt_regs *regs = current_pt_regs();
948 CHECK_FULL_REGS(regs);
949 *childregs = *regs;
950 if (usp)
951 childregs->gpr[1] = usp;
952 p->thread.regs = childregs;
953 childregs->gpr[3] = 0; /* Result from fork() */
954 if (clone_flags & CLONE_SETTLS) {
955 #ifdef CONFIG_PPC64
956 if (!is_32bit_task())
957 childregs->gpr[13] = childregs->gpr[6];
958 else
959 #endif
960 childregs->gpr[2] = childregs->gpr[6];
961 }
962
963 f = ret_from_fork;
964 }
965 sp -= STACK_FRAME_OVERHEAD;
966
967 /*
968 * The way this works is that at some point in the future
969 * some task will call _switch to switch to the new task.
970 * That will pop off the stack frame created below and start
971 * the new task running at ret_from_fork. The new task will
972 * do some house keeping and then return from the fork or clone
973 * system call, using the stack frame created above.
974 */
975 sp -= sizeof(struct pt_regs);
976 kregs = (struct pt_regs *) sp;
977 sp -= STACK_FRAME_OVERHEAD;
978 p->thread.ksp = sp;
979 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
980 _ALIGN_UP(sizeof(struct thread_info), 16);
981
982 #ifdef CONFIG_PPC_STD_MMU_64
983 if (mmu_has_feature(MMU_FTR_SLB)) {
984 unsigned long sp_vsid;
985 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
986
987 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
988 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
989 << SLB_VSID_SHIFT_1T;
990 else
991 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
992 << SLB_VSID_SHIFT;
993 sp_vsid |= SLB_VSID_KERNEL | llp;
994 p->thread.ksp_vsid = sp_vsid;
995 }
996 #endif /* CONFIG_PPC_STD_MMU_64 */
997 #ifdef CONFIG_PPC64
998 if (cpu_has_feature(CPU_FTR_DSCR)) {
999 p->thread.dscr_inherit = current->thread.dscr_inherit;
1000 p->thread.dscr = current->thread.dscr;
1001 }
1002 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1003 p->thread.ppr = INIT_PPR;
1004 #endif
1005 /*
1006 * The PPC64 ABI makes use of a TOC to contain function
1007 * pointers. The function (ret_from_except) is actually a pointer
1008 * to the TOC entry. The first entry is a pointer to the actual
1009 * function.
1010 */
1011 #ifdef CONFIG_PPC64
1012 kregs->nip = *((unsigned long *)f);
1013 #else
1014 kregs->nip = (unsigned long)f;
1015 #endif
1016 return 0;
1017 }
1018
1019 /*
1020 * Set up a thread for executing a new program
1021 */
1022 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1023 {
1024 #ifdef CONFIG_PPC64
1025 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1026 #endif
1027
1028 /*
1029 * If we exec out of a kernel thread then thread.regs will not be
1030 * set. Do it now.
1031 */
1032 if (!current->thread.regs) {
1033 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1034 current->thread.regs = regs - 1;
1035 }
1036
1037 memset(regs->gpr, 0, sizeof(regs->gpr));
1038 regs->ctr = 0;
1039 regs->link = 0;
1040 regs->xer = 0;
1041 regs->ccr = 0;
1042 regs->gpr[1] = sp;
1043
1044 /*
1045 * We have just cleared all the nonvolatile GPRs, so make
1046 * FULL_REGS(regs) return true. This is necessary to allow
1047 * ptrace to examine the thread immediately after exec.
1048 */
1049 regs->trap &= ~1UL;
1050
1051 #ifdef CONFIG_PPC32
1052 regs->mq = 0;
1053 regs->nip = start;
1054 regs->msr = MSR_USER;
1055 #else
1056 if (!is_32bit_task()) {
1057 unsigned long entry, toc;
1058
1059 /* start is a relocated pointer to the function descriptor for
1060 * the elf _start routine. The first entry in the function
1061 * descriptor is the entry address of _start and the second
1062 * entry is the TOC value we need to use.
1063 */
1064 __get_user(entry, (unsigned long __user *)start);
1065 __get_user(toc, (unsigned long __user *)start+1);
1066
1067 /* Check whether the e_entry function descriptor entries
1068 * need to be relocated before we can use them.
1069 */
1070 if (load_addr != 0) {
1071 entry += load_addr;
1072 toc += load_addr;
1073 }
1074 regs->nip = entry;
1075 regs->gpr[2] = toc;
1076 regs->msr = MSR_USER64;
1077 } else {
1078 regs->nip = start;
1079 regs->gpr[2] = 0;
1080 regs->msr = MSR_USER32;
1081 }
1082 #endif
1083
1084 discard_lazy_cpu_state();
1085 #ifdef CONFIG_VSX
1086 current->thread.used_vsr = 0;
1087 #endif
1088 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1089 current->thread.fpscr.val = 0;
1090 #ifdef CONFIG_ALTIVEC
1091 memset(current->thread.vr, 0, sizeof(current->thread.vr));
1092 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1093 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1094 current->thread.vrsave = 0;
1095 current->thread.used_vr = 0;
1096 #endif /* CONFIG_ALTIVEC */
1097 #ifdef CONFIG_SPE
1098 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1099 current->thread.acc = 0;
1100 current->thread.spefscr = 0;
1101 current->thread.used_spe = 0;
1102 #endif /* CONFIG_SPE */
1103 }
1104
1105 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1106 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1107
1108 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1109 {
1110 struct pt_regs *regs = tsk->thread.regs;
1111
1112 /* This is a bit hairy. If we are an SPE enabled processor
1113 * (have embedded fp) we store the IEEE exception enable flags in
1114 * fpexc_mode. fpexc_mode is also used for setting FP exception
1115 * mode (asyn, precise, disabled) for 'Classic' FP. */
1116 if (val & PR_FP_EXC_SW_ENABLE) {
1117 #ifdef CONFIG_SPE
1118 if (cpu_has_feature(CPU_FTR_SPE)) {
1119 tsk->thread.fpexc_mode = val &
1120 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1121 return 0;
1122 } else {
1123 return -EINVAL;
1124 }
1125 #else
1126 return -EINVAL;
1127 #endif
1128 }
1129
1130 /* on a CONFIG_SPE this does not hurt us. The bits that
1131 * __pack_fe01 use do not overlap with bits used for
1132 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1133 * on CONFIG_SPE implementations are reserved so writing to
1134 * them does not change anything */
1135 if (val > PR_FP_EXC_PRECISE)
1136 return -EINVAL;
1137 tsk->thread.fpexc_mode = __pack_fe01(val);
1138 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1139 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1140 | tsk->thread.fpexc_mode;
1141 return 0;
1142 }
1143
1144 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1145 {
1146 unsigned int val;
1147
1148 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1149 #ifdef CONFIG_SPE
1150 if (cpu_has_feature(CPU_FTR_SPE))
1151 val = tsk->thread.fpexc_mode;
1152 else
1153 return -EINVAL;
1154 #else
1155 return -EINVAL;
1156 #endif
1157 else
1158 val = __unpack_fe01(tsk->thread.fpexc_mode);
1159 return put_user(val, (unsigned int __user *) adr);
1160 }
1161
1162 int set_endian(struct task_struct *tsk, unsigned int val)
1163 {
1164 struct pt_regs *regs = tsk->thread.regs;
1165
1166 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1167 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1168 return -EINVAL;
1169
1170 if (regs == NULL)
1171 return -EINVAL;
1172
1173 if (val == PR_ENDIAN_BIG)
1174 regs->msr &= ~MSR_LE;
1175 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1176 regs->msr |= MSR_LE;
1177 else
1178 return -EINVAL;
1179
1180 return 0;
1181 }
1182
1183 int get_endian(struct task_struct *tsk, unsigned long adr)
1184 {
1185 struct pt_regs *regs = tsk->thread.regs;
1186 unsigned int val;
1187
1188 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1189 !cpu_has_feature(CPU_FTR_REAL_LE))
1190 return -EINVAL;
1191
1192 if (regs == NULL)
1193 return -EINVAL;
1194
1195 if (regs->msr & MSR_LE) {
1196 if (cpu_has_feature(CPU_FTR_REAL_LE))
1197 val = PR_ENDIAN_LITTLE;
1198 else
1199 val = PR_ENDIAN_PPC_LITTLE;
1200 } else
1201 val = PR_ENDIAN_BIG;
1202
1203 return put_user(val, (unsigned int __user *)adr);
1204 }
1205
1206 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1207 {
1208 tsk->thread.align_ctl = val;
1209 return 0;
1210 }
1211
1212 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1213 {
1214 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1215 }
1216
1217 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1218 unsigned long nbytes)
1219 {
1220 unsigned long stack_page;
1221 unsigned long cpu = task_cpu(p);
1222
1223 /*
1224 * Avoid crashing if the stack has overflowed and corrupted
1225 * task_cpu(p), which is in the thread_info struct.
1226 */
1227 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1228 stack_page = (unsigned long) hardirq_ctx[cpu];
1229 if (sp >= stack_page + sizeof(struct thread_struct)
1230 && sp <= stack_page + THREAD_SIZE - nbytes)
1231 return 1;
1232
1233 stack_page = (unsigned long) softirq_ctx[cpu];
1234 if (sp >= stack_page + sizeof(struct thread_struct)
1235 && sp <= stack_page + THREAD_SIZE - nbytes)
1236 return 1;
1237 }
1238 return 0;
1239 }
1240
1241 int validate_sp(unsigned long sp, struct task_struct *p,
1242 unsigned long nbytes)
1243 {
1244 unsigned long stack_page = (unsigned long)task_stack_page(p);
1245
1246 if (sp >= stack_page + sizeof(struct thread_struct)
1247 && sp <= stack_page + THREAD_SIZE - nbytes)
1248 return 1;
1249
1250 return valid_irq_stack(sp, p, nbytes);
1251 }
1252
1253 EXPORT_SYMBOL(validate_sp);
1254
1255 unsigned long get_wchan(struct task_struct *p)
1256 {
1257 unsigned long ip, sp;
1258 int count = 0;
1259
1260 if (!p || p == current || p->state == TASK_RUNNING)
1261 return 0;
1262
1263 sp = p->thread.ksp;
1264 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1265 return 0;
1266
1267 do {
1268 sp = *(unsigned long *)sp;
1269 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1270 return 0;
1271 if (count > 0) {
1272 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1273 if (!in_sched_functions(ip))
1274 return ip;
1275 }
1276 } while (count++ < 16);
1277 return 0;
1278 }
1279
1280 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1281
1282 void show_stack(struct task_struct *tsk, unsigned long *stack)
1283 {
1284 unsigned long sp, ip, lr, newsp;
1285 int count = 0;
1286 int firstframe = 1;
1287 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1288 int curr_frame = current->curr_ret_stack;
1289 extern void return_to_handler(void);
1290 unsigned long rth = (unsigned long)return_to_handler;
1291 unsigned long mrth = -1;
1292 #ifdef CONFIG_PPC64
1293 extern void mod_return_to_handler(void);
1294 rth = *(unsigned long *)rth;
1295 mrth = (unsigned long)mod_return_to_handler;
1296 mrth = *(unsigned long *)mrth;
1297 #endif
1298 #endif
1299
1300 sp = (unsigned long) stack;
1301 if (tsk == NULL)
1302 tsk = current;
1303 if (sp == 0) {
1304 if (tsk == current)
1305 asm("mr %0,1" : "=r" (sp));
1306 else
1307 sp = tsk->thread.ksp;
1308 }
1309
1310 lr = 0;
1311 printk("Call Trace:\n");
1312 do {
1313 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1314 return;
1315
1316 stack = (unsigned long *) sp;
1317 newsp = stack[0];
1318 ip = stack[STACK_FRAME_LR_SAVE];
1319 if (!firstframe || ip != lr) {
1320 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1321 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1322 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1323 printk(" (%pS)",
1324 (void *)current->ret_stack[curr_frame].ret);
1325 curr_frame--;
1326 }
1327 #endif
1328 if (firstframe)
1329 printk(" (unreliable)");
1330 printk("\n");
1331 }
1332 firstframe = 0;
1333
1334 /*
1335 * See if this is an exception frame.
1336 * We look for the "regshere" marker in the current frame.
1337 */
1338 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1339 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1340 struct pt_regs *regs = (struct pt_regs *)
1341 (sp + STACK_FRAME_OVERHEAD);
1342 lr = regs->link;
1343 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1344 regs->trap, (void *)regs->nip, (void *)lr);
1345 firstframe = 1;
1346 }
1347
1348 sp = newsp;
1349 } while (count++ < kstack_depth_to_print);
1350 }
1351
1352 void dump_stack(void)
1353 {
1354 show_stack(current, NULL);
1355 }
1356 EXPORT_SYMBOL(dump_stack);
1357
1358 #ifdef CONFIG_PPC64
1359 /* Called with hard IRQs off */
1360 void __ppc64_runlatch_on(void)
1361 {
1362 struct thread_info *ti = current_thread_info();
1363 unsigned long ctrl;
1364
1365 ctrl = mfspr(SPRN_CTRLF);
1366 ctrl |= CTRL_RUNLATCH;
1367 mtspr(SPRN_CTRLT, ctrl);
1368
1369 ti->local_flags |= _TLF_RUNLATCH;
1370 }
1371
1372 /* Called with hard IRQs off */
1373 void __ppc64_runlatch_off(void)
1374 {
1375 struct thread_info *ti = current_thread_info();
1376 unsigned long ctrl;
1377
1378 ti->local_flags &= ~_TLF_RUNLATCH;
1379
1380 ctrl = mfspr(SPRN_CTRLF);
1381 ctrl &= ~CTRL_RUNLATCH;
1382 mtspr(SPRN_CTRLT, ctrl);
1383 }
1384 #endif /* CONFIG_PPC64 */
1385
1386 unsigned long arch_align_stack(unsigned long sp)
1387 {
1388 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1389 sp -= get_random_int() & ~PAGE_MASK;
1390 return sp & ~0xf;
1391 }
1392
1393 static inline unsigned long brk_rnd(void)
1394 {
1395 unsigned long rnd = 0;
1396
1397 /* 8MB for 32bit, 1GB for 64bit */
1398 if (is_32bit_task())
1399 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1400 else
1401 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1402
1403 return rnd << PAGE_SHIFT;
1404 }
1405
1406 unsigned long arch_randomize_brk(struct mm_struct *mm)
1407 {
1408 unsigned long base = mm->brk;
1409 unsigned long ret;
1410
1411 #ifdef CONFIG_PPC_STD_MMU_64
1412 /*
1413 * If we are using 1TB segments and we are allowed to randomise
1414 * the heap, we can put it above 1TB so it is backed by a 1TB
1415 * segment. Otherwise the heap will be in the bottom 1TB
1416 * which always uses 256MB segments and this may result in a
1417 * performance penalty.
1418 */
1419 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1420 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1421 #endif
1422
1423 ret = PAGE_ALIGN(base + brk_rnd());
1424
1425 if (ret < mm->brk)
1426 return mm->brk;
1427
1428 return ret;
1429 }
1430
1431 unsigned long randomize_et_dyn(unsigned long base)
1432 {
1433 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1434
1435 if (ret < base)
1436 return base;
1437
1438 return ret;
1439 }