ppc64: merge binfmt_elf32.c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
1 /*
2 * arch/ppc/kernel/process.c
3 *
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
6 *
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
9 *
10 * PowerPC version
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19 #include <linux/config.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/prctl.h>
34 #include <linux/init_task.h>
35 #include <linux/module.h>
36 #include <linux/kallsyms.h>
37 #include <linux/mqueue.h>
38 #include <linux/hardirq.h>
39 #include <linux/utsname.h>
40 #include <linux/kprobes.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #ifdef CONFIG_PPC64
50 #include <asm/firmware.h>
51 #include <asm/plpar_wrappers.h>
52 #include <asm/time.h>
53 #endif
54
55 extern unsigned long _get_SP(void);
56
57 #ifndef CONFIG_SMP
58 struct task_struct *last_task_used_math = NULL;
59 struct task_struct *last_task_used_altivec = NULL;
60 struct task_struct *last_task_used_spe = NULL;
61 #endif
62
63 /*
64 * Make sure the floating-point register state in the
65 * the thread_struct is up to date for task tsk.
66 */
67 void flush_fp_to_thread(struct task_struct *tsk)
68 {
69 if (tsk->thread.regs) {
70 /*
71 * We need to disable preemption here because if we didn't,
72 * another process could get scheduled after the regs->msr
73 * test but before we have finished saving the FP registers
74 * to the thread_struct. That process could take over the
75 * FPU, and then when we get scheduled again we would store
76 * bogus values for the remaining FP registers.
77 */
78 preempt_disable();
79 if (tsk->thread.regs->msr & MSR_FP) {
80 #ifdef CONFIG_SMP
81 /*
82 * This should only ever be called for current or
83 * for a stopped child process. Since we save away
84 * the FP register state on context switch on SMP,
85 * there is something wrong if a stopped child appears
86 * to still have its FP state in the CPU registers.
87 */
88 BUG_ON(tsk != current);
89 #endif
90 giveup_fpu(current);
91 }
92 preempt_enable();
93 }
94 }
95
96 void enable_kernel_fp(void)
97 {
98 WARN_ON(preemptible());
99
100 #ifdef CONFIG_SMP
101 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
102 giveup_fpu(current);
103 else
104 giveup_fpu(NULL); /* just enables FP for kernel */
105 #else
106 giveup_fpu(last_task_used_math);
107 #endif /* CONFIG_SMP */
108 }
109 EXPORT_SYMBOL(enable_kernel_fp);
110
111 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
112 {
113 if (!tsk->thread.regs)
114 return 0;
115 flush_fp_to_thread(current);
116
117 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
118
119 return 1;
120 }
121
122 #ifdef CONFIG_ALTIVEC
123 void enable_kernel_altivec(void)
124 {
125 WARN_ON(preemptible());
126
127 #ifdef CONFIG_SMP
128 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
129 giveup_altivec(current);
130 else
131 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
132 #else
133 giveup_altivec(last_task_used_altivec);
134 #endif /* CONFIG_SMP */
135 }
136 EXPORT_SYMBOL(enable_kernel_altivec);
137
138 /*
139 * Make sure the VMX/Altivec register state in the
140 * the thread_struct is up to date for task tsk.
141 */
142 void flush_altivec_to_thread(struct task_struct *tsk)
143 {
144 if (tsk->thread.regs) {
145 preempt_disable();
146 if (tsk->thread.regs->msr & MSR_VEC) {
147 #ifdef CONFIG_SMP
148 BUG_ON(tsk != current);
149 #endif
150 giveup_altivec(current);
151 }
152 preempt_enable();
153 }
154 }
155
156 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
157 {
158 flush_altivec_to_thread(current);
159 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
160 return 1;
161 }
162 #endif /* CONFIG_ALTIVEC */
163
164 #ifdef CONFIG_SPE
165
166 void enable_kernel_spe(void)
167 {
168 WARN_ON(preemptible());
169
170 #ifdef CONFIG_SMP
171 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
172 giveup_spe(current);
173 else
174 giveup_spe(NULL); /* just enable SPE for kernel - force */
175 #else
176 giveup_spe(last_task_used_spe);
177 #endif /* __SMP __ */
178 }
179 EXPORT_SYMBOL(enable_kernel_spe);
180
181 void flush_spe_to_thread(struct task_struct *tsk)
182 {
183 if (tsk->thread.regs) {
184 preempt_disable();
185 if (tsk->thread.regs->msr & MSR_SPE) {
186 #ifdef CONFIG_SMP
187 BUG_ON(tsk != current);
188 #endif
189 giveup_spe(current);
190 }
191 preempt_enable();
192 }
193 }
194
195 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
196 {
197 flush_spe_to_thread(current);
198 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
199 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
200 return 1;
201 }
202 #endif /* CONFIG_SPE */
203
204 static void set_dabr_spr(unsigned long val)
205 {
206 mtspr(SPRN_DABR, val);
207 }
208
209 int set_dabr(unsigned long dabr)
210 {
211 int ret = 0;
212
213 #ifdef CONFIG_PPC64
214 if (firmware_has_feature(FW_FEATURE_XDABR)) {
215 /* We want to catch accesses from kernel and userspace */
216 unsigned long flags = H_DABRX_KERNEL|H_DABRX_USER;
217 ret = plpar_set_xdabr(dabr, flags);
218 } else if (firmware_has_feature(FW_FEATURE_DABR)) {
219 ret = plpar_set_dabr(dabr);
220 } else
221 #endif
222 set_dabr_spr(dabr);
223
224 return ret;
225 }
226
227 #ifdef CONFIG_PPC64
228 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
229 static DEFINE_PER_CPU(unsigned long, current_dabr);
230 #endif
231
232 struct task_struct *__switch_to(struct task_struct *prev,
233 struct task_struct *new)
234 {
235 struct thread_struct *new_thread, *old_thread;
236 unsigned long flags;
237 struct task_struct *last;
238
239 #ifdef CONFIG_SMP
240 /* avoid complexity of lazy save/restore of fpu
241 * by just saving it every time we switch out if
242 * this task used the fpu during the last quantum.
243 *
244 * If it tries to use the fpu again, it'll trap and
245 * reload its fp regs. So we don't have to do a restore
246 * every switch, just a save.
247 * -- Cort
248 */
249 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
250 giveup_fpu(prev);
251 #ifdef CONFIG_ALTIVEC
252 /*
253 * If the previous thread used altivec in the last quantum
254 * (thus changing altivec regs) then save them.
255 * We used to check the VRSAVE register but not all apps
256 * set it, so we don't rely on it now (and in fact we need
257 * to save & restore VSCR even if VRSAVE == 0). -- paulus
258 *
259 * On SMP we always save/restore altivec regs just to avoid the
260 * complexity of changing processors.
261 * -- Cort
262 */
263 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
264 giveup_altivec(prev);
265 #endif /* CONFIG_ALTIVEC */
266 #ifdef CONFIG_SPE
267 /*
268 * If the previous thread used spe in the last quantum
269 * (thus changing spe regs) then save them.
270 *
271 * On SMP we always save/restore spe regs just to avoid the
272 * complexity of changing processors.
273 */
274 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
275 giveup_spe(prev);
276 #endif /* CONFIG_SPE */
277
278 #else /* CONFIG_SMP */
279 #ifdef CONFIG_ALTIVEC
280 /* Avoid the trap. On smp this this never happens since
281 * we don't set last_task_used_altivec -- Cort
282 */
283 if (new->thread.regs && last_task_used_altivec == new)
284 new->thread.regs->msr |= MSR_VEC;
285 #endif /* CONFIG_ALTIVEC */
286 #ifdef CONFIG_SPE
287 /* Avoid the trap. On smp this this never happens since
288 * we don't set last_task_used_spe
289 */
290 if (new->thread.regs && last_task_used_spe == new)
291 new->thread.regs->msr |= MSR_SPE;
292 #endif /* CONFIG_SPE */
293
294 #endif /* CONFIG_SMP */
295
296 #ifdef CONFIG_PPC64 /* for now */
297 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
298 set_dabr(new->thread.dabr);
299 __get_cpu_var(current_dabr) = new->thread.dabr;
300 }
301
302 flush_tlb_pending();
303 #endif
304
305 new_thread = &new->thread;
306 old_thread = &current->thread;
307
308 #ifdef CONFIG_PPC64
309 /*
310 * Collect processor utilization data per process
311 */
312 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
313 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
314 long unsigned start_tb, current_tb;
315 start_tb = old_thread->start_tb;
316 cu->current_tb = current_tb = mfspr(SPRN_PURR);
317 old_thread->accum_tb += (current_tb - start_tb);
318 new_thread->start_tb = current_tb;
319 }
320 #endif
321
322 local_irq_save(flags);
323 last = _switch(old_thread, new_thread);
324
325 local_irq_restore(flags);
326
327 return last;
328 }
329
330 static int instructions_to_print = 16;
331
332 #ifdef CONFIG_PPC64
333 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \
334 (REGION_ID(pc) != VMALLOC_REGION_ID))
335 #else
336 #define BAD_PC(pc) ((pc) < KERNELBASE)
337 #endif
338
339 static void show_instructions(struct pt_regs *regs)
340 {
341 int i;
342 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
343 sizeof(int));
344
345 printk("Instruction dump:");
346
347 for (i = 0; i < instructions_to_print; i++) {
348 int instr;
349
350 if (!(i % 8))
351 printk("\n");
352
353 if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
354 printk("XXXXXXXX ");
355 } else {
356 if (regs->nip == pc)
357 printk("<%08x> ", instr);
358 else
359 printk("%08x ", instr);
360 }
361
362 pc += sizeof(int);
363 }
364
365 printk("\n");
366 }
367
368 static struct regbit {
369 unsigned long bit;
370 const char *name;
371 } msr_bits[] = {
372 {MSR_EE, "EE"},
373 {MSR_PR, "PR"},
374 {MSR_FP, "FP"},
375 {MSR_ME, "ME"},
376 {MSR_IR, "IR"},
377 {MSR_DR, "DR"},
378 {0, NULL}
379 };
380
381 static void printbits(unsigned long val, struct regbit *bits)
382 {
383 const char *sep = "";
384
385 printk("<");
386 for (; bits->bit; ++bits)
387 if (val & bits->bit) {
388 printk("%s%s", sep, bits->name);
389 sep = ",";
390 }
391 printk(">");
392 }
393
394 #ifdef CONFIG_PPC64
395 #define REG "%016lX"
396 #define REGS_PER_LINE 4
397 #define LAST_VOLATILE 13
398 #else
399 #define REG "%08lX"
400 #define REGS_PER_LINE 8
401 #define LAST_VOLATILE 12
402 #endif
403
404 void show_regs(struct pt_regs * regs)
405 {
406 int i, trap;
407
408 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
409 regs->nip, regs->link, regs->ctr);
410 printk("REGS: %p TRAP: %04lx %s (%s)\n",
411 regs, regs->trap, print_tainted(), system_utsname.release);
412 printk("MSR: "REG" ", regs->msr);
413 printbits(regs->msr, msr_bits);
414 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
415 trap = TRAP(regs);
416 if (trap == 0x300 || trap == 0x600)
417 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
418 printk("TASK = %p[%d] '%s' THREAD: %p",
419 current, current->pid, current->comm, current->thread_info);
420
421 #ifdef CONFIG_SMP
422 printk(" CPU: %d", smp_processor_id());
423 #endif /* CONFIG_SMP */
424
425 for (i = 0; i < 32; i++) {
426 if ((i % REGS_PER_LINE) == 0)
427 printk("\n" KERN_INFO "GPR%02d: ", i);
428 printk(REG " ", regs->gpr[i]);
429 if (i == LAST_VOLATILE && !FULL_REGS(regs))
430 break;
431 }
432 printk("\n");
433 #ifdef CONFIG_KALLSYMS
434 /*
435 * Lookup NIP late so we have the best change of getting the
436 * above info out without failing
437 */
438 printk("NIP ["REG"] ", regs->nip);
439 print_symbol("%s\n", regs->nip);
440 printk("LR ["REG"] ", regs->link);
441 print_symbol("%s\n", regs->link);
442 #endif
443 show_stack(current, (unsigned long *) regs->gpr[1]);
444 if (!user_mode(regs))
445 show_instructions(regs);
446 }
447
448 void exit_thread(void)
449 {
450 kprobe_flush_task(current);
451
452 #ifndef CONFIG_SMP
453 if (last_task_used_math == current)
454 last_task_used_math = NULL;
455 #ifdef CONFIG_ALTIVEC
456 if (last_task_used_altivec == current)
457 last_task_used_altivec = NULL;
458 #endif /* CONFIG_ALTIVEC */
459 #ifdef CONFIG_SPE
460 if (last_task_used_spe == current)
461 last_task_used_spe = NULL;
462 #endif
463 #endif /* CONFIG_SMP */
464 }
465
466 void flush_thread(void)
467 {
468 #ifdef CONFIG_PPC64
469 struct thread_info *t = current_thread_info();
470
471 if (t->flags & _TIF_ABI_PENDING)
472 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
473 #endif
474 kprobe_flush_task(current);
475
476 #ifndef CONFIG_SMP
477 if (last_task_used_math == current)
478 last_task_used_math = NULL;
479 #ifdef CONFIG_ALTIVEC
480 if (last_task_used_altivec == current)
481 last_task_used_altivec = NULL;
482 #endif /* CONFIG_ALTIVEC */
483 #ifdef CONFIG_SPE
484 if (last_task_used_spe == current)
485 last_task_used_spe = NULL;
486 #endif
487 #endif /* CONFIG_SMP */
488
489 #ifdef CONFIG_PPC64 /* for now */
490 if (current->thread.dabr) {
491 current->thread.dabr = 0;
492 set_dabr(0);
493 }
494 #endif
495 }
496
497 void
498 release_thread(struct task_struct *t)
499 {
500 }
501
502 /*
503 * This gets called before we allocate a new thread and copy
504 * the current task into it.
505 */
506 void prepare_to_copy(struct task_struct *tsk)
507 {
508 flush_fp_to_thread(current);
509 flush_altivec_to_thread(current);
510 flush_spe_to_thread(current);
511 }
512
513 /*
514 * Copy a thread..
515 */
516 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
517 unsigned long unused, struct task_struct *p,
518 struct pt_regs *regs)
519 {
520 struct pt_regs *childregs, *kregs;
521 extern void ret_from_fork(void);
522 unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
523
524 CHECK_FULL_REGS(regs);
525 /* Copy registers */
526 sp -= sizeof(struct pt_regs);
527 childregs = (struct pt_regs *) sp;
528 *childregs = *regs;
529 if ((childregs->msr & MSR_PR) == 0) {
530 /* for kernel thread, set `current' and stackptr in new task */
531 childregs->gpr[1] = sp + sizeof(struct pt_regs);
532 #ifdef CONFIG_PPC32
533 childregs->gpr[2] = (unsigned long) p;
534 #else
535 clear_ti_thread_flag(p->thread_info, TIF_32BIT);
536 #endif
537 p->thread.regs = NULL; /* no user register state */
538 } else {
539 childregs->gpr[1] = usp;
540 p->thread.regs = childregs;
541 if (clone_flags & CLONE_SETTLS) {
542 #ifdef CONFIG_PPC64
543 if (!test_thread_flag(TIF_32BIT))
544 childregs->gpr[13] = childregs->gpr[6];
545 else
546 #endif
547 childregs->gpr[2] = childregs->gpr[6];
548 }
549 }
550 childregs->gpr[3] = 0; /* Result from fork() */
551 sp -= STACK_FRAME_OVERHEAD;
552
553 /*
554 * The way this works is that at some point in the future
555 * some task will call _switch to switch to the new task.
556 * That will pop off the stack frame created below and start
557 * the new task running at ret_from_fork. The new task will
558 * do some house keeping and then return from the fork or clone
559 * system call, using the stack frame created above.
560 */
561 sp -= sizeof(struct pt_regs);
562 kregs = (struct pt_regs *) sp;
563 sp -= STACK_FRAME_OVERHEAD;
564 p->thread.ksp = sp;
565
566 #ifdef CONFIG_PPC64
567 if (cpu_has_feature(CPU_FTR_SLB)) {
568 unsigned long sp_vsid = get_kernel_vsid(sp);
569
570 sp_vsid <<= SLB_VSID_SHIFT;
571 sp_vsid |= SLB_VSID_KERNEL;
572 if (cpu_has_feature(CPU_FTR_16M_PAGE))
573 sp_vsid |= SLB_VSID_L;
574
575 p->thread.ksp_vsid = sp_vsid;
576 }
577
578 /*
579 * The PPC64 ABI makes use of a TOC to contain function
580 * pointers. The function (ret_from_except) is actually a pointer
581 * to the TOC entry. The first entry is a pointer to the actual
582 * function.
583 */
584 kregs->nip = *((unsigned long *)ret_from_fork);
585 #else
586 kregs->nip = (unsigned long)ret_from_fork;
587 p->thread.last_syscall = -1;
588 #endif
589
590 return 0;
591 }
592
593 /*
594 * Set up a thread for executing a new program
595 */
596 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
597 {
598 set_fs(USER_DS);
599
600 /*
601 * If we exec out of a kernel thread then thread.regs will not be
602 * set. Do it now.
603 */
604 if (!current->thread.regs) {
605 unsigned long childregs = (unsigned long)current->thread_info +
606 THREAD_SIZE;
607 childregs -= sizeof(struct pt_regs);
608 current->thread.regs = (struct pt_regs *)childregs;
609 }
610
611 memset(regs->gpr, 0, sizeof(regs->gpr));
612 regs->ctr = 0;
613 regs->link = 0;
614 regs->xer = 0;
615 regs->ccr = 0;
616 regs->gpr[1] = sp;
617
618 #ifdef CONFIG_PPC32
619 regs->mq = 0;
620 regs->nip = start;
621 regs->msr = MSR_USER;
622 #else
623 if (!test_thread_flag(TIF_32BIT)) {
624 unsigned long entry, toc, load_addr = regs->gpr[2];
625
626 /* start is a relocated pointer to the function descriptor for
627 * the elf _start routine. The first entry in the function
628 * descriptor is the entry address of _start and the second
629 * entry is the TOC value we need to use.
630 */
631 __get_user(entry, (unsigned long __user *)start);
632 __get_user(toc, (unsigned long __user *)start+1);
633
634 /* Check whether the e_entry function descriptor entries
635 * need to be relocated before we can use them.
636 */
637 if (load_addr != 0) {
638 entry += load_addr;
639 toc += load_addr;
640 }
641 regs->nip = entry;
642 regs->gpr[2] = toc;
643 regs->msr = MSR_USER64;
644 } else {
645 regs->nip = start;
646 regs->gpr[2] = 0;
647 regs->msr = MSR_USER32;
648 }
649 #endif
650
651 #ifndef CONFIG_SMP
652 if (last_task_used_math == current)
653 last_task_used_math = NULL;
654 #ifdef CONFIG_ALTIVEC
655 if (last_task_used_altivec == current)
656 last_task_used_altivec = NULL;
657 #endif
658 #ifdef CONFIG_SPE
659 if (last_task_used_spe == current)
660 last_task_used_spe = NULL;
661 #endif
662 #endif /* CONFIG_SMP */
663 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
664 current->thread.fpscr = 0;
665 #ifdef CONFIG_ALTIVEC
666 memset(current->thread.vr, 0, sizeof(current->thread.vr));
667 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
668 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
669 current->thread.vrsave = 0;
670 current->thread.used_vr = 0;
671 #endif /* CONFIG_ALTIVEC */
672 #ifdef CONFIG_SPE
673 memset(current->thread.evr, 0, sizeof(current->thread.evr));
674 current->thread.acc = 0;
675 current->thread.spefscr = 0;
676 current->thread.used_spe = 0;
677 #endif /* CONFIG_SPE */
678 }
679
680 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
681 | PR_FP_EXC_RES | PR_FP_EXC_INV)
682
683 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
684 {
685 struct pt_regs *regs = tsk->thread.regs;
686
687 /* This is a bit hairy. If we are an SPE enabled processor
688 * (have embedded fp) we store the IEEE exception enable flags in
689 * fpexc_mode. fpexc_mode is also used for setting FP exception
690 * mode (asyn, precise, disabled) for 'Classic' FP. */
691 if (val & PR_FP_EXC_SW_ENABLE) {
692 #ifdef CONFIG_SPE
693 tsk->thread.fpexc_mode = val &
694 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
695 return 0;
696 #else
697 return -EINVAL;
698 #endif
699 }
700
701 /* on a CONFIG_SPE this does not hurt us. The bits that
702 * __pack_fe01 use do not overlap with bits used for
703 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
704 * on CONFIG_SPE implementations are reserved so writing to
705 * them does not change anything */
706 if (val > PR_FP_EXC_PRECISE)
707 return -EINVAL;
708 tsk->thread.fpexc_mode = __pack_fe01(val);
709 if (regs != NULL && (regs->msr & MSR_FP) != 0)
710 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
711 | tsk->thread.fpexc_mode;
712 return 0;
713 }
714
715 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
716 {
717 unsigned int val;
718
719 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
720 #ifdef CONFIG_SPE
721 val = tsk->thread.fpexc_mode;
722 #else
723 return -EINVAL;
724 #endif
725 else
726 val = __unpack_fe01(tsk->thread.fpexc_mode);
727 return put_user(val, (unsigned int __user *) adr);
728 }
729
730 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
731
732 int sys_clone(unsigned long clone_flags, unsigned long usp,
733 int __user *parent_tidp, void __user *child_threadptr,
734 int __user *child_tidp, int p6,
735 struct pt_regs *regs)
736 {
737 CHECK_FULL_REGS(regs);
738 if (usp == 0)
739 usp = regs->gpr[1]; /* stack pointer for child */
740 #ifdef CONFIG_PPC64
741 if (test_thread_flag(TIF_32BIT)) {
742 parent_tidp = TRUNC_PTR(parent_tidp);
743 child_tidp = TRUNC_PTR(child_tidp);
744 }
745 #endif
746 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
747 }
748
749 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
750 unsigned long p4, unsigned long p5, unsigned long p6,
751 struct pt_regs *regs)
752 {
753 CHECK_FULL_REGS(regs);
754 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
755 }
756
757 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
758 unsigned long p4, unsigned long p5, unsigned long p6,
759 struct pt_regs *regs)
760 {
761 CHECK_FULL_REGS(regs);
762 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
763 regs, 0, NULL, NULL);
764 }
765
766 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
767 unsigned long a3, unsigned long a4, unsigned long a5,
768 struct pt_regs *regs)
769 {
770 int error;
771 char *filename;
772
773 filename = getname((char __user *) a0);
774 error = PTR_ERR(filename);
775 if (IS_ERR(filename))
776 goto out;
777 flush_fp_to_thread(current);
778 flush_altivec_to_thread(current);
779 flush_spe_to_thread(current);
780 error = do_execve(filename, (char __user * __user *) a1,
781 (char __user * __user *) a2, regs);
782 if (error == 0) {
783 task_lock(current);
784 current->ptrace &= ~PT_DTRACE;
785 task_unlock(current);
786 }
787 putname(filename);
788 out:
789 return error;
790 }
791
792 static int validate_sp(unsigned long sp, struct task_struct *p,
793 unsigned long nbytes)
794 {
795 unsigned long stack_page = (unsigned long)p->thread_info;
796
797 if (sp >= stack_page + sizeof(struct thread_struct)
798 && sp <= stack_page + THREAD_SIZE - nbytes)
799 return 1;
800
801 #ifdef CONFIG_IRQSTACKS
802 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
803 if (sp >= stack_page + sizeof(struct thread_struct)
804 && sp <= stack_page + THREAD_SIZE - nbytes)
805 return 1;
806
807 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
808 if (sp >= stack_page + sizeof(struct thread_struct)
809 && sp <= stack_page + THREAD_SIZE - nbytes)
810 return 1;
811 #endif
812
813 return 0;
814 }
815
816 #ifdef CONFIG_PPC64
817 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
818 #define FRAME_LR_SAVE 2
819 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
820 #define REGS_MARKER 0x7265677368657265ul
821 #define FRAME_MARKER 12
822 #else
823 #define MIN_STACK_FRAME 16
824 #define FRAME_LR_SAVE 1
825 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
826 #define REGS_MARKER 0x72656773ul
827 #define FRAME_MARKER 2
828 #endif
829
830 unsigned long get_wchan(struct task_struct *p)
831 {
832 unsigned long ip, sp;
833 int count = 0;
834
835 if (!p || p == current || p->state == TASK_RUNNING)
836 return 0;
837
838 sp = p->thread.ksp;
839 if (!validate_sp(sp, p, MIN_STACK_FRAME))
840 return 0;
841
842 do {
843 sp = *(unsigned long *)sp;
844 if (!validate_sp(sp, p, MIN_STACK_FRAME))
845 return 0;
846 if (count > 0) {
847 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
848 if (!in_sched_functions(ip))
849 return ip;
850 }
851 } while (count++ < 16);
852 return 0;
853 }
854 EXPORT_SYMBOL(get_wchan);
855
856 static int kstack_depth_to_print = 64;
857
858 void show_stack(struct task_struct *tsk, unsigned long *stack)
859 {
860 unsigned long sp, ip, lr, newsp;
861 int count = 0;
862 int firstframe = 1;
863
864 sp = (unsigned long) stack;
865 if (tsk == NULL)
866 tsk = current;
867 if (sp == 0) {
868 if (tsk == current)
869 asm("mr %0,1" : "=r" (sp));
870 else
871 sp = tsk->thread.ksp;
872 }
873
874 lr = 0;
875 printk("Call Trace:\n");
876 do {
877 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
878 return;
879
880 stack = (unsigned long *) sp;
881 newsp = stack[0];
882 ip = stack[FRAME_LR_SAVE];
883 if (!firstframe || ip != lr) {
884 printk("["REG"] ["REG"] ", sp, ip);
885 print_symbol("%s", ip);
886 if (firstframe)
887 printk(" (unreliable)");
888 printk("\n");
889 }
890 firstframe = 0;
891
892 /*
893 * See if this is an exception frame.
894 * We look for the "regshere" marker in the current frame.
895 */
896 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
897 && stack[FRAME_MARKER] == REGS_MARKER) {
898 struct pt_regs *regs = (struct pt_regs *)
899 (sp + STACK_FRAME_OVERHEAD);
900 printk("--- Exception: %lx", regs->trap);
901 print_symbol(" at %s\n", regs->nip);
902 lr = regs->link;
903 print_symbol(" LR = %s\n", lr);
904 firstframe = 1;
905 }
906
907 sp = newsp;
908 } while (count++ < kstack_depth_to_print);
909 }
910
911 void dump_stack(void)
912 {
913 show_stack(current, NULL);
914 }
915 EXPORT_SYMBOL(dump_stack);