mpc52xx/wdt: remove obsolete old WDT implementation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / include / asm / mmu-hash64.h
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17
18 /*
19 * Segment table
20 */
21
22 #define STE_ESID_V 0x80
23 #define STE_ESID_KS 0x20
24 #define STE_ESID_KP 0x10
25 #define STE_ESID_N 0x08
26
27 #define STE_VSID_SHIFT 12
28
29 /* Location of cpu0's segment table */
30 #define STAB0_PAGE 0x6
31 #define STAB0_OFFSET (STAB0_PAGE << 12)
32 #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
33
34 #ifndef __ASSEMBLY__
35 extern char initial_stab[];
36 #endif /* ! __ASSEMBLY */
37
38 /*
39 * SLB
40 */
41
42 #define SLB_NUM_BOLTED 3
43 #define SLB_CACHE_ENTRIES 8
44 #define SLB_MIN_SIZE 32
45
46 /* Bits in the SLB ESID word */
47 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
48
49 /* Bits in the SLB VSID word */
50 #define SLB_VSID_SHIFT 12
51 #define SLB_VSID_SHIFT_1T 24
52 #define SLB_VSID_SSIZE_SHIFT 62
53 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
54 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
55 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
56 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
57 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
58 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
59 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
60 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
61 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
62 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
63 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
64 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
65 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
66 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
67
68 #define SLB_VSID_KERNEL (SLB_VSID_KP)
69 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
70
71 #define SLBIE_C (0x08000000)
72 #define SLBIE_SSIZE_SHIFT 25
73
74 /*
75 * Hash table
76 */
77
78 #define HPTES_PER_GROUP 8
79
80 #define HPTE_V_SSIZE_SHIFT 62
81 #define HPTE_V_AVPN_SHIFT 7
82 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
83 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
84 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
85 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
86 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
87 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
88 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
89 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
90
91 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
92 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
93 #define HPTE_R_RPN_SHIFT 12
94 #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
95 #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
96 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
97 #define HPTE_R_N ASM_CONST(0x0000000000000004)
98 #define HPTE_R_C ASM_CONST(0x0000000000000080)
99 #define HPTE_R_R ASM_CONST(0x0000000000000100)
100
101 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
102 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
103
104 /* Values for PP (assumes Ks=0, Kp=1) */
105 /* pp0 will always be 0 for linux */
106 #define PP_RWXX 0 /* Supervisor read/write, User none */
107 #define PP_RWRX 1 /* Supervisor read/write, User read */
108 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
109 #define PP_RXRX 3 /* Supervisor read, User read */
110
111 #ifndef __ASSEMBLY__
112
113 struct hash_pte {
114 unsigned long v;
115 unsigned long r;
116 };
117
118 extern struct hash_pte *htab_address;
119 extern unsigned long htab_size_bytes;
120 extern unsigned long htab_hash_mask;
121
122 /*
123 * Page size definition
124 *
125 * shift : is the "PAGE_SHIFT" value for that page size
126 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
127 * directly to a slbmte "vsid" value
128 * penc : is the HPTE encoding mask for the "LP" field:
129 *
130 */
131 struct mmu_psize_def
132 {
133 unsigned int shift; /* number of bits */
134 unsigned int penc; /* HPTE encoding */
135 unsigned int tlbiel; /* tlbiel supported for that page size */
136 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
137 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
138 };
139
140 #endif /* __ASSEMBLY__ */
141
142 /*
143 * Segment sizes.
144 * These are the values used by hardware in the B field of
145 * SLB entries and the first dword of MMU hashtable entries.
146 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
147 */
148 #define MMU_SEGSIZE_256M 0
149 #define MMU_SEGSIZE_1T 1
150
151
152 #ifndef __ASSEMBLY__
153
154 /*
155 * The current system page and segment sizes
156 */
157 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
158 extern int mmu_linear_psize;
159 extern int mmu_virtual_psize;
160 extern int mmu_vmalloc_psize;
161 extern int mmu_vmemmap_psize;
162 extern int mmu_io_psize;
163 extern int mmu_kernel_ssize;
164 extern int mmu_highuser_ssize;
165 extern u16 mmu_slb_size;
166 extern unsigned long tce_alloc_start, tce_alloc_end;
167
168 /*
169 * If the processor supports 64k normal pages but not 64k cache
170 * inhibited pages, we have to be prepared to switch processes
171 * to use 4k pages when they create cache-inhibited mappings.
172 * If this is the case, mmu_ci_restrictions will be set to 1.
173 */
174 extern int mmu_ci_restrictions;
175
176 #ifdef CONFIG_HUGETLB_PAGE
177 /*
178 * The page size indexes of the huge pages for use by hugetlbfs
179 */
180 extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
181
182 #endif /* CONFIG_HUGETLB_PAGE */
183
184 /*
185 * This function sets the AVPN and L fields of the HPTE appropriately
186 * for the page size
187 */
188 static inline unsigned long hpte_encode_v(unsigned long va, int psize,
189 int ssize)
190 {
191 unsigned long v;
192 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
193 v <<= HPTE_V_AVPN_SHIFT;
194 if (psize != MMU_PAGE_4K)
195 v |= HPTE_V_LARGE;
196 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
197 return v;
198 }
199
200 /*
201 * This function sets the ARPN, and LP fields of the HPTE appropriately
202 * for the page size. We assume the pa is already "clean" that is properly
203 * aligned for the requested page size
204 */
205 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
206 {
207 unsigned long r;
208
209 /* A 4K page needs no special encoding */
210 if (psize == MMU_PAGE_4K)
211 return pa & HPTE_R_RPN;
212 else {
213 unsigned int penc = mmu_psize_defs[psize].penc;
214 unsigned int shift = mmu_psize_defs[psize].shift;
215 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
216 }
217 return r;
218 }
219
220 /*
221 * Build a VA given VSID, EA and segment size
222 */
223 static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
224 int ssize)
225 {
226 if (ssize == MMU_SEGSIZE_256M)
227 return (vsid << 28) | (ea & 0xfffffffUL);
228 return (vsid << 40) | (ea & 0xffffffffffUL);
229 }
230
231 /*
232 * This hashes a virtual address
233 */
234
235 static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
236 int ssize)
237 {
238 unsigned long hash, vsid;
239
240 if (ssize == MMU_SEGSIZE_256M) {
241 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
242 } else {
243 vsid = va >> 40;
244 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
245 }
246 return hash & 0x7fffffffffUL;
247 }
248
249 extern int __hash_page_4K(unsigned long ea, unsigned long access,
250 unsigned long vsid, pte_t *ptep, unsigned long trap,
251 unsigned int local, int ssize, int subpage_prot);
252 extern int __hash_page_64K(unsigned long ea, unsigned long access,
253 unsigned long vsid, pte_t *ptep, unsigned long trap,
254 unsigned int local, int ssize);
255 struct mm_struct;
256 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
257 extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
258 unsigned long ea, unsigned long vsid, int local,
259 unsigned long trap);
260
261 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
262 unsigned long pstart, unsigned long prot,
263 int psize, int ssize);
264 extern void add_gpage(unsigned long addr, unsigned long page_size,
265 unsigned long number_of_pages);
266 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
267
268 extern void hpte_init_native(void);
269 extern void hpte_init_lpar(void);
270 extern void hpte_init_iSeries(void);
271 extern void hpte_init_beat(void);
272 extern void hpte_init_beat_v3(void);
273
274 extern void stabs_alloc(void);
275 extern void slb_initialize(void);
276 extern void slb_flush_and_rebolt(void);
277 extern void stab_initialize(unsigned long stab);
278
279 extern void slb_vmalloc_update(void);
280 extern void slb_set_size(u16 size);
281 #endif /* __ASSEMBLY__ */
282
283 /*
284 * VSID allocation
285 *
286 * We first generate a 36-bit "proto-VSID". For kernel addresses this
287 * is equal to the ESID, for user addresses it is:
288 * (context << 15) | (esid & 0x7fff)
289 *
290 * The two forms are distinguishable because the top bit is 0 for user
291 * addresses, whereas the top two bits are 1 for kernel addresses.
292 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
293 * now.
294 *
295 * The proto-VSIDs are then scrambled into real VSIDs with the
296 * multiplicative hash:
297 *
298 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
299 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
300 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
301 *
302 * This scramble is only well defined for proto-VSIDs below
303 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
304 * reserved. VSID_MULTIPLIER is prime, so in particular it is
305 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
306 * Because the modulus is 2^n-1 we can compute it efficiently without
307 * a divide or extra multiply (see below).
308 *
309 * This scheme has several advantages over older methods:
310 *
311 * - We have VSIDs allocated for every kernel address
312 * (i.e. everything above 0xC000000000000000), except the very top
313 * segment, which simplifies several things.
314 *
315 * - We allow for 15 significant bits of ESID and 20 bits of
316 * context for user addresses. i.e. 8T (43 bits) of address space for
317 * up to 1M contexts (although the page table structure and context
318 * allocation will need changes to take advantage of this).
319 *
320 * - The scramble function gives robust scattering in the hash
321 * table (at least based on some initial results). The previous
322 * method was more susceptible to pathological cases giving excessive
323 * hash collisions.
324 */
325 /*
326 * WARNING - If you change these you must make sure the asm
327 * implementations in slb_allocate (slb_low.S), do_stab_bolted
328 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
329 *
330 * You'll also need to change the precomputed VSID values in head.S
331 * which are used by the iSeries firmware.
332 */
333
334 #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
335 #define VSID_BITS_256M 36
336 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
337
338 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
339 #define VSID_BITS_1T 24
340 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
341
342 #define CONTEXT_BITS 19
343 #define USER_ESID_BITS 16
344 #define USER_ESID_BITS_1T 4
345
346 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
347
348 /*
349 * This macro generates asm code to compute the VSID scramble
350 * function. Used in slb_allocate() and do_stab_bolted. The function
351 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
352 *
353 * rt = register continaing the proto-VSID and into which the
354 * VSID will be stored
355 * rx = scratch register (clobbered)
356 *
357 * - rt and rx must be different registers
358 * - The answer will end up in the low VSID_BITS bits of rt. The higher
359 * bits may contain other garbage, so you may need to mask the
360 * result.
361 */
362 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
363 lis rx,VSID_MULTIPLIER_##size@h; \
364 ori rx,rx,VSID_MULTIPLIER_##size@l; \
365 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
366 \
367 srdi rx,rt,VSID_BITS_##size; \
368 clrldi rt,rt,(64-VSID_BITS_##size); \
369 add rt,rt,rx; /* add high and low bits */ \
370 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
371 * 2^36-1+2^28-1. That in particular means that if r3 >= \
372 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
373 * the bit clear, r3 already has the answer we want, if it \
374 * doesn't, the answer is the low 36 bits of r3+1. So in all \
375 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
376 addi rx,rt,1; \
377 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
378 add rt,rt,rx
379
380
381 #ifndef __ASSEMBLY__
382
383 typedef unsigned long mm_context_id_t;
384
385 typedef struct {
386 mm_context_id_t id;
387 u16 user_psize; /* page size index */
388
389 #ifdef CONFIG_PPC_MM_SLICES
390 u64 low_slices_psize; /* SLB page size encodings */
391 u64 high_slices_psize; /* 4 bits per slice for now */
392 #else
393 u16 sllp; /* SLB page size encoding */
394 #endif
395 unsigned long vdso_base;
396 } mm_context_t;
397
398
399 #if 0
400 /*
401 * The code below is equivalent to this function for arguments
402 * < 2^VSID_BITS, which is all this should ever be called
403 * with. However gcc is not clever enough to compute the
404 * modulus (2^n-1) without a second multiply.
405 */
406 #define vsid_scrample(protovsid, size) \
407 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
408
409 #else /* 1 */
410 #define vsid_scramble(protovsid, size) \
411 ({ \
412 unsigned long x; \
413 x = (protovsid) * VSID_MULTIPLIER_##size; \
414 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
415 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
416 })
417 #endif /* 1 */
418
419 /* This is only valid for addresses >= PAGE_OFFSET */
420 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
421 {
422 if (ssize == MMU_SEGSIZE_256M)
423 return vsid_scramble(ea >> SID_SHIFT, 256M);
424 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
425 }
426
427 /* Returns the segment size indicator for a user address */
428 static inline int user_segment_size(unsigned long addr)
429 {
430 /* Use 1T segments if possible for addresses >= 1T */
431 if (addr >= (1UL << SID_SHIFT_1T))
432 return mmu_highuser_ssize;
433 return MMU_SEGSIZE_256M;
434 }
435
436 /* This is only valid for user addresses (which are below 2^44) */
437 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
438 int ssize)
439 {
440 if (ssize == MMU_SEGSIZE_256M)
441 return vsid_scramble((context << USER_ESID_BITS)
442 | (ea >> SID_SHIFT), 256M);
443 return vsid_scramble((context << USER_ESID_BITS_1T)
444 | (ea >> SID_SHIFT_1T), 1T);
445 }
446
447 /*
448 * This is only used on legacy iSeries in lparmap.c,
449 * hence the 256MB segment assumption.
450 */
451 #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
452 VSID_MODULUS_256M)
453 #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
454
455 #endif /* __ASSEMBLY__ */
456
457 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */