Merge ../linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / parisc / kernel / irq.c
1 /*
2 * Code to handle x86 style IRQs plus some generic interrupt stuff.
3 *
4 * Copyright (C) 1992 Linus Torvalds
5 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
6 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
7 * Copyright (C) 1999-2000 Grant Grundler
8 * Copyright (c) 2005 Matthew Wilcox
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24 #include <linux/bitops.h>
25 #include <linux/config.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/seq_file.h>
31 #include <linux/spinlock.h>
32 #include <linux/types.h>
33 #include <asm/io.h>
34
35 #include <asm/smp.h>
36
37 #undef PARISC_IRQ_CR16_COUNTS
38
39 extern irqreturn_t timer_interrupt(int, void *, struct pt_regs *);
40 extern irqreturn_t ipi_interrupt(int, void *, struct pt_regs *);
41
42 #define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq))
43
44 /* Bits in EIEM correlate with cpu_irq_action[].
45 ** Numbered *Big Endian*! (ie bit 0 is MSB)
46 */
47 static volatile unsigned long cpu_eiem = 0;
48
49 static void cpu_disable_irq(unsigned int irq)
50 {
51 unsigned long eirr_bit = EIEM_MASK(irq);
52
53 cpu_eiem &= ~eirr_bit;
54 /* Do nothing on the other CPUs. If they get this interrupt,
55 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
56 * handle it, and the set_eiem() at the bottom will ensure it
57 * then gets disabled */
58 }
59
60 static void cpu_enable_irq(unsigned int irq)
61 {
62 unsigned long eirr_bit = EIEM_MASK(irq);
63
64 cpu_eiem |= eirr_bit;
65
66 /* FIXME: while our interrupts aren't nested, we cannot reset
67 * the eiem mask if we're already in an interrupt. Once we
68 * implement nested interrupts, this can go away
69 */
70 if (!in_interrupt())
71 set_eiem(cpu_eiem);
72
73 /* This is just a simple NOP IPI. But what it does is cause
74 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
75 * of the interrupt handler */
76 smp_send_all_nop();
77 }
78
79 static unsigned int cpu_startup_irq(unsigned int irq)
80 {
81 cpu_enable_irq(irq);
82 return 0;
83 }
84
85 void no_ack_irq(unsigned int irq) { }
86 void no_end_irq(unsigned int irq) { }
87
88 #ifdef CONFIG_SMP
89 int cpu_check_affinity(unsigned int irq, cpumask_t *dest)
90 {
91 int cpu_dest;
92
93 /* timer and ipi have to always be received on all CPUs */
94 if (irq == TIMER_IRQ || irq == IPI_IRQ) {
95 /* Bad linux design decision. The mask has already
96 * been set; we must reset it */
97 irq_desc[irq].affinity = CPU_MASK_ALL;
98 return -EINVAL;
99 }
100
101 /* whatever mask they set, we just allow one CPU */
102 cpu_dest = first_cpu(*dest);
103 *dest = cpumask_of_cpu(cpu_dest);
104
105 return 0;
106 }
107
108 static void cpu_set_affinity_irq(unsigned int irq, cpumask_t dest)
109 {
110 if (cpu_check_affinity(irq, &dest))
111 return;
112
113 irq_desc[irq].affinity = dest;
114 }
115 #endif
116
117 static struct hw_interrupt_type cpu_interrupt_type = {
118 .typename = "CPU",
119 .startup = cpu_startup_irq,
120 .shutdown = cpu_disable_irq,
121 .enable = cpu_enable_irq,
122 .disable = cpu_disable_irq,
123 .ack = no_ack_irq,
124 .end = no_end_irq,
125 #ifdef CONFIG_SMP
126 .set_affinity = cpu_set_affinity_irq,
127 #endif
128 /* XXX: Needs to be written. We managed without it so far, but
129 * we really ought to write it.
130 */
131 .retrigger = NULL,
132 };
133
134 int show_interrupts(struct seq_file *p, void *v)
135 {
136 int i = *(loff_t *) v, j;
137 unsigned long flags;
138
139 if (i == 0) {
140 seq_puts(p, " ");
141 for_each_online_cpu(j)
142 seq_printf(p, " CPU%d", j);
143
144 #ifdef PARISC_IRQ_CR16_COUNTS
145 seq_printf(p, " [min/avg/max] (CPU cycle counts)");
146 #endif
147 seq_putc(p, '\n');
148 }
149
150 if (i < NR_IRQS) {
151 struct irqaction *action;
152
153 spin_lock_irqsave(&irq_desc[i].lock, flags);
154 action = irq_desc[i].action;
155 if (!action)
156 goto skip;
157 seq_printf(p, "%3d: ", i);
158 #ifdef CONFIG_SMP
159 for_each_online_cpu(j)
160 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
161 #else
162 seq_printf(p, "%10u ", kstat_irqs(i));
163 #endif
164
165 seq_printf(p, " %14s", irq_desc[i].chip->typename);
166 #ifndef PARISC_IRQ_CR16_COUNTS
167 seq_printf(p, " %s", action->name);
168
169 while ((action = action->next))
170 seq_printf(p, ", %s", action->name);
171 #else
172 for ( ;action; action = action->next) {
173 unsigned int k, avg, min, max;
174
175 min = max = action->cr16_hist[0];
176
177 for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
178 int hist = action->cr16_hist[k];
179
180 if (hist) {
181 avg += hist;
182 } else
183 break;
184
185 if (hist > max) max = hist;
186 if (hist < min) min = hist;
187 }
188
189 avg /= k;
190 seq_printf(p, " %s[%d/%d/%d]", action->name,
191 min,avg,max);
192 }
193 #endif
194
195 seq_putc(p, '\n');
196 skip:
197 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
198 }
199
200 return 0;
201 }
202
203
204
205 /*
206 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
207 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
208 **
209 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
210 ** Then use that to get the Transaction address and data.
211 */
212
213 int cpu_claim_irq(unsigned int irq, struct hw_interrupt_type *type, void *data)
214 {
215 if (irq_desc[irq].action)
216 return -EBUSY;
217 if (irq_desc[irq].chip != &cpu_interrupt_type)
218 return -EBUSY;
219
220 if (type) {
221 irq_desc[irq].chip = type;
222 irq_desc[irq].chip_data = data;
223 cpu_interrupt_type.enable(irq);
224 }
225 return 0;
226 }
227
228 int txn_claim_irq(int irq)
229 {
230 return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
231 }
232
233 /*
234 * The bits_wide parameter accommodates the limitations of the HW/SW which
235 * use these bits:
236 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
237 * V-class (EPIC): 6 bits
238 * N/L/A-class (iosapic): 8 bits
239 * PCI 2.2 MSI: 16 bits
240 * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric)
241 *
242 * On the service provider side:
243 * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register)
244 * o PA 2.0 wide mode 6-bits (per processor)
245 * o IA64 8-bits (0-256 total)
246 *
247 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
248 * by the processor...and the N/L-class I/O subsystem supports more bits than
249 * PA2.0 has. The first case is the problem.
250 */
251 int txn_alloc_irq(unsigned int bits_wide)
252 {
253 int irq;
254
255 /* never return irq 0 cause that's the interval timer */
256 for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
257 if (cpu_claim_irq(irq, NULL, NULL) < 0)
258 continue;
259 if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
260 continue;
261 return irq;
262 }
263
264 /* unlikely, but be prepared */
265 return -1;
266 }
267
268
269 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
270 {
271 #ifdef CONFIG_SMP
272 irq_desc[irq].affinity = cpumask_of_cpu(cpu);
273 #endif
274
275 return cpu_data[cpu].txn_addr;
276 }
277
278
279 unsigned long txn_alloc_addr(unsigned int virt_irq)
280 {
281 static int next_cpu = -1;
282
283 next_cpu++; /* assign to "next" CPU we want this bugger on */
284
285 /* validate entry */
286 while ((next_cpu < NR_CPUS) && (!cpu_data[next_cpu].txn_addr ||
287 !cpu_online(next_cpu)))
288 next_cpu++;
289
290 if (next_cpu >= NR_CPUS)
291 next_cpu = 0; /* nothing else, assign monarch */
292
293 return txn_affinity_addr(virt_irq, next_cpu);
294 }
295
296
297 unsigned int txn_alloc_data(unsigned int virt_irq)
298 {
299 return virt_irq - CPU_IRQ_BASE;
300 }
301
302 /* ONLY called from entry.S:intr_extint() */
303 void do_cpu_irq_mask(struct pt_regs *regs)
304 {
305 unsigned long eirr_val;
306
307 irq_enter();
308
309 /*
310 * Don't allow TIMER or IPI nested interrupts.
311 * Allowing any single interrupt to nest can lead to that CPU
312 * handling interrupts with all enabled interrupts unmasked.
313 */
314 set_eiem(0UL);
315
316 /* 1) only process IRQs that are enabled/unmasked (cpu_eiem)
317 * 2) We loop here on EIRR contents in order to avoid
318 * nested interrupts or having to take another interrupt
319 * when we could have just handled it right away.
320 */
321 for (;;) {
322 unsigned long bit = (1UL << (BITS_PER_LONG - 1));
323 unsigned int irq;
324 eirr_val = mfctl(23) & cpu_eiem;
325 if (!eirr_val)
326 break;
327
328 mtctl(eirr_val, 23); /* reset bits we are going to process */
329
330 /* Work our way from MSb to LSb...same order we alloc EIRs */
331 for (irq = TIMER_IRQ; eirr_val && bit; bit>>=1, irq++) {
332 #ifdef CONFIG_SMP
333 cpumask_t dest = irq_desc[irq].affinity;
334 #endif
335 if (!(bit & eirr_val))
336 continue;
337
338 /* clear bit in mask - can exit loop sooner */
339 eirr_val &= ~bit;
340
341 #ifdef CONFIG_SMP
342 /* FIXME: because generic set affinity mucks
343 * with the affinity before sending it to us
344 * we can get the situation where the affinity is
345 * wrong for our CPU type interrupts */
346 if (irq != TIMER_IRQ && irq != IPI_IRQ &&
347 !cpu_isset(smp_processor_id(), dest)) {
348 int cpu = first_cpu(dest);
349
350 printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
351 irq, smp_processor_id(), cpu);
352 gsc_writel(irq + CPU_IRQ_BASE,
353 cpu_data[cpu].hpa);
354 continue;
355 }
356 #endif
357
358 __do_IRQ(irq, regs);
359 }
360 }
361
362 set_eiem(cpu_eiem); /* restore original mask */
363 irq_exit();
364 }
365
366
367 static struct irqaction timer_action = {
368 .handler = timer_interrupt,
369 .name = "timer",
370 .flags = SA_INTERRUPT,
371 };
372
373 #ifdef CONFIG_SMP
374 static struct irqaction ipi_action = {
375 .handler = ipi_interrupt,
376 .name = "IPI",
377 .flags = SA_INTERRUPT,
378 };
379 #endif
380
381 static void claim_cpu_irqs(void)
382 {
383 int i;
384 for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
385 irq_desc[i].chip = &cpu_interrupt_type;
386 }
387
388 irq_desc[TIMER_IRQ].action = &timer_action;
389 irq_desc[TIMER_IRQ].status |= IRQ_PER_CPU;
390 #ifdef CONFIG_SMP
391 irq_desc[IPI_IRQ].action = &ipi_action;
392 irq_desc[IPI_IRQ].status = IRQ_PER_CPU;
393 #endif
394 }
395
396 void __init init_IRQ(void)
397 {
398 local_irq_disable(); /* PARANOID - should already be disabled */
399 mtctl(~0UL, 23); /* EIRR : clear all pending external intr */
400 claim_cpu_irqs();
401 #ifdef CONFIG_SMP
402 if (!cpu_eiem)
403 cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
404 #else
405 cpu_eiem = EIEM_MASK(TIMER_IRQ);
406 #endif
407 set_eiem(cpu_eiem); /* EIEM : enable all external intr */
408
409 }
410
411 void ack_bad_irq(unsigned int irq)
412 {
413 printk("unexpected IRQ %d\n", irq);
414 }