parisc: add pdc_coproc_cfg_unlocked and set_firmware_width_unlocked
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / parisc / kernel / firmware.c
1 /*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23 /* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58 #include <stdarg.h>
59
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h> /* for boot_cpu_data */
72
73 static DEFINE_SPINLOCK(pdc_lock);
74 extern unsigned long pdc_result[NUM_PDC_RESULT];
75 extern unsigned long pdc_result2[NUM_PDC_RESULT];
76
77 #ifdef CONFIG_64BIT
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
80
81 /* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
83 int parisc_narrow_firmware __read_mostly = 1;
84 #endif
85
86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
89 *
90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95 */
96
97 #ifdef CONFIG_64BIT
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
101
102 #ifdef CONFIG_64BIT
103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
109
110
111 /**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118 static unsigned long f_extend(unsigned long address)
119 {
120 #ifdef CONFIG_64BIT
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
124
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
127 }
128 #endif
129 return address;
130 }
131
132 /**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140 static void convert_to_wide(unsigned long *addr)
141 {
142 #ifdef CONFIG_64BIT
143 int i;
144 unsigned int *p = (unsigned int *)addr;
145
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
149 }
150 #endif
151 }
152
153 #ifdef CONFIG_64BIT
154 void __init set_firmware_width_unlocked(void)
155 {
156 int ret;
157
158 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
159 __pa(pdc_result), 0);
160 convert_to_wide(pdc_result);
161 if (pdc_result[0] != NARROW_FIRMWARE)
162 parisc_narrow_firmware = 0;
163 }
164
165 /**
166 * set_firmware_width - Determine if the firmware is wide or narrow.
167 *
168 * This function must be called before any pdc_* function that uses the
169 * convert_to_wide function.
170 */
171 void __init set_firmware_width(void)
172 {
173 unsigned long flags;
174 spin_lock_irqsave(&pdc_lock, flags);
175 set_firmware_width_unlocked();
176 spin_unlock_irqrestore(&pdc_lock, flags);
177 }
178 #else
179 void __init set_firmware_width_unlocked(void) {
180 return;
181 }
182
183 void __init set_firmware_width(void) {
184 return;
185 }
186 #endif /*CONFIG_64BIT*/
187
188 /**
189 * pdc_emergency_unlock - Unlock the linux pdc lock
190 *
191 * This call unlocks the linux pdc lock in case we need some PDC functions
192 * (like pdc_add_valid) during kernel stack dump.
193 */
194 void pdc_emergency_unlock(void)
195 {
196 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
197 if (spin_is_locked(&pdc_lock))
198 spin_unlock(&pdc_lock);
199 }
200
201
202 /**
203 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
204 * @address: Address to be verified.
205 *
206 * This PDC call attempts to read from the specified address and verifies
207 * if the address is valid.
208 *
209 * The return value is PDC_OK (0) in case accessing this address is valid.
210 */
211 int pdc_add_valid(unsigned long address)
212 {
213 int retval;
214 unsigned long flags;
215
216 spin_lock_irqsave(&pdc_lock, flags);
217 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
218 spin_unlock_irqrestore(&pdc_lock, flags);
219
220 return retval;
221 }
222 EXPORT_SYMBOL(pdc_add_valid);
223
224 /**
225 * pdc_chassis_info - Return chassis information.
226 * @result: The return buffer.
227 * @chassis_info: The memory buffer address.
228 * @len: The size of the memory buffer address.
229 *
230 * An HVERSION dependent call for returning the chassis information.
231 */
232 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
233 {
234 int retval;
235 unsigned long flags;
236
237 spin_lock_irqsave(&pdc_lock, flags);
238 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
239 memcpy(&pdc_result2, led_info, len);
240 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
241 __pa(pdc_result), __pa(pdc_result2), len);
242 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
243 memcpy(led_info, pdc_result2, len);
244 spin_unlock_irqrestore(&pdc_lock, flags);
245
246 return retval;
247 }
248
249 /**
250 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
251 * @retval: -1 on error, 0 on success. Other value are PDC errors
252 *
253 * Must be correctly formatted or expect system crash
254 */
255 #ifdef CONFIG_64BIT
256 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
257 {
258 int retval = 0;
259 unsigned long flags;
260
261 if (!is_pdc_pat())
262 return -1;
263
264 spin_lock_irqsave(&pdc_lock, flags);
265 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
266 spin_unlock_irqrestore(&pdc_lock, flags);
267
268 return retval;
269 }
270 #endif
271
272 /**
273 * pdc_chassis_disp - Updates chassis code
274 * @retval: -1 on error, 0 on success
275 */
276 int pdc_chassis_disp(unsigned long disp)
277 {
278 int retval = 0;
279 unsigned long flags;
280
281 spin_lock_irqsave(&pdc_lock, flags);
282 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
283 spin_unlock_irqrestore(&pdc_lock, flags);
284
285 return retval;
286 }
287
288 /**
289 * pdc_chassis_warn - Fetches chassis warnings
290 * @retval: -1 on error, 0 on success
291 */
292 int pdc_chassis_warn(unsigned long *warn)
293 {
294 int retval = 0;
295 unsigned long flags;
296
297 spin_lock_irqsave(&pdc_lock, flags);
298 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
299 *warn = pdc_result[0];
300 spin_unlock_irqrestore(&pdc_lock, flags);
301
302 return retval;
303 }
304
305 int __init pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
306 {
307 int ret;
308
309 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
310 convert_to_wide(pdc_result);
311 pdc_coproc_info->ccr_functional = pdc_result[0];
312 pdc_coproc_info->ccr_present = pdc_result[1];
313 pdc_coproc_info->revision = pdc_result[17];
314 pdc_coproc_info->model = pdc_result[18];
315
316 return ret;
317 }
318
319 /**
320 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
321 * @pdc_coproc_info: Return buffer address.
322 *
323 * This PDC call returns the presence and status of all the coprocessors
324 * attached to the processor.
325 */
326 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
327 {
328 int ret;
329 unsigned long flags;
330
331 spin_lock_irqsave(&pdc_lock, flags);
332 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
333 spin_unlock_irqrestore(&pdc_lock, flags);
334
335 return ret;
336 }
337
338 /**
339 * pdc_iodc_read - Read data from the modules IODC.
340 * @actcnt: The actual number of bytes.
341 * @hpa: The HPA of the module for the iodc read.
342 * @index: The iodc entry point.
343 * @iodc_data: A buffer memory for the iodc options.
344 * @iodc_data_size: Size of the memory buffer.
345 *
346 * This PDC call reads from the IODC of the module specified by the hpa
347 * argument.
348 */
349 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
350 void *iodc_data, unsigned int iodc_data_size)
351 {
352 int retval;
353 unsigned long flags;
354
355 spin_lock_irqsave(&pdc_lock, flags);
356 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
357 index, __pa(pdc_result2), iodc_data_size);
358 convert_to_wide(pdc_result);
359 *actcnt = pdc_result[0];
360 memcpy(iodc_data, pdc_result2, iodc_data_size);
361 spin_unlock_irqrestore(&pdc_lock, flags);
362
363 return retval;
364 }
365 EXPORT_SYMBOL(pdc_iodc_read);
366
367 /**
368 * pdc_system_map_find_mods - Locate unarchitected modules.
369 * @pdc_mod_info: Return buffer address.
370 * @mod_path: pointer to dev path structure.
371 * @mod_index: fixed address module index.
372 *
373 * To locate and identify modules which reside at fixed I/O addresses, which
374 * do not self-identify via architected bus walks.
375 */
376 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
377 struct pdc_module_path *mod_path, long mod_index)
378 {
379 int retval;
380 unsigned long flags;
381
382 spin_lock_irqsave(&pdc_lock, flags);
383 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
384 __pa(pdc_result2), mod_index);
385 convert_to_wide(pdc_result);
386 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
387 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
388 spin_unlock_irqrestore(&pdc_lock, flags);
389
390 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
391 return retval;
392 }
393
394 /**
395 * pdc_system_map_find_addrs - Retrieve additional address ranges.
396 * @pdc_addr_info: Return buffer address.
397 * @mod_index: Fixed address module index.
398 * @addr_index: Address range index.
399 *
400 * Retrieve additional information about subsequent address ranges for modules
401 * with multiple address ranges.
402 */
403 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
404 long mod_index, long addr_index)
405 {
406 int retval;
407 unsigned long flags;
408
409 spin_lock_irqsave(&pdc_lock, flags);
410 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
411 mod_index, addr_index);
412 convert_to_wide(pdc_result);
413 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
414 spin_unlock_irqrestore(&pdc_lock, flags);
415
416 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
417 return retval;
418 }
419
420 /**
421 * pdc_model_info - Return model information about the processor.
422 * @model: The return buffer.
423 *
424 * Returns the version numbers, identifiers, and capabilities from the processor module.
425 */
426 int pdc_model_info(struct pdc_model *model)
427 {
428 int retval;
429 unsigned long flags;
430
431 spin_lock_irqsave(&pdc_lock, flags);
432 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
433 convert_to_wide(pdc_result);
434 memcpy(model, pdc_result, sizeof(*model));
435 spin_unlock_irqrestore(&pdc_lock, flags);
436
437 return retval;
438 }
439
440 /**
441 * pdc_model_sysmodel - Get the system model name.
442 * @name: A char array of at least 81 characters.
443 *
444 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
445 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
446 * on HP/UX.
447 */
448 int pdc_model_sysmodel(char *name)
449 {
450 int retval;
451 unsigned long flags;
452
453 spin_lock_irqsave(&pdc_lock, flags);
454 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
455 OS_ID_HPUX, __pa(name));
456 convert_to_wide(pdc_result);
457
458 if (retval == PDC_OK) {
459 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
460 } else {
461 name[0] = 0;
462 }
463 spin_unlock_irqrestore(&pdc_lock, flags);
464
465 return retval;
466 }
467
468 /**
469 * pdc_model_versions - Identify the version number of each processor.
470 * @cpu_id: The return buffer.
471 * @id: The id of the processor to check.
472 *
473 * Returns the version number for each processor component.
474 *
475 * This comment was here before, but I do not know what it means :( -RB
476 * id: 0 = cpu revision, 1 = boot-rom-version
477 */
478 int pdc_model_versions(unsigned long *versions, int id)
479 {
480 int retval;
481 unsigned long flags;
482
483 spin_lock_irqsave(&pdc_lock, flags);
484 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
485 convert_to_wide(pdc_result);
486 *versions = pdc_result[0];
487 spin_unlock_irqrestore(&pdc_lock, flags);
488
489 return retval;
490 }
491
492 /**
493 * pdc_model_cpuid - Returns the CPU_ID.
494 * @cpu_id: The return buffer.
495 *
496 * Returns the CPU_ID value which uniquely identifies the cpu portion of
497 * the processor module.
498 */
499 int pdc_model_cpuid(unsigned long *cpu_id)
500 {
501 int retval;
502 unsigned long flags;
503
504 spin_lock_irqsave(&pdc_lock, flags);
505 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
506 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
507 convert_to_wide(pdc_result);
508 *cpu_id = pdc_result[0];
509 spin_unlock_irqrestore(&pdc_lock, flags);
510
511 return retval;
512 }
513
514 /**
515 * pdc_model_capabilities - Returns the platform capabilities.
516 * @capabilities: The return buffer.
517 *
518 * Returns information about platform support for 32- and/or 64-bit
519 * OSes, IO-PDIR coherency, and virtual aliasing.
520 */
521 int pdc_model_capabilities(unsigned long *capabilities)
522 {
523 int retval;
524 unsigned long flags;
525
526 spin_lock_irqsave(&pdc_lock, flags);
527 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
528 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
529 convert_to_wide(pdc_result);
530 *capabilities = pdc_result[0];
531 spin_unlock_irqrestore(&pdc_lock, flags);
532
533 return retval;
534 }
535
536 /**
537 * pdc_cache_info - Return cache and TLB information.
538 * @cache_info: The return buffer.
539 *
540 * Returns information about the processor's cache and TLB.
541 */
542 int pdc_cache_info(struct pdc_cache_info *cache_info)
543 {
544 int retval;
545 unsigned long flags;
546
547 spin_lock_irqsave(&pdc_lock, flags);
548 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
549 convert_to_wide(pdc_result);
550 memcpy(cache_info, pdc_result, sizeof(*cache_info));
551 spin_unlock_irqrestore(&pdc_lock, flags);
552
553 return retval;
554 }
555
556 /**
557 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
558 * @space_bits: Should be 0, if not, bad mojo!
559 *
560 * Returns information about Space ID hashing.
561 */
562 int pdc_spaceid_bits(unsigned long *space_bits)
563 {
564 int retval;
565 unsigned long flags;
566
567 spin_lock_irqsave(&pdc_lock, flags);
568 pdc_result[0] = 0;
569 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
570 convert_to_wide(pdc_result);
571 *space_bits = pdc_result[0];
572 spin_unlock_irqrestore(&pdc_lock, flags);
573
574 return retval;
575 }
576
577 #ifndef CONFIG_PA20
578 /**
579 * pdc_btlb_info - Return block TLB information.
580 * @btlb: The return buffer.
581 *
582 * Returns information about the hardware Block TLB.
583 */
584 int pdc_btlb_info(struct pdc_btlb_info *btlb)
585 {
586 int retval;
587 unsigned long flags;
588
589 spin_lock_irqsave(&pdc_lock, flags);
590 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
591 memcpy(btlb, pdc_result, sizeof(*btlb));
592 spin_unlock_irqrestore(&pdc_lock, flags);
593
594 if(retval < 0) {
595 btlb->max_size = 0;
596 }
597 return retval;
598 }
599
600 /**
601 * pdc_mem_map_hpa - Find fixed module information.
602 * @address: The return buffer
603 * @mod_path: pointer to dev path structure.
604 *
605 * This call was developed for S700 workstations to allow the kernel to find
606 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
607 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
608 * call.
609 *
610 * This call is supported by all existing S700 workstations (up to Gecko).
611 */
612 int pdc_mem_map_hpa(struct pdc_memory_map *address,
613 struct pdc_module_path *mod_path)
614 {
615 int retval;
616 unsigned long flags;
617
618 spin_lock_irqsave(&pdc_lock, flags);
619 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
620 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
621 __pa(pdc_result2));
622 memcpy(address, pdc_result, sizeof(*address));
623 spin_unlock_irqrestore(&pdc_lock, flags);
624
625 return retval;
626 }
627 #endif /* !CONFIG_PA20 */
628
629 /**
630 * pdc_lan_station_id - Get the LAN address.
631 * @lan_addr: The return buffer.
632 * @hpa: The network device HPA.
633 *
634 * Get the LAN station address when it is not directly available from the LAN hardware.
635 */
636 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
637 {
638 int retval;
639 unsigned long flags;
640
641 spin_lock_irqsave(&pdc_lock, flags);
642 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
643 __pa(pdc_result), hpa);
644 if (retval < 0) {
645 /* FIXME: else read MAC from NVRAM */
646 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
647 } else {
648 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
649 }
650 spin_unlock_irqrestore(&pdc_lock, flags);
651
652 return retval;
653 }
654 EXPORT_SYMBOL(pdc_lan_station_id);
655
656 /**
657 * pdc_stable_read - Read data from Stable Storage.
658 * @staddr: Stable Storage address to access.
659 * @memaddr: The memory address where Stable Storage data shall be copied.
660 * @count: number of bytes to transfer. count is multiple of 4.
661 *
662 * This PDC call reads from the Stable Storage address supplied in staddr
663 * and copies count bytes to the memory address memaddr.
664 * The call will fail if staddr+count > PDC_STABLE size.
665 */
666 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
667 {
668 int retval;
669 unsigned long flags;
670
671 spin_lock_irqsave(&pdc_lock, flags);
672 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
673 __pa(pdc_result), count);
674 convert_to_wide(pdc_result);
675 memcpy(memaddr, pdc_result, count);
676 spin_unlock_irqrestore(&pdc_lock, flags);
677
678 return retval;
679 }
680 EXPORT_SYMBOL(pdc_stable_read);
681
682 /**
683 * pdc_stable_write - Write data to Stable Storage.
684 * @staddr: Stable Storage address to access.
685 * @memaddr: The memory address where Stable Storage data shall be read from.
686 * @count: number of bytes to transfer. count is multiple of 4.
687 *
688 * This PDC call reads count bytes from the supplied memaddr address,
689 * and copies count bytes to the Stable Storage address staddr.
690 * The call will fail if staddr+count > PDC_STABLE size.
691 */
692 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
693 {
694 int retval;
695 unsigned long flags;
696
697 spin_lock_irqsave(&pdc_lock, flags);
698 memcpy(pdc_result, memaddr, count);
699 convert_to_wide(pdc_result);
700 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
701 __pa(pdc_result), count);
702 spin_unlock_irqrestore(&pdc_lock, flags);
703
704 return retval;
705 }
706 EXPORT_SYMBOL(pdc_stable_write);
707
708 /**
709 * pdc_stable_get_size - Get Stable Storage size in bytes.
710 * @size: pointer where the size will be stored.
711 *
712 * This PDC call returns the number of bytes in the processor's Stable
713 * Storage, which is the number of contiguous bytes implemented in Stable
714 * Storage starting from staddr=0. size in an unsigned 64-bit integer
715 * which is a multiple of four.
716 */
717 int pdc_stable_get_size(unsigned long *size)
718 {
719 int retval;
720 unsigned long flags;
721
722 spin_lock_irqsave(&pdc_lock, flags);
723 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
724 *size = pdc_result[0];
725 spin_unlock_irqrestore(&pdc_lock, flags);
726
727 return retval;
728 }
729 EXPORT_SYMBOL(pdc_stable_get_size);
730
731 /**
732 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
733 *
734 * This PDC call is meant to be used to check the integrity of the current
735 * contents of Stable Storage.
736 */
737 int pdc_stable_verify_contents(void)
738 {
739 int retval;
740 unsigned long flags;
741
742 spin_lock_irqsave(&pdc_lock, flags);
743 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
744 spin_unlock_irqrestore(&pdc_lock, flags);
745
746 return retval;
747 }
748 EXPORT_SYMBOL(pdc_stable_verify_contents);
749
750 /**
751 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
752 * the validity indicator.
753 *
754 * This PDC call will erase all contents of Stable Storage. Use with care!
755 */
756 int pdc_stable_initialize(void)
757 {
758 int retval;
759 unsigned long flags;
760
761 spin_lock_irqsave(&pdc_lock, flags);
762 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
763 spin_unlock_irqrestore(&pdc_lock, flags);
764
765 return retval;
766 }
767 EXPORT_SYMBOL(pdc_stable_initialize);
768
769 /**
770 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
771 * @hwpath: fully bc.mod style path to the device.
772 * @initiator: the array to return the result into
773 *
774 * Get the SCSI operational parameters from PDC.
775 * Needed since HPUX never used BIOS or symbios card NVRAM.
776 * Most ncr/sym cards won't have an entry and just use whatever
777 * capabilities of the card are (eg Ultra, LVD). But there are
778 * several cases where it's useful:
779 * o set SCSI id for Multi-initiator clusters,
780 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
781 * o bus width exported is less than what the interface chip supports.
782 */
783 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
784 {
785 int retval;
786 unsigned long flags;
787
788 spin_lock_irqsave(&pdc_lock, flags);
789
790 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
791 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
792 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
793
794 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
795 __pa(pdc_result), __pa(hwpath));
796 if (retval < PDC_OK)
797 goto out;
798
799 if (pdc_result[0] < 16) {
800 initiator->host_id = pdc_result[0];
801 } else {
802 initiator->host_id = -1;
803 }
804
805 /*
806 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
807 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
808 */
809 switch (pdc_result[1]) {
810 case 1: initiator->factor = 50; break;
811 case 2: initiator->factor = 25; break;
812 case 5: initiator->factor = 12; break;
813 case 25: initiator->factor = 10; break;
814 case 20: initiator->factor = 12; break;
815 case 40: initiator->factor = 10; break;
816 default: initiator->factor = -1; break;
817 }
818
819 if (IS_SPROCKETS()) {
820 initiator->width = pdc_result[4];
821 initiator->mode = pdc_result[5];
822 } else {
823 initiator->width = -1;
824 initiator->mode = -1;
825 }
826
827 out:
828 spin_unlock_irqrestore(&pdc_lock, flags);
829
830 return (retval >= PDC_OK);
831 }
832 EXPORT_SYMBOL(pdc_get_initiator);
833
834
835 /**
836 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
837 * @num_entries: The return value.
838 * @hpa: The HPA for the device.
839 *
840 * This PDC function returns the number of entries in the specified cell's
841 * interrupt table.
842 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
843 */
844 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
845 {
846 int retval;
847 unsigned long flags;
848
849 spin_lock_irqsave(&pdc_lock, flags);
850 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
851 __pa(pdc_result), hpa);
852 convert_to_wide(pdc_result);
853 *num_entries = pdc_result[0];
854 spin_unlock_irqrestore(&pdc_lock, flags);
855
856 return retval;
857 }
858
859 /**
860 * pdc_pci_irt - Get the PCI interrupt routing table.
861 * @num_entries: The number of entries in the table.
862 * @hpa: The Hard Physical Address of the device.
863 * @tbl:
864 *
865 * Get the PCI interrupt routing table for the device at the given HPA.
866 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
867 */
868 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
869 {
870 int retval;
871 unsigned long flags;
872
873 BUG_ON((unsigned long)tbl & 0x7);
874
875 spin_lock_irqsave(&pdc_lock, flags);
876 pdc_result[0] = num_entries;
877 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
878 __pa(pdc_result), hpa, __pa(tbl));
879 spin_unlock_irqrestore(&pdc_lock, flags);
880
881 return retval;
882 }
883
884
885 #if 0 /* UNTEST CODE - left here in case someone needs it */
886
887 /**
888 * pdc_pci_config_read - read PCI config space.
889 * @hpa token from PDC to indicate which PCI device
890 * @pci_addr configuration space address to read from
891 *
892 * Read PCI Configuration space *before* linux PCI subsystem is running.
893 */
894 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
895 {
896 int retval;
897 unsigned long flags;
898
899 spin_lock_irqsave(&pdc_lock, flags);
900 pdc_result[0] = 0;
901 pdc_result[1] = 0;
902 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
903 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
904 spin_unlock_irqrestore(&pdc_lock, flags);
905
906 return retval ? ~0 : (unsigned int) pdc_result[0];
907 }
908
909
910 /**
911 * pdc_pci_config_write - read PCI config space.
912 * @hpa token from PDC to indicate which PCI device
913 * @pci_addr configuration space address to write
914 * @val value we want in the 32-bit register
915 *
916 * Write PCI Configuration space *before* linux PCI subsystem is running.
917 */
918 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
919 {
920 int retval;
921 unsigned long flags;
922
923 spin_lock_irqsave(&pdc_lock, flags);
924 pdc_result[0] = 0;
925 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
926 __pa(pdc_result), hpa,
927 cfg_addr&~3UL, 4UL, (unsigned long) val);
928 spin_unlock_irqrestore(&pdc_lock, flags);
929
930 return retval;
931 }
932 #endif /* UNTESTED CODE */
933
934 /**
935 * pdc_tod_read - Read the Time-Of-Day clock.
936 * @tod: The return buffer:
937 *
938 * Read the Time-Of-Day clock
939 */
940 int pdc_tod_read(struct pdc_tod *tod)
941 {
942 int retval;
943 unsigned long flags;
944
945 spin_lock_irqsave(&pdc_lock, flags);
946 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
947 convert_to_wide(pdc_result);
948 memcpy(tod, pdc_result, sizeof(*tod));
949 spin_unlock_irqrestore(&pdc_lock, flags);
950
951 return retval;
952 }
953 EXPORT_SYMBOL(pdc_tod_read);
954
955 /**
956 * pdc_tod_set - Set the Time-Of-Day clock.
957 * @sec: The number of seconds since epoch.
958 * @usec: The number of micro seconds.
959 *
960 * Set the Time-Of-Day clock.
961 */
962 int pdc_tod_set(unsigned long sec, unsigned long usec)
963 {
964 int retval;
965 unsigned long flags;
966
967 spin_lock_irqsave(&pdc_lock, flags);
968 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
969 spin_unlock_irqrestore(&pdc_lock, flags);
970
971 return retval;
972 }
973 EXPORT_SYMBOL(pdc_tod_set);
974
975 #ifdef CONFIG_64BIT
976 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
977 struct pdc_memory_table *tbl, unsigned long entries)
978 {
979 int retval;
980 unsigned long flags;
981
982 spin_lock_irqsave(&pdc_lock, flags);
983 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
984 convert_to_wide(pdc_result);
985 memcpy(r_addr, pdc_result, sizeof(*r_addr));
986 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
987 spin_unlock_irqrestore(&pdc_lock, flags);
988
989 return retval;
990 }
991 #endif /* CONFIG_64BIT */
992
993 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
994 * so I guessed at unsigned long. Someone who knows what this does, can fix
995 * it later. :)
996 */
997 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
998 {
999 int retval;
1000 unsigned long flags;
1001
1002 spin_lock_irqsave(&pdc_lock, flags);
1003 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1004 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1005 spin_unlock_irqrestore(&pdc_lock, flags);
1006
1007 return retval;
1008 }
1009
1010 /*
1011 * pdc_do_reset - Reset the system.
1012 *
1013 * Reset the system.
1014 */
1015 int pdc_do_reset(void)
1016 {
1017 int retval;
1018 unsigned long flags;
1019
1020 spin_lock_irqsave(&pdc_lock, flags);
1021 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1022 spin_unlock_irqrestore(&pdc_lock, flags);
1023
1024 return retval;
1025 }
1026
1027 /*
1028 * pdc_soft_power_info - Enable soft power switch.
1029 * @power_reg: address of soft power register
1030 *
1031 * Return the absolute address of the soft power switch register
1032 */
1033 int __init pdc_soft_power_info(unsigned long *power_reg)
1034 {
1035 int retval;
1036 unsigned long flags;
1037
1038 *power_reg = (unsigned long) (-1);
1039
1040 spin_lock_irqsave(&pdc_lock, flags);
1041 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1042 if (retval == PDC_OK) {
1043 convert_to_wide(pdc_result);
1044 *power_reg = f_extend(pdc_result[0]);
1045 }
1046 spin_unlock_irqrestore(&pdc_lock, flags);
1047
1048 return retval;
1049 }
1050
1051 /*
1052 * pdc_soft_power_button - Control the soft power button behaviour
1053 * @sw_control: 0 for hardware control, 1 for software control
1054 *
1055 *
1056 * This PDC function places the soft power button under software or
1057 * hardware control.
1058 * Under software control the OS may control to when to allow to shut
1059 * down the system. Under hardware control pressing the power button
1060 * powers off the system immediately.
1061 */
1062 int pdc_soft_power_button(int sw_control)
1063 {
1064 int retval;
1065 unsigned long flags;
1066
1067 spin_lock_irqsave(&pdc_lock, flags);
1068 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1069 spin_unlock_irqrestore(&pdc_lock, flags);
1070
1071 return retval;
1072 }
1073
1074 /*
1075 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1076 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1077 * who knows what other platform firmware might do with this OS "hook".
1078 */
1079 void pdc_io_reset(void)
1080 {
1081 unsigned long flags;
1082
1083 spin_lock_irqsave(&pdc_lock, flags);
1084 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1085 spin_unlock_irqrestore(&pdc_lock, flags);
1086 }
1087
1088 /*
1089 * pdc_io_reset_devices - Hack to Stop USB controller
1090 *
1091 * If PDC used the usb controller, the usb controller
1092 * is still running and will crash the machines during iommu
1093 * setup, because of still running DMA. This PDC call
1094 * stops the USB controller.
1095 * Normally called after calling pdc_io_reset().
1096 */
1097 void pdc_io_reset_devices(void)
1098 {
1099 unsigned long flags;
1100
1101 spin_lock_irqsave(&pdc_lock, flags);
1102 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1103 spin_unlock_irqrestore(&pdc_lock, flags);
1104 }
1105
1106 /* locked by pdc_console_lock */
1107 static int __attribute__((aligned(8))) iodc_retbuf[32];
1108 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1109
1110 /**
1111 * pdc_iodc_print - Console print using IODC.
1112 * @str: the string to output.
1113 * @count: length of str
1114 *
1115 * Note that only these special chars are architected for console IODC io:
1116 * BEL, BS, CR, and LF. Others are passed through.
1117 * Since the HP console requires CR+LF to perform a 'newline', we translate
1118 * "\n" to "\r\n".
1119 */
1120 int pdc_iodc_print(const unsigned char *str, unsigned count)
1121 {
1122 static int posx; /* for simple TAB-Simulation... */
1123 unsigned int i;
1124 unsigned long flags;
1125
1126 for (i = 0; i < count && i < 79;) {
1127 switch(str[i]) {
1128 case '\n':
1129 iodc_dbuf[i+0] = '\r';
1130 iodc_dbuf[i+1] = '\n';
1131 i += 2;
1132 posx = 0;
1133 goto print;
1134 case '\t':
1135 while (posx & 7) {
1136 iodc_dbuf[i] = ' ';
1137 i++, posx++;
1138 }
1139 break;
1140 case '\b': /* BS */
1141 posx -= 2;
1142 default:
1143 iodc_dbuf[i] = str[i];
1144 i++, posx++;
1145 break;
1146 }
1147 }
1148
1149 /* if we're at the end of line, and not already inserting a newline,
1150 * insert one anyway. iodc console doesn't claim to support >79 char
1151 * lines. don't account for this in the return value.
1152 */
1153 if (i == 79 && iodc_dbuf[i-1] != '\n') {
1154 iodc_dbuf[i+0] = '\r';
1155 iodc_dbuf[i+1] = '\n';
1156 }
1157
1158 print:
1159 spin_lock_irqsave(&pdc_lock, flags);
1160 real32_call(PAGE0->mem_cons.iodc_io,
1161 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1162 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1163 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1164 spin_unlock_irqrestore(&pdc_lock, flags);
1165
1166 return i;
1167 }
1168
1169 /**
1170 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1171 *
1172 * Read a character (non-blocking) from the PDC console, returns -1 if
1173 * key is not present.
1174 */
1175 int pdc_iodc_getc(void)
1176 {
1177 int ch;
1178 int status;
1179 unsigned long flags;
1180
1181 /* Bail if no console input device. */
1182 if (!PAGE0->mem_kbd.iodc_io)
1183 return 0;
1184
1185 /* wait for a keyboard (rs232)-input */
1186 spin_lock_irqsave(&pdc_lock, flags);
1187 real32_call(PAGE0->mem_kbd.iodc_io,
1188 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1189 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1190 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1191
1192 ch = *iodc_dbuf;
1193 status = *iodc_retbuf;
1194 spin_unlock_irqrestore(&pdc_lock, flags);
1195
1196 if (status == 0)
1197 return -1;
1198
1199 return ch;
1200 }
1201
1202 int pdc_sti_call(unsigned long func, unsigned long flags,
1203 unsigned long inptr, unsigned long outputr,
1204 unsigned long glob_cfg)
1205 {
1206 int retval;
1207 unsigned long irqflags;
1208
1209 spin_lock_irqsave(&pdc_lock, irqflags);
1210 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1211 spin_unlock_irqrestore(&pdc_lock, irqflags);
1212
1213 return retval;
1214 }
1215 EXPORT_SYMBOL(pdc_sti_call);
1216
1217 #ifdef CONFIG_64BIT
1218 /**
1219 * pdc_pat_cell_get_number - Returns the cell number.
1220 * @cell_info: The return buffer.
1221 *
1222 * This PDC call returns the cell number of the cell from which the call
1223 * is made.
1224 */
1225 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1226 {
1227 int retval;
1228 unsigned long flags;
1229
1230 spin_lock_irqsave(&pdc_lock, flags);
1231 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1232 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1233 spin_unlock_irqrestore(&pdc_lock, flags);
1234
1235 return retval;
1236 }
1237
1238 /**
1239 * pdc_pat_cell_module - Retrieve the cell's module information.
1240 * @actcnt: The number of bytes written to mem_addr.
1241 * @ploc: The physical location.
1242 * @mod: The module index.
1243 * @view_type: The view of the address type.
1244 * @mem_addr: The return buffer.
1245 *
1246 * This PDC call returns information about each module attached to the cell
1247 * at the specified location.
1248 */
1249 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1250 unsigned long view_type, void *mem_addr)
1251 {
1252 int retval;
1253 unsigned long flags;
1254 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1255
1256 spin_lock_irqsave(&pdc_lock, flags);
1257 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1258 ploc, mod, view_type, __pa(&result));
1259 if(!retval) {
1260 *actcnt = pdc_result[0];
1261 memcpy(mem_addr, &result, *actcnt);
1262 }
1263 spin_unlock_irqrestore(&pdc_lock, flags);
1264
1265 return retval;
1266 }
1267
1268 /**
1269 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1270 * @cpu_info: The return buffer.
1271 * @hpa: The Hard Physical Address of the CPU.
1272 *
1273 * Retrieve the cpu number for the cpu at the specified HPA.
1274 */
1275 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1276 {
1277 int retval;
1278 unsigned long flags;
1279
1280 spin_lock_irqsave(&pdc_lock, flags);
1281 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1282 __pa(&pdc_result), hpa);
1283 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1284 spin_unlock_irqrestore(&pdc_lock, flags);
1285
1286 return retval;
1287 }
1288
1289 /**
1290 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1291 * @num_entries: The return value.
1292 * @cell_num: The target cell.
1293 *
1294 * This PDC function returns the number of entries in the specified cell's
1295 * interrupt table.
1296 */
1297 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1298 {
1299 int retval;
1300 unsigned long flags;
1301
1302 spin_lock_irqsave(&pdc_lock, flags);
1303 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1304 __pa(pdc_result), cell_num);
1305 *num_entries = pdc_result[0];
1306 spin_unlock_irqrestore(&pdc_lock, flags);
1307
1308 return retval;
1309 }
1310
1311 /**
1312 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1313 * @r_addr: The return buffer.
1314 * @cell_num: The target cell.
1315 *
1316 * This PDC function returns the actual interrupt table for the specified cell.
1317 */
1318 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1319 {
1320 int retval;
1321 unsigned long flags;
1322
1323 spin_lock_irqsave(&pdc_lock, flags);
1324 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1325 __pa(r_addr), cell_num);
1326 spin_unlock_irqrestore(&pdc_lock, flags);
1327
1328 return retval;
1329 }
1330
1331 /**
1332 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1333 * @actlen: The return buffer.
1334 * @mem_addr: Pointer to the memory buffer.
1335 * @count: The number of bytes to read from the buffer.
1336 * @offset: The offset with respect to the beginning of the buffer.
1337 *
1338 */
1339 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1340 unsigned long count, unsigned long offset)
1341 {
1342 int retval;
1343 unsigned long flags;
1344
1345 spin_lock_irqsave(&pdc_lock, flags);
1346 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1347 __pa(pdc_result2), count, offset);
1348 *actual_len = pdc_result[0];
1349 memcpy(mem_addr, pdc_result2, *actual_len);
1350 spin_unlock_irqrestore(&pdc_lock, flags);
1351
1352 return retval;
1353 }
1354
1355 /**
1356 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1357 * @pci_addr: PCI configuration space address for which the read request is being made.
1358 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1359 * @mem_addr: Pointer to return memory buffer.
1360 *
1361 */
1362 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1363 {
1364 int retval;
1365 unsigned long flags;
1366
1367 spin_lock_irqsave(&pdc_lock, flags);
1368 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1369 __pa(pdc_result), pci_addr, pci_size);
1370 switch(pci_size) {
1371 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1372 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1373 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1374 }
1375 spin_unlock_irqrestore(&pdc_lock, flags);
1376
1377 return retval;
1378 }
1379
1380 /**
1381 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1382 * @pci_addr: PCI configuration space address for which the write request is being made.
1383 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1384 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1385 * written to PCI Config space.
1386 *
1387 */
1388 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1389 {
1390 int retval;
1391 unsigned long flags;
1392
1393 spin_lock_irqsave(&pdc_lock, flags);
1394 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1395 pci_addr, pci_size, val);
1396 spin_unlock_irqrestore(&pdc_lock, flags);
1397
1398 return retval;
1399 }
1400 #endif /* CONFIG_64BIT */
1401
1402
1403 /***************** 32-bit real-mode calls ***********/
1404 /* The struct below is used
1405 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1406 * real32_call_asm() then uses this stack in narrow real mode
1407 */
1408
1409 struct narrow_stack {
1410 /* use int, not long which is 64 bits */
1411 unsigned int arg13;
1412 unsigned int arg12;
1413 unsigned int arg11;
1414 unsigned int arg10;
1415 unsigned int arg9;
1416 unsigned int arg8;
1417 unsigned int arg7;
1418 unsigned int arg6;
1419 unsigned int arg5;
1420 unsigned int arg4;
1421 unsigned int arg3;
1422 unsigned int arg2;
1423 unsigned int arg1;
1424 unsigned int arg0;
1425 unsigned int frame_marker[8];
1426 unsigned int sp;
1427 /* in reality, there's nearly 8k of stack after this */
1428 };
1429
1430 long real32_call(unsigned long fn, ...)
1431 {
1432 va_list args;
1433 extern struct narrow_stack real_stack;
1434 extern unsigned long real32_call_asm(unsigned int *,
1435 unsigned int *,
1436 unsigned int);
1437
1438 va_start(args, fn);
1439 real_stack.arg0 = va_arg(args, unsigned int);
1440 real_stack.arg1 = va_arg(args, unsigned int);
1441 real_stack.arg2 = va_arg(args, unsigned int);
1442 real_stack.arg3 = va_arg(args, unsigned int);
1443 real_stack.arg4 = va_arg(args, unsigned int);
1444 real_stack.arg5 = va_arg(args, unsigned int);
1445 real_stack.arg6 = va_arg(args, unsigned int);
1446 real_stack.arg7 = va_arg(args, unsigned int);
1447 real_stack.arg8 = va_arg(args, unsigned int);
1448 real_stack.arg9 = va_arg(args, unsigned int);
1449 real_stack.arg10 = va_arg(args, unsigned int);
1450 real_stack.arg11 = va_arg(args, unsigned int);
1451 real_stack.arg12 = va_arg(args, unsigned int);
1452 real_stack.arg13 = va_arg(args, unsigned int);
1453 va_end(args);
1454
1455 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1456 }
1457
1458 #ifdef CONFIG_64BIT
1459 /***************** 64-bit real-mode calls ***********/
1460
1461 struct wide_stack {
1462 unsigned long arg0;
1463 unsigned long arg1;
1464 unsigned long arg2;
1465 unsigned long arg3;
1466 unsigned long arg4;
1467 unsigned long arg5;
1468 unsigned long arg6;
1469 unsigned long arg7;
1470 unsigned long arg8;
1471 unsigned long arg9;
1472 unsigned long arg10;
1473 unsigned long arg11;
1474 unsigned long arg12;
1475 unsigned long arg13;
1476 unsigned long frame_marker[2]; /* rp, previous sp */
1477 unsigned long sp;
1478 /* in reality, there's nearly 8k of stack after this */
1479 };
1480
1481 long real64_call(unsigned long fn, ...)
1482 {
1483 va_list args;
1484 extern struct wide_stack real64_stack;
1485 extern unsigned long real64_call_asm(unsigned long *,
1486 unsigned long *,
1487 unsigned long);
1488
1489 va_start(args, fn);
1490 real64_stack.arg0 = va_arg(args, unsigned long);
1491 real64_stack.arg1 = va_arg(args, unsigned long);
1492 real64_stack.arg2 = va_arg(args, unsigned long);
1493 real64_stack.arg3 = va_arg(args, unsigned long);
1494 real64_stack.arg4 = va_arg(args, unsigned long);
1495 real64_stack.arg5 = va_arg(args, unsigned long);
1496 real64_stack.arg6 = va_arg(args, unsigned long);
1497 real64_stack.arg7 = va_arg(args, unsigned long);
1498 real64_stack.arg8 = va_arg(args, unsigned long);
1499 real64_stack.arg9 = va_arg(args, unsigned long);
1500 real64_stack.arg10 = va_arg(args, unsigned long);
1501 real64_stack.arg11 = va_arg(args, unsigned long);
1502 real64_stack.arg12 = va_arg(args, unsigned long);
1503 real64_stack.arg13 = va_arg(args, unsigned long);
1504 va_end(args);
1505
1506 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1507 }
1508
1509 #endif /* CONFIG_64BIT */
1510