dump_stack: unify debug information printed by show_regs()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / openrisc / kernel / process.c
1 /*
2 * OpenRISC process.c
3 *
4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
6 * declaration.
7 *
8 * Modifications for the OpenRISC architecture:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * This file handles the architecture-dependent parts of process handling...
18 */
19
20 #define __KERNEL_SYSCALLS__
21 #include <stdarg.h>
22
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/stddef.h>
29 #include <linux/unistd.h>
30 #include <linux/ptrace.h>
31 #include <linux/slab.h>
32 #include <linux/elfcore.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/init_task.h>
36 #include <linux/mqueue.h>
37 #include <linux/fs.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/spr_defs.h>
44
45 #include <linux/smp.h>
46
47 /*
48 * Pointer to Current thread info structure.
49 *
50 * Used at user space -> kernel transitions.
51 */
52 struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
53
54 void machine_restart(void)
55 {
56 printk(KERN_INFO "*** MACHINE RESTART ***\n");
57 __asm__("l.nop 1");
58 }
59
60 /*
61 * Similar to machine_power_off, but don't shut off power. Add code
62 * here to freeze the system for e.g. post-mortem debug purpose when
63 * possible. This halt has nothing to do with the idle halt.
64 */
65 void machine_halt(void)
66 {
67 printk(KERN_INFO "*** MACHINE HALT ***\n");
68 __asm__("l.nop 1");
69 }
70
71 /* If or when software power-off is implemented, add code here. */
72 void machine_power_off(void)
73 {
74 printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
75 __asm__("l.nop 1");
76 }
77
78 void (*pm_power_off) (void) = machine_power_off;
79
80 /*
81 * When a process does an "exec", machine state like FPU and debug
82 * registers need to be reset. This is a hook function for that.
83 * Currently we don't have any such state to reset, so this is empty.
84 */
85 void flush_thread(void)
86 {
87 }
88
89 void show_regs(struct pt_regs *regs)
90 {
91 extern void show_registers(struct pt_regs *regs);
92
93 show_regs_print_info(KERN_DEFAULT);
94 /* __PHX__ cleanup this mess */
95 show_registers(regs);
96 }
97
98 unsigned long thread_saved_pc(struct task_struct *t)
99 {
100 return (unsigned long)user_regs(t->stack)->pc;
101 }
102
103 void release_thread(struct task_struct *dead_task)
104 {
105 }
106
107 /*
108 * Copy the thread-specific (arch specific) info from the current
109 * process to the new one p
110 */
111 extern asmlinkage void ret_from_fork(void);
112
113 /*
114 * copy_thread
115 * @clone_flags: flags
116 * @usp: user stack pointer or fn for kernel thread
117 * @arg: arg to fn for kernel thread; always NULL for userspace thread
118 * @p: the newly created task
119 * @regs: CPU context to copy for userspace thread; always NULL for kthread
120 *
121 * At the top of a newly initialized kernel stack are two stacked pt_reg
122 * structures. The first (topmost) is the userspace context of the thread.
123 * The second is the kernelspace context of the thread.
124 *
125 * A kernel thread will not be returning to userspace, so the topmost pt_regs
126 * struct can be uninitialized; it _does_ need to exist, though, because
127 * a kernel thread can become a userspace thread by doing a kernel_execve, in
128 * which case the topmost context will be initialized and used for 'returning'
129 * to userspace.
130 *
131 * The second pt_reg struct needs to be initialized to 'return' to
132 * ret_from_fork. A kernel thread will need to set r20 to the address of
133 * a function to call into (with arg in r22); userspace threads need to set
134 * r20 to NULL in which case ret_from_fork will just continue a return to
135 * userspace.
136 *
137 * A kernel thread 'fn' may return; this is effectively what happens when
138 * kernel_execve is called. In that case, the userspace pt_regs must have
139 * been initialized (which kernel_execve takes care of, see start_thread
140 * below); ret_from_fork will then continue its execution causing the
141 * 'kernel thread' to return to userspace as a userspace thread.
142 */
143
144 int
145 copy_thread(unsigned long clone_flags, unsigned long usp,
146 unsigned long arg, struct task_struct *p)
147 {
148 struct pt_regs *userregs;
149 struct pt_regs *kregs;
150 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
151 unsigned long top_of_kernel_stack;
152
153 top_of_kernel_stack = sp;
154
155 p->set_child_tid = p->clear_child_tid = NULL;
156
157 /* Locate userspace context on stack... */
158 sp -= STACK_FRAME_OVERHEAD; /* redzone */
159 sp -= sizeof(struct pt_regs);
160 userregs = (struct pt_regs *) sp;
161
162 /* ...and kernel context */
163 sp -= STACK_FRAME_OVERHEAD; /* redzone */
164 sp -= sizeof(struct pt_regs);
165 kregs = (struct pt_regs *)sp;
166
167 if (unlikely(p->flags & PF_KTHREAD)) {
168 memset(kregs, 0, sizeof(struct pt_regs));
169 kregs->gpr[20] = usp; /* fn, kernel thread */
170 kregs->gpr[22] = arg;
171 } else {
172 *userregs = *current_pt_regs();
173
174 if (usp)
175 userregs->sp = usp;
176 userregs->gpr[11] = 0; /* Result from fork() */
177
178 kregs->gpr[20] = 0; /* Userspace thread */
179 }
180
181 /*
182 * _switch wants the kernel stack page in pt_regs->sp so that it
183 * can restore it to thread_info->ksp... see _switch for details.
184 */
185 kregs->sp = top_of_kernel_stack;
186 kregs->gpr[9] = (unsigned long)ret_from_fork;
187
188 task_thread_info(p)->ksp = (unsigned long)kregs;
189
190 return 0;
191 }
192
193 /*
194 * Set up a thread for executing a new program
195 */
196 void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
197 {
198 unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
199
200 set_fs(USER_DS);
201 memset(regs, 0, sizeof(struct pt_regs));
202
203 regs->pc = pc;
204 regs->sr = sr;
205 regs->sp = sp;
206 }
207
208 /* Fill in the fpu structure for a core dump. */
209 int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
210 {
211 /* TODO */
212 return 0;
213 }
214
215 extern struct thread_info *_switch(struct thread_info *old_ti,
216 struct thread_info *new_ti);
217
218 struct task_struct *__switch_to(struct task_struct *old,
219 struct task_struct *new)
220 {
221 struct task_struct *last;
222 struct thread_info *new_ti, *old_ti;
223 unsigned long flags;
224
225 local_irq_save(flags);
226
227 /* current_set is an array of saved current pointers
228 * (one for each cpu). we need them at user->kernel transition,
229 * while we save them at kernel->user transition
230 */
231 new_ti = new->stack;
232 old_ti = old->stack;
233
234 current_thread_info_set[smp_processor_id()] = new_ti;
235 last = (_switch(old_ti, new_ti))->task;
236
237 local_irq_restore(flags);
238
239 return last;
240 }
241
242 /*
243 * Write out registers in core dump format, as defined by the
244 * struct user_regs_struct
245 */
246 void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
247 {
248 dest[0] = 0; /* r0 */
249 memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
250 dest[32] = regs->pc;
251 dest[33] = regs->sr;
252 dest[34] = 0;
253 dest[35] = 0;
254 }
255
256 unsigned long get_wchan(struct task_struct *p)
257 {
258 /* TODO */
259
260 return 0;
261 }