Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31
32 #include <asm/cacheflush.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37
38 /*
39 * TLB load/store/modify handlers.
40 *
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
43 */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46
47 struct work_registers {
48 int r1;
49 int r2;
50 int r3;
51 };
52
53 struct tlb_reg_save {
54 unsigned long a;
55 unsigned long b;
56 } ____cacheline_aligned_in_smp;
57
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59
60 static inline int r45k_bvahwbug(void)
61 {
62 /* XXX: We should probe for the presence of this bug, but we don't. */
63 return 0;
64 }
65
66 static inline int r4k_250MHZhwbug(void)
67 {
68 /* XXX: We should probe for the presence of this bug, but we don't. */
69 return 0;
70 }
71
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 return BCM1250_M3_WAR;
75 }
76
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 return R10000_LLSC_WAR;
80 }
81
82 static int use_bbit_insns(void)
83 {
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON:
86 case CPU_CAVIUM_OCTEON_PLUS:
87 case CPU_CAVIUM_OCTEON2:
88 return 1;
89 default:
90 return 0;
91 }
92 }
93
94 static int use_lwx_insns(void)
95 {
96 switch (current_cpu_type()) {
97 case CPU_CAVIUM_OCTEON2:
98 return 1;
99 default:
100 return 0;
101 }
102 }
103 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105 static bool scratchpad_available(void)
106 {
107 return true;
108 }
109 static int scratchpad_offset(int i)
110 {
111 /*
112 * CVMSEG starts at address -32768 and extends for
113 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 */
115 i += 1; /* Kernel use starts at the top and works down. */
116 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117 }
118 #else
119 static bool scratchpad_available(void)
120 {
121 return false;
122 }
123 static int scratchpad_offset(int i)
124 {
125 BUG();
126 /* Really unreachable, but evidently some GCC want this. */
127 return 0;
128 }
129 #endif
130 /*
131 * Found by experiment: At least some revisions of the 4kc throw under
132 * some circumstances a machine check exception, triggered by invalid
133 * values in the index register. Delaying the tlbp instruction until
134 * after the next branch, plus adding an additional nop in front of
135 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136 * why; it's not an issue caused by the core RTL.
137 *
138 */
139 static int __cpuinit m4kc_tlbp_war(void)
140 {
141 return (current_cpu_data.processor_id & 0xffff00) ==
142 (PRID_COMP_MIPS | PRID_IMP_4KC);
143 }
144
145 /* Handle labels (which must be positive integers). */
146 enum label_id {
147 label_second_part = 1,
148 label_leave,
149 label_vmalloc,
150 label_vmalloc_done,
151 label_tlbw_hazard_0,
152 label_split = label_tlbw_hazard_0 + 8,
153 label_tlbl_goaround1,
154 label_tlbl_goaround2,
155 label_nopage_tlbl,
156 label_nopage_tlbs,
157 label_nopage_tlbm,
158 label_smp_pgtable_change,
159 label_r3000_write_probe_fail,
160 label_large_segbits_fault,
161 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
162 label_tlb_huge_update,
163 #endif
164 };
165
166 UASM_L_LA(_second_part)
167 UASM_L_LA(_leave)
168 UASM_L_LA(_vmalloc)
169 UASM_L_LA(_vmalloc_done)
170 /* _tlbw_hazard_x is handled differently. */
171 UASM_L_LA(_split)
172 UASM_L_LA(_tlbl_goaround1)
173 UASM_L_LA(_tlbl_goaround2)
174 UASM_L_LA(_nopage_tlbl)
175 UASM_L_LA(_nopage_tlbs)
176 UASM_L_LA(_nopage_tlbm)
177 UASM_L_LA(_smp_pgtable_change)
178 UASM_L_LA(_r3000_write_probe_fail)
179 UASM_L_LA(_large_segbits_fault)
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 UASM_L_LA(_tlb_huge_update)
182 #endif
183
184 static int __cpuinitdata hazard_instance;
185
186 static void __cpuinit uasm_bgezl_hazard(u32 **p,
187 struct uasm_reloc **r,
188 int instance)
189 {
190 switch (instance) {
191 case 0 ... 7:
192 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 return;
194 default:
195 BUG();
196 }
197 }
198
199 static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
200 u32 **p,
201 int instance)
202 {
203 switch (instance) {
204 case 0 ... 7:
205 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
206 break;
207 default:
208 BUG();
209 }
210 }
211
212 /*
213 * pgtable bits are assigned dynamically depending on processor feature
214 * and statically based on kernel configuration. This spits out the actual
215 * values the kernel is using. Required to make sense from disassembled
216 * TLB exception handlers.
217 */
218 static void output_pgtable_bits_defines(void)
219 {
220 #define pr_define(fmt, ...) \
221 pr_debug("#define " fmt, ##__VA_ARGS__)
222
223 pr_debug("#include <asm/asm.h>\n");
224 pr_debug("#include <asm/regdef.h>\n");
225 pr_debug("\n");
226
227 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
228 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
229 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
230 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
231 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
232 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
233 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
234 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
235 #endif
236 if (cpu_has_rixi) {
237 #ifdef _PAGE_NO_EXEC_SHIFT
238 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
239 #endif
240 #ifdef _PAGE_NO_READ_SHIFT
241 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
242 #endif
243 }
244 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
245 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
246 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
247 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
248 pr_debug("\n");
249 }
250
251 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
252 {
253 int i;
254
255 pr_debug("LEAF(%s)\n", symbol);
256
257 pr_debug("\t.set push\n");
258 pr_debug("\t.set noreorder\n");
259
260 for (i = 0; i < count; i++)
261 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
262
263 pr_debug("\t.set\tpop\n");
264
265 pr_debug("\tEND(%s)\n", symbol);
266 }
267
268 /* The only general purpose registers allowed in TLB handlers. */
269 #define K0 26
270 #define K1 27
271
272 /* Some CP0 registers */
273 #define C0_INDEX 0, 0
274 #define C0_ENTRYLO0 2, 0
275 #define C0_TCBIND 2, 2
276 #define C0_ENTRYLO1 3, 0
277 #define C0_CONTEXT 4, 0
278 #define C0_PAGEMASK 5, 0
279 #define C0_BADVADDR 8, 0
280 #define C0_ENTRYHI 10, 0
281 #define C0_EPC 14, 0
282 #define C0_XCONTEXT 20, 0
283
284 #ifdef CONFIG_64BIT
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
286 #else
287 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 #endif
289
290 /* The worst case length of the handler is around 18 instructions for
291 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
292 * Maximum space available is 32 instructions for R3000 and 64
293 * instructions for R4000.
294 *
295 * We deliberately chose a buffer size of 128, so we won't scribble
296 * over anything important on overflow before we panic.
297 */
298 static u32 tlb_handler[128] __cpuinitdata;
299
300 /* simply assume worst case size for labels and relocs */
301 static struct uasm_label labels[128] __cpuinitdata;
302 static struct uasm_reloc relocs[128] __cpuinitdata;
303
304 #ifdef CONFIG_64BIT
305 static int check_for_high_segbits __cpuinitdata;
306 #endif
307
308 static int check_for_high_segbits __cpuinitdata;
309
310 static unsigned int kscratch_used_mask __cpuinitdata;
311
312 static int __cpuinit allocate_kscratch(void)
313 {
314 int r;
315 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
316
317 r = ffs(a);
318
319 if (r == 0)
320 return -1;
321
322 r--; /* make it zero based */
323
324 kscratch_used_mask |= (1 << r);
325
326 return r;
327 }
328
329 static int scratch_reg __cpuinitdata;
330 static int pgd_reg __cpuinitdata;
331 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
332
333 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
334 {
335 struct work_registers r;
336
337 int smp_processor_id_reg;
338 int smp_processor_id_sel;
339 int smp_processor_id_shift;
340
341 if (scratch_reg > 0) {
342 /* Save in CPU local C0_KScratch? */
343 UASM_i_MTC0(p, 1, 31, scratch_reg);
344 r.r1 = K0;
345 r.r2 = K1;
346 r.r3 = 1;
347 return r;
348 }
349
350 if (num_possible_cpus() > 1) {
351 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
352 smp_processor_id_shift = 51;
353 smp_processor_id_reg = 20; /* XContext */
354 smp_processor_id_sel = 0;
355 #else
356 # ifdef CONFIG_32BIT
357 smp_processor_id_shift = 25;
358 smp_processor_id_reg = 4; /* Context */
359 smp_processor_id_sel = 0;
360 # endif
361 # ifdef CONFIG_64BIT
362 smp_processor_id_shift = 26;
363 smp_processor_id_reg = 4; /* Context */
364 smp_processor_id_sel = 0;
365 # endif
366 #endif
367 /* Get smp_processor_id */
368 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
369 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
370
371 /* handler_reg_save index in K0 */
372 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
373
374 UASM_i_LA(p, K1, (long)&handler_reg_save);
375 UASM_i_ADDU(p, K0, K0, K1);
376 } else {
377 UASM_i_LA(p, K0, (long)&handler_reg_save);
378 }
379 /* K0 now points to save area, save $1 and $2 */
380 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
381 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
382
383 r.r1 = K1;
384 r.r2 = 1;
385 r.r3 = 2;
386 return r;
387 }
388
389 static void __cpuinit build_restore_work_registers(u32 **p)
390 {
391 if (scratch_reg > 0) {
392 UASM_i_MFC0(p, 1, 31, scratch_reg);
393 return;
394 }
395 /* K0 already points to save area, restore $1 and $2 */
396 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
397 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
398 }
399
400 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
401
402 /*
403 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
404 * we cannot do r3000 under these circumstances.
405 *
406 * Declare pgd_current here instead of including mmu_context.h to avoid type
407 * conflicts for tlbmiss_handler_setup_pgd
408 */
409 extern unsigned long pgd_current[];
410
411 /*
412 * The R3000 TLB handler is simple.
413 */
414 static void __cpuinit build_r3000_tlb_refill_handler(void)
415 {
416 long pgdc = (long)pgd_current;
417 u32 *p;
418
419 memset(tlb_handler, 0, sizeof(tlb_handler));
420 p = tlb_handler;
421
422 uasm_i_mfc0(&p, K0, C0_BADVADDR);
423 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
424 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
425 uasm_i_srl(&p, K0, K0, 22); /* load delay */
426 uasm_i_sll(&p, K0, K0, 2);
427 uasm_i_addu(&p, K1, K1, K0);
428 uasm_i_mfc0(&p, K0, C0_CONTEXT);
429 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
430 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
431 uasm_i_addu(&p, K1, K1, K0);
432 uasm_i_lw(&p, K0, 0, K1);
433 uasm_i_nop(&p); /* load delay */
434 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
435 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
436 uasm_i_tlbwr(&p); /* cp0 delay */
437 uasm_i_jr(&p, K1);
438 uasm_i_rfe(&p); /* branch delay */
439
440 if (p > tlb_handler + 32)
441 panic("TLB refill handler space exceeded");
442
443 pr_debug("Wrote TLB refill handler (%u instructions).\n",
444 (unsigned int)(p - tlb_handler));
445
446 memcpy((void *)ebase, tlb_handler, 0x80);
447
448 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
449 }
450 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
451
452 /*
453 * The R4000 TLB handler is much more complicated. We have two
454 * consecutive handler areas with 32 instructions space each.
455 * Since they aren't used at the same time, we can overflow in the
456 * other one.To keep things simple, we first assume linear space,
457 * then we relocate it to the final handler layout as needed.
458 */
459 static u32 final_handler[64] __cpuinitdata;
460
461 /*
462 * Hazards
463 *
464 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
465 * 2. A timing hazard exists for the TLBP instruction.
466 *
467 * stalling_instruction
468 * TLBP
469 *
470 * The JTLB is being read for the TLBP throughout the stall generated by the
471 * previous instruction. This is not really correct as the stalling instruction
472 * can modify the address used to access the JTLB. The failure symptom is that
473 * the TLBP instruction will use an address created for the stalling instruction
474 * and not the address held in C0_ENHI and thus report the wrong results.
475 *
476 * The software work-around is to not allow the instruction preceding the TLBP
477 * to stall - make it an NOP or some other instruction guaranteed not to stall.
478 *
479 * Errata 2 will not be fixed. This errata is also on the R5000.
480 *
481 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
482 */
483 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
484 {
485 switch (current_cpu_type()) {
486 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
487 case CPU_R4600:
488 case CPU_R4700:
489 case CPU_R5000:
490 case CPU_NEVADA:
491 uasm_i_nop(p);
492 uasm_i_tlbp(p);
493 break;
494
495 default:
496 uasm_i_tlbp(p);
497 break;
498 }
499 }
500
501 /*
502 * Write random or indexed TLB entry, and care about the hazards from
503 * the preceding mtc0 and for the following eret.
504 */
505 enum tlb_write_entry { tlb_random, tlb_indexed };
506
507 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
508 struct uasm_reloc **r,
509 enum tlb_write_entry wmode)
510 {
511 void(*tlbw)(u32 **) = NULL;
512
513 switch (wmode) {
514 case tlb_random: tlbw = uasm_i_tlbwr; break;
515 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
516 }
517
518 if (cpu_has_mips_r2) {
519 /*
520 * The architecture spec says an ehb is required here,
521 * but a number of cores do not have the hazard and
522 * using an ehb causes an expensive pipeline stall.
523 */
524 switch (current_cpu_type()) {
525 case CPU_M14KC:
526 case CPU_74K:
527 break;
528
529 default:
530 uasm_i_ehb(p);
531 break;
532 }
533 tlbw(p);
534 return;
535 }
536
537 switch (current_cpu_type()) {
538 case CPU_R4000PC:
539 case CPU_R4000SC:
540 case CPU_R4000MC:
541 case CPU_R4400PC:
542 case CPU_R4400SC:
543 case CPU_R4400MC:
544 /*
545 * This branch uses up a mtc0 hazard nop slot and saves
546 * two nops after the tlbw instruction.
547 */
548 uasm_bgezl_hazard(p, r, hazard_instance);
549 tlbw(p);
550 uasm_bgezl_label(l, p, hazard_instance);
551 hazard_instance++;
552 uasm_i_nop(p);
553 break;
554
555 case CPU_R4600:
556 case CPU_R4700:
557 uasm_i_nop(p);
558 tlbw(p);
559 uasm_i_nop(p);
560 break;
561
562 case CPU_R5000:
563 case CPU_NEVADA:
564 uasm_i_nop(p); /* QED specifies 2 nops hazard */
565 uasm_i_nop(p); /* QED specifies 2 nops hazard */
566 tlbw(p);
567 break;
568
569 case CPU_R4300:
570 case CPU_5KC:
571 case CPU_TX49XX:
572 case CPU_PR4450:
573 case CPU_XLR:
574 uasm_i_nop(p);
575 tlbw(p);
576 break;
577
578 case CPU_R10000:
579 case CPU_R12000:
580 case CPU_R14000:
581 case CPU_4KC:
582 case CPU_4KEC:
583 case CPU_M14KC:
584 case CPU_SB1:
585 case CPU_SB1A:
586 case CPU_4KSC:
587 case CPU_20KC:
588 case CPU_25KF:
589 case CPU_BMIPS32:
590 case CPU_BMIPS3300:
591 case CPU_BMIPS4350:
592 case CPU_BMIPS4380:
593 case CPU_BMIPS5000:
594 case CPU_LOONGSON2:
595 case CPU_R5500:
596 if (m4kc_tlbp_war())
597 uasm_i_nop(p);
598 case CPU_ALCHEMY:
599 tlbw(p);
600 break;
601
602 case CPU_RM7000:
603 uasm_i_nop(p);
604 uasm_i_nop(p);
605 uasm_i_nop(p);
606 uasm_i_nop(p);
607 tlbw(p);
608 break;
609
610 case CPU_VR4111:
611 case CPU_VR4121:
612 case CPU_VR4122:
613 case CPU_VR4181:
614 case CPU_VR4181A:
615 uasm_i_nop(p);
616 uasm_i_nop(p);
617 tlbw(p);
618 uasm_i_nop(p);
619 uasm_i_nop(p);
620 break;
621
622 case CPU_VR4131:
623 case CPU_VR4133:
624 case CPU_R5432:
625 uasm_i_nop(p);
626 uasm_i_nop(p);
627 tlbw(p);
628 break;
629
630 case CPU_JZRISC:
631 tlbw(p);
632 uasm_i_nop(p);
633 break;
634
635 default:
636 panic("No TLB refill handler yet (CPU type: %d)",
637 current_cpu_data.cputype);
638 break;
639 }
640 }
641
642 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
643 unsigned int reg)
644 {
645 if (cpu_has_rixi) {
646 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
647 } else {
648 #ifdef CONFIG_64BIT_PHYS_ADDR
649 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
650 #else
651 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
652 #endif
653 }
654 }
655
656 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
657
658 static __cpuinit void build_restore_pagemask(u32 **p,
659 struct uasm_reloc **r,
660 unsigned int tmp,
661 enum label_id lid,
662 int restore_scratch)
663 {
664 if (restore_scratch) {
665 /* Reset default page size */
666 if (PM_DEFAULT_MASK >> 16) {
667 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
668 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
669 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
670 uasm_il_b(p, r, lid);
671 } else if (PM_DEFAULT_MASK) {
672 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
673 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
674 uasm_il_b(p, r, lid);
675 } else {
676 uasm_i_mtc0(p, 0, C0_PAGEMASK);
677 uasm_il_b(p, r, lid);
678 }
679 if (scratch_reg > 0)
680 UASM_i_MFC0(p, 1, 31, scratch_reg);
681 else
682 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
683 } else {
684 /* Reset default page size */
685 if (PM_DEFAULT_MASK >> 16) {
686 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
687 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
688 uasm_il_b(p, r, lid);
689 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
690 } else if (PM_DEFAULT_MASK) {
691 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
692 uasm_il_b(p, r, lid);
693 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
694 } else {
695 uasm_il_b(p, r, lid);
696 uasm_i_mtc0(p, 0, C0_PAGEMASK);
697 }
698 }
699 }
700
701 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
702 struct uasm_label **l,
703 struct uasm_reloc **r,
704 unsigned int tmp,
705 enum tlb_write_entry wmode,
706 int restore_scratch)
707 {
708 /* Set huge page tlb entry size */
709 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
710 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
711 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
712
713 build_tlb_write_entry(p, l, r, wmode);
714
715 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
716 }
717
718 /*
719 * Check if Huge PTE is present, if so then jump to LABEL.
720 */
721 static void __cpuinit
722 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
723 unsigned int pmd, int lid)
724 {
725 UASM_i_LW(p, tmp, 0, pmd);
726 if (use_bbit_insns()) {
727 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
728 } else {
729 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
730 uasm_il_bnez(p, r, tmp, lid);
731 }
732 }
733
734 static __cpuinit void build_huge_update_entries(u32 **p,
735 unsigned int pte,
736 unsigned int tmp)
737 {
738 int small_sequence;
739
740 /*
741 * A huge PTE describes an area the size of the
742 * configured huge page size. This is twice the
743 * of the large TLB entry size we intend to use.
744 * A TLB entry half the size of the configured
745 * huge page size is configured into entrylo0
746 * and entrylo1 to cover the contiguous huge PTE
747 * address space.
748 */
749 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
750
751 /* We can clobber tmp. It isn't used after this.*/
752 if (!small_sequence)
753 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
754
755 build_convert_pte_to_entrylo(p, pte);
756 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
757 /* convert to entrylo1 */
758 if (small_sequence)
759 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
760 else
761 UASM_i_ADDU(p, pte, pte, tmp);
762
763 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
764 }
765
766 static __cpuinit void build_huge_handler_tail(u32 **p,
767 struct uasm_reloc **r,
768 struct uasm_label **l,
769 unsigned int pte,
770 unsigned int ptr)
771 {
772 #ifdef CONFIG_SMP
773 UASM_i_SC(p, pte, 0, ptr);
774 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
775 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
776 #else
777 UASM_i_SW(p, pte, 0, ptr);
778 #endif
779 build_huge_update_entries(p, pte, ptr);
780 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
781 }
782 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
783
784 #ifdef CONFIG_64BIT
785 /*
786 * TMP and PTR are scratch.
787 * TMP will be clobbered, PTR will hold the pmd entry.
788 */
789 static void __cpuinit
790 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
791 unsigned int tmp, unsigned int ptr)
792 {
793 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
794 long pgdc = (long)pgd_current;
795 #endif
796 /*
797 * The vmalloc handling is not in the hotpath.
798 */
799 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
800
801 if (check_for_high_segbits) {
802 /*
803 * The kernel currently implicitely assumes that the
804 * MIPS SEGBITS parameter for the processor is
805 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
806 * allocate virtual addresses outside the maximum
807 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
808 * that doesn't prevent user code from accessing the
809 * higher xuseg addresses. Here, we make sure that
810 * everything but the lower xuseg addresses goes down
811 * the module_alloc/vmalloc path.
812 */
813 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
814 uasm_il_bnez(p, r, ptr, label_vmalloc);
815 } else {
816 uasm_il_bltz(p, r, tmp, label_vmalloc);
817 }
818 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
819
820 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
821 if (pgd_reg != -1) {
822 /* pgd is in pgd_reg */
823 UASM_i_MFC0(p, ptr, 31, pgd_reg);
824 } else {
825 /*
826 * &pgd << 11 stored in CONTEXT [23..63].
827 */
828 UASM_i_MFC0(p, ptr, C0_CONTEXT);
829
830 /* Clear lower 23 bits of context. */
831 uasm_i_dins(p, ptr, 0, 0, 23);
832
833 /* 1 0 1 0 1 << 6 xkphys cached */
834 uasm_i_ori(p, ptr, ptr, 0x540);
835 uasm_i_drotr(p, ptr, ptr, 11);
836 }
837 #elif defined(CONFIG_SMP)
838 # ifdef CONFIG_MIPS_MT_SMTC
839 /*
840 * SMTC uses TCBind value as "CPU" index
841 */
842 uasm_i_mfc0(p, ptr, C0_TCBIND);
843 uasm_i_dsrl_safe(p, ptr, ptr, 19);
844 # else
845 /*
846 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
847 * stored in CONTEXT.
848 */
849 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
850 uasm_i_dsrl_safe(p, ptr, ptr, 23);
851 # endif
852 UASM_i_LA_mostly(p, tmp, pgdc);
853 uasm_i_daddu(p, ptr, ptr, tmp);
854 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
855 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
856 #else
857 UASM_i_LA_mostly(p, ptr, pgdc);
858 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
859 #endif
860
861 uasm_l_vmalloc_done(l, *p);
862
863 /* get pgd offset in bytes */
864 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
865
866 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
867 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
868 #ifndef __PAGETABLE_PMD_FOLDED
869 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
870 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
871 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
872 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
873 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
874 #endif
875 }
876
877 /*
878 * BVADDR is the faulting address, PTR is scratch.
879 * PTR will hold the pgd for vmalloc.
880 */
881 static void __cpuinit
882 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
883 unsigned int bvaddr, unsigned int ptr,
884 enum vmalloc64_mode mode)
885 {
886 long swpd = (long)swapper_pg_dir;
887 int single_insn_swpd;
888 int did_vmalloc_branch = 0;
889
890 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
891
892 uasm_l_vmalloc(l, *p);
893
894 if (mode != not_refill && check_for_high_segbits) {
895 if (single_insn_swpd) {
896 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
897 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
898 did_vmalloc_branch = 1;
899 /* fall through */
900 } else {
901 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
902 }
903 }
904 if (!did_vmalloc_branch) {
905 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
906 uasm_il_b(p, r, label_vmalloc_done);
907 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
908 } else {
909 UASM_i_LA_mostly(p, ptr, swpd);
910 uasm_il_b(p, r, label_vmalloc_done);
911 if (uasm_in_compat_space_p(swpd))
912 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
913 else
914 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
915 }
916 }
917 if (mode != not_refill && check_for_high_segbits) {
918 uasm_l_large_segbits_fault(l, *p);
919 /*
920 * We get here if we are an xsseg address, or if we are
921 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
922 *
923 * Ignoring xsseg (assume disabled so would generate
924 * (address errors?), the only remaining possibility
925 * is the upper xuseg addresses. On processors with
926 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
927 * addresses would have taken an address error. We try
928 * to mimic that here by taking a load/istream page
929 * fault.
930 */
931 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
932 uasm_i_jr(p, ptr);
933
934 if (mode == refill_scratch) {
935 if (scratch_reg > 0)
936 UASM_i_MFC0(p, 1, 31, scratch_reg);
937 else
938 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
939 } else {
940 uasm_i_nop(p);
941 }
942 }
943 }
944
945 #else /* !CONFIG_64BIT */
946
947 /*
948 * TMP and PTR are scratch.
949 * TMP will be clobbered, PTR will hold the pgd entry.
950 */
951 static void __cpuinit __maybe_unused
952 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
953 {
954 long pgdc = (long)pgd_current;
955
956 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
957 #ifdef CONFIG_SMP
958 #ifdef CONFIG_MIPS_MT_SMTC
959 /*
960 * SMTC uses TCBind value as "CPU" index
961 */
962 uasm_i_mfc0(p, ptr, C0_TCBIND);
963 UASM_i_LA_mostly(p, tmp, pgdc);
964 uasm_i_srl(p, ptr, ptr, 19);
965 #else
966 /*
967 * smp_processor_id() << 3 is stored in CONTEXT.
968 */
969 uasm_i_mfc0(p, ptr, C0_CONTEXT);
970 UASM_i_LA_mostly(p, tmp, pgdc);
971 uasm_i_srl(p, ptr, ptr, 23);
972 #endif
973 uasm_i_addu(p, ptr, tmp, ptr);
974 #else
975 UASM_i_LA_mostly(p, ptr, pgdc);
976 #endif
977 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
978 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
979 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
980 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
981 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
982 }
983
984 #endif /* !CONFIG_64BIT */
985
986 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
987 {
988 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
989 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
990
991 switch (current_cpu_type()) {
992 case CPU_VR41XX:
993 case CPU_VR4111:
994 case CPU_VR4121:
995 case CPU_VR4122:
996 case CPU_VR4131:
997 case CPU_VR4181:
998 case CPU_VR4181A:
999 case CPU_VR4133:
1000 shift += 2;
1001 break;
1002
1003 default:
1004 break;
1005 }
1006
1007 if (shift)
1008 UASM_i_SRL(p, ctx, ctx, shift);
1009 uasm_i_andi(p, ctx, ctx, mask);
1010 }
1011
1012 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1013 {
1014 /*
1015 * Bug workaround for the Nevada. It seems as if under certain
1016 * circumstances the move from cp0_context might produce a
1017 * bogus result when the mfc0 instruction and its consumer are
1018 * in a different cacheline or a load instruction, probably any
1019 * memory reference, is between them.
1020 */
1021 switch (current_cpu_type()) {
1022 case CPU_NEVADA:
1023 UASM_i_LW(p, ptr, 0, ptr);
1024 GET_CONTEXT(p, tmp); /* get context reg */
1025 break;
1026
1027 default:
1028 GET_CONTEXT(p, tmp); /* get context reg */
1029 UASM_i_LW(p, ptr, 0, ptr);
1030 break;
1031 }
1032
1033 build_adjust_context(p, tmp);
1034 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1035 }
1036
1037 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
1038 unsigned int ptep)
1039 {
1040 /*
1041 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1042 * Kernel is a special case. Only a few CPUs use it.
1043 */
1044 #ifdef CONFIG_64BIT_PHYS_ADDR
1045 if (cpu_has_64bits) {
1046 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1047 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1048 if (cpu_has_rixi) {
1049 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1050 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1051 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1052 } else {
1053 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1054 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1055 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1056 }
1057 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1058 } else {
1059 int pte_off_even = sizeof(pte_t) / 2;
1060 int pte_off_odd = pte_off_even + sizeof(pte_t);
1061
1062 /* The pte entries are pre-shifted */
1063 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1064 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1065 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1066 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1067 }
1068 #else
1069 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1070 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1071 if (r45k_bvahwbug())
1072 build_tlb_probe_entry(p);
1073 if (cpu_has_rixi) {
1074 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1075 if (r4k_250MHZhwbug())
1076 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1077 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1078 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1079 } else {
1080 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1081 if (r4k_250MHZhwbug())
1082 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1083 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1084 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1085 if (r45k_bvahwbug())
1086 uasm_i_mfc0(p, tmp, C0_INDEX);
1087 }
1088 if (r4k_250MHZhwbug())
1089 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1090 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1091 #endif
1092 }
1093
1094 struct mips_huge_tlb_info {
1095 int huge_pte;
1096 int restore_scratch;
1097 };
1098
1099 static struct mips_huge_tlb_info __cpuinit
1100 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1101 struct uasm_reloc **r, unsigned int tmp,
1102 unsigned int ptr, int c0_scratch)
1103 {
1104 struct mips_huge_tlb_info rv;
1105 unsigned int even, odd;
1106 int vmalloc_branch_delay_filled = 0;
1107 const int scratch = 1; /* Our extra working register */
1108
1109 rv.huge_pte = scratch;
1110 rv.restore_scratch = 0;
1111
1112 if (check_for_high_segbits) {
1113 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1114
1115 if (pgd_reg != -1)
1116 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1117 else
1118 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1119
1120 if (c0_scratch >= 0)
1121 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1122 else
1123 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1124
1125 uasm_i_dsrl_safe(p, scratch, tmp,
1126 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1127 uasm_il_bnez(p, r, scratch, label_vmalloc);
1128
1129 if (pgd_reg == -1) {
1130 vmalloc_branch_delay_filled = 1;
1131 /* Clear lower 23 bits of context. */
1132 uasm_i_dins(p, ptr, 0, 0, 23);
1133 }
1134 } else {
1135 if (pgd_reg != -1)
1136 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1137 else
1138 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1139
1140 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1141
1142 if (c0_scratch >= 0)
1143 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1144 else
1145 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1146
1147 if (pgd_reg == -1)
1148 /* Clear lower 23 bits of context. */
1149 uasm_i_dins(p, ptr, 0, 0, 23);
1150
1151 uasm_il_bltz(p, r, tmp, label_vmalloc);
1152 }
1153
1154 if (pgd_reg == -1) {
1155 vmalloc_branch_delay_filled = 1;
1156 /* 1 0 1 0 1 << 6 xkphys cached */
1157 uasm_i_ori(p, ptr, ptr, 0x540);
1158 uasm_i_drotr(p, ptr, ptr, 11);
1159 }
1160
1161 #ifdef __PAGETABLE_PMD_FOLDED
1162 #define LOC_PTEP scratch
1163 #else
1164 #define LOC_PTEP ptr
1165 #endif
1166
1167 if (!vmalloc_branch_delay_filled)
1168 /* get pgd offset in bytes */
1169 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1170
1171 uasm_l_vmalloc_done(l, *p);
1172
1173 /*
1174 * tmp ptr
1175 * fall-through case = badvaddr *pgd_current
1176 * vmalloc case = badvaddr swapper_pg_dir
1177 */
1178
1179 if (vmalloc_branch_delay_filled)
1180 /* get pgd offset in bytes */
1181 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1182
1183 #ifdef __PAGETABLE_PMD_FOLDED
1184 GET_CONTEXT(p, tmp); /* get context reg */
1185 #endif
1186 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1187
1188 if (use_lwx_insns()) {
1189 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1190 } else {
1191 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1192 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1193 }
1194
1195 #ifndef __PAGETABLE_PMD_FOLDED
1196 /* get pmd offset in bytes */
1197 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1198 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1199 GET_CONTEXT(p, tmp); /* get context reg */
1200
1201 if (use_lwx_insns()) {
1202 UASM_i_LWX(p, scratch, scratch, ptr);
1203 } else {
1204 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1205 UASM_i_LW(p, scratch, 0, ptr);
1206 }
1207 #endif
1208 /* Adjust the context during the load latency. */
1209 build_adjust_context(p, tmp);
1210
1211 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1212 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1213 /*
1214 * The in the LWX case we don't want to do the load in the
1215 * delay slot. It cannot issue in the same cycle and may be
1216 * speculative and unneeded.
1217 */
1218 if (use_lwx_insns())
1219 uasm_i_nop(p);
1220 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1221
1222
1223 /* build_update_entries */
1224 if (use_lwx_insns()) {
1225 even = ptr;
1226 odd = tmp;
1227 UASM_i_LWX(p, even, scratch, tmp);
1228 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1229 UASM_i_LWX(p, odd, scratch, tmp);
1230 } else {
1231 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1232 even = tmp;
1233 odd = ptr;
1234 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1235 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1236 }
1237 if (cpu_has_rixi) {
1238 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1239 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1240 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1241 } else {
1242 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1243 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1244 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1245 }
1246 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1247
1248 if (c0_scratch >= 0) {
1249 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1250 build_tlb_write_entry(p, l, r, tlb_random);
1251 uasm_l_leave(l, *p);
1252 rv.restore_scratch = 1;
1253 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1254 build_tlb_write_entry(p, l, r, tlb_random);
1255 uasm_l_leave(l, *p);
1256 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1257 } else {
1258 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1259 build_tlb_write_entry(p, l, r, tlb_random);
1260 uasm_l_leave(l, *p);
1261 rv.restore_scratch = 1;
1262 }
1263
1264 uasm_i_eret(p); /* return from trap */
1265
1266 return rv;
1267 }
1268
1269 /*
1270 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1271 * because EXL == 0. If we wrap, we can also use the 32 instruction
1272 * slots before the XTLB refill exception handler which belong to the
1273 * unused TLB refill exception.
1274 */
1275 #define MIPS64_REFILL_INSNS 32
1276
1277 static void __cpuinit build_r4000_tlb_refill_handler(void)
1278 {
1279 u32 *p = tlb_handler;
1280 struct uasm_label *l = labels;
1281 struct uasm_reloc *r = relocs;
1282 u32 *f;
1283 unsigned int final_len;
1284 struct mips_huge_tlb_info htlb_info __maybe_unused;
1285 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1286
1287 memset(tlb_handler, 0, sizeof(tlb_handler));
1288 memset(labels, 0, sizeof(labels));
1289 memset(relocs, 0, sizeof(relocs));
1290 memset(final_handler, 0, sizeof(final_handler));
1291
1292 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1293 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1294 scratch_reg);
1295 vmalloc_mode = refill_scratch;
1296 } else {
1297 htlb_info.huge_pte = K0;
1298 htlb_info.restore_scratch = 0;
1299 vmalloc_mode = refill_noscratch;
1300 /*
1301 * create the plain linear handler
1302 */
1303 if (bcm1250_m3_war()) {
1304 unsigned int segbits = 44;
1305
1306 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1307 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1308 uasm_i_xor(&p, K0, K0, K1);
1309 uasm_i_dsrl_safe(&p, K1, K0, 62);
1310 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1311 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1312 uasm_i_or(&p, K0, K0, K1);
1313 uasm_il_bnez(&p, &r, K0, label_leave);
1314 /* No need for uasm_i_nop */
1315 }
1316
1317 #ifdef CONFIG_64BIT
1318 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1319 #else
1320 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1321 #endif
1322
1323 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1324 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1325 #endif
1326
1327 build_get_ptep(&p, K0, K1);
1328 build_update_entries(&p, K0, K1);
1329 build_tlb_write_entry(&p, &l, &r, tlb_random);
1330 uasm_l_leave(&l, p);
1331 uasm_i_eret(&p); /* return from trap */
1332 }
1333 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1334 uasm_l_tlb_huge_update(&l, p);
1335 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1336 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1337 htlb_info.restore_scratch);
1338 #endif
1339
1340 #ifdef CONFIG_64BIT
1341 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1342 #endif
1343
1344 /*
1345 * Overflow check: For the 64bit handler, we need at least one
1346 * free instruction slot for the wrap-around branch. In worst
1347 * case, if the intended insertion point is a delay slot, we
1348 * need three, with the second nop'ed and the third being
1349 * unused.
1350 */
1351 /* Loongson2 ebase is different than r4k, we have more space */
1352 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1353 if ((p - tlb_handler) > 64)
1354 panic("TLB refill handler space exceeded");
1355 #else
1356 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1357 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1358 && uasm_insn_has_bdelay(relocs,
1359 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1360 panic("TLB refill handler space exceeded");
1361 #endif
1362
1363 /*
1364 * Now fold the handler in the TLB refill handler space.
1365 */
1366 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1367 f = final_handler;
1368 /* Simplest case, just copy the handler. */
1369 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1370 final_len = p - tlb_handler;
1371 #else /* CONFIG_64BIT */
1372 f = final_handler + MIPS64_REFILL_INSNS;
1373 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1374 /* Just copy the handler. */
1375 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1376 final_len = p - tlb_handler;
1377 } else {
1378 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1379 const enum label_id ls = label_tlb_huge_update;
1380 #else
1381 const enum label_id ls = label_vmalloc;
1382 #endif
1383 u32 *split;
1384 int ov = 0;
1385 int i;
1386
1387 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1388 ;
1389 BUG_ON(i == ARRAY_SIZE(labels));
1390 split = labels[i].addr;
1391
1392 /*
1393 * See if we have overflown one way or the other.
1394 */
1395 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1396 split < p - MIPS64_REFILL_INSNS)
1397 ov = 1;
1398
1399 if (ov) {
1400 /*
1401 * Split two instructions before the end. One
1402 * for the branch and one for the instruction
1403 * in the delay slot.
1404 */
1405 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1406
1407 /*
1408 * If the branch would fall in a delay slot,
1409 * we must back up an additional instruction
1410 * so that it is no longer in a delay slot.
1411 */
1412 if (uasm_insn_has_bdelay(relocs, split - 1))
1413 split--;
1414 }
1415 /* Copy first part of the handler. */
1416 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1417 f += split - tlb_handler;
1418
1419 if (ov) {
1420 /* Insert branch. */
1421 uasm_l_split(&l, final_handler);
1422 uasm_il_b(&f, &r, label_split);
1423 if (uasm_insn_has_bdelay(relocs, split))
1424 uasm_i_nop(&f);
1425 else {
1426 uasm_copy_handler(relocs, labels,
1427 split, split + 1, f);
1428 uasm_move_labels(labels, f, f + 1, -1);
1429 f++;
1430 split++;
1431 }
1432 }
1433
1434 /* Copy the rest of the handler. */
1435 uasm_copy_handler(relocs, labels, split, p, final_handler);
1436 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1437 (p - split);
1438 }
1439 #endif /* CONFIG_64BIT */
1440
1441 uasm_resolve_relocs(relocs, labels);
1442 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1443 final_len);
1444
1445 memcpy((void *)ebase, final_handler, 0x100);
1446
1447 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1448 }
1449
1450 /*
1451 * 128 instructions for the fastpath handler is generous and should
1452 * never be exceeded.
1453 */
1454 #define FASTPATH_SIZE 128
1455
1456 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1457 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1458 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1459 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1460 u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1461
1462 static void __cpuinit build_r4000_setup_pgd(void)
1463 {
1464 const int a0 = 4;
1465 const int a1 = 5;
1466 u32 *p = tlbmiss_handler_setup_pgd;
1467 struct uasm_label *l = labels;
1468 struct uasm_reloc *r = relocs;
1469
1470 memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1471 memset(labels, 0, sizeof(labels));
1472 memset(relocs, 0, sizeof(relocs));
1473
1474 pgd_reg = allocate_kscratch();
1475
1476 if (pgd_reg == -1) {
1477 /* PGD << 11 in c0_Context */
1478 /*
1479 * If it is a ckseg0 address, convert to a physical
1480 * address. Shifting right by 29 and adding 4 will
1481 * result in zero for these addresses.
1482 *
1483 */
1484 UASM_i_SRA(&p, a1, a0, 29);
1485 UASM_i_ADDIU(&p, a1, a1, 4);
1486 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1487 uasm_i_nop(&p);
1488 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1489 uasm_l_tlbl_goaround1(&l, p);
1490 UASM_i_SLL(&p, a0, a0, 11);
1491 uasm_i_jr(&p, 31);
1492 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1493 } else {
1494 /* PGD in c0_KScratch */
1495 uasm_i_jr(&p, 31);
1496 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1497 }
1498 if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1499 panic("tlbmiss_handler_setup_pgd space exceeded");
1500 uasm_resolve_relocs(relocs, labels);
1501 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1502 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1503
1504 dump_handler("tlbmiss_handler",
1505 tlbmiss_handler_setup_pgd,
1506 ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1507 }
1508 #endif
1509
1510 static void __cpuinit
1511 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1512 {
1513 #ifdef CONFIG_SMP
1514 # ifdef CONFIG_64BIT_PHYS_ADDR
1515 if (cpu_has_64bits)
1516 uasm_i_lld(p, pte, 0, ptr);
1517 else
1518 # endif
1519 UASM_i_LL(p, pte, 0, ptr);
1520 #else
1521 # ifdef CONFIG_64BIT_PHYS_ADDR
1522 if (cpu_has_64bits)
1523 uasm_i_ld(p, pte, 0, ptr);
1524 else
1525 # endif
1526 UASM_i_LW(p, pte, 0, ptr);
1527 #endif
1528 }
1529
1530 static void __cpuinit
1531 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1532 unsigned int mode)
1533 {
1534 #ifdef CONFIG_64BIT_PHYS_ADDR
1535 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1536 #endif
1537
1538 uasm_i_ori(p, pte, pte, mode);
1539 #ifdef CONFIG_SMP
1540 # ifdef CONFIG_64BIT_PHYS_ADDR
1541 if (cpu_has_64bits)
1542 uasm_i_scd(p, pte, 0, ptr);
1543 else
1544 # endif
1545 UASM_i_SC(p, pte, 0, ptr);
1546
1547 if (r10000_llsc_war())
1548 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1549 else
1550 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1551
1552 # ifdef CONFIG_64BIT_PHYS_ADDR
1553 if (!cpu_has_64bits) {
1554 /* no uasm_i_nop needed */
1555 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1556 uasm_i_ori(p, pte, pte, hwmode);
1557 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1558 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1559 /* no uasm_i_nop needed */
1560 uasm_i_lw(p, pte, 0, ptr);
1561 } else
1562 uasm_i_nop(p);
1563 # else
1564 uasm_i_nop(p);
1565 # endif
1566 #else
1567 # ifdef CONFIG_64BIT_PHYS_ADDR
1568 if (cpu_has_64bits)
1569 uasm_i_sd(p, pte, 0, ptr);
1570 else
1571 # endif
1572 UASM_i_SW(p, pte, 0, ptr);
1573
1574 # ifdef CONFIG_64BIT_PHYS_ADDR
1575 if (!cpu_has_64bits) {
1576 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1577 uasm_i_ori(p, pte, pte, hwmode);
1578 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1579 uasm_i_lw(p, pte, 0, ptr);
1580 }
1581 # endif
1582 #endif
1583 }
1584
1585 /*
1586 * Check if PTE is present, if not then jump to LABEL. PTR points to
1587 * the page table where this PTE is located, PTE will be re-loaded
1588 * with it's original value.
1589 */
1590 static void __cpuinit
1591 build_pte_present(u32 **p, struct uasm_reloc **r,
1592 int pte, int ptr, int scratch, enum label_id lid)
1593 {
1594 int t = scratch >= 0 ? scratch : pte;
1595
1596 if (cpu_has_rixi) {
1597 if (use_bbit_insns()) {
1598 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1599 uasm_i_nop(p);
1600 } else {
1601 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1602 uasm_il_beqz(p, r, t, lid);
1603 if (pte == t)
1604 /* You lose the SMP race :-(*/
1605 iPTE_LW(p, pte, ptr);
1606 }
1607 } else {
1608 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1609 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1610 uasm_il_bnez(p, r, t, lid);
1611 if (pte == t)
1612 /* You lose the SMP race :-(*/
1613 iPTE_LW(p, pte, ptr);
1614 }
1615 }
1616
1617 /* Make PTE valid, store result in PTR. */
1618 static void __cpuinit
1619 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1620 unsigned int ptr)
1621 {
1622 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1623
1624 iPTE_SW(p, r, pte, ptr, mode);
1625 }
1626
1627 /*
1628 * Check if PTE can be written to, if not branch to LABEL. Regardless
1629 * restore PTE with value from PTR when done.
1630 */
1631 static void __cpuinit
1632 build_pte_writable(u32 **p, struct uasm_reloc **r,
1633 unsigned int pte, unsigned int ptr, int scratch,
1634 enum label_id lid)
1635 {
1636 int t = scratch >= 0 ? scratch : pte;
1637
1638 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1639 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1640 uasm_il_bnez(p, r, t, lid);
1641 if (pte == t)
1642 /* You lose the SMP race :-(*/
1643 iPTE_LW(p, pte, ptr);
1644 else
1645 uasm_i_nop(p);
1646 }
1647
1648 /* Make PTE writable, update software status bits as well, then store
1649 * at PTR.
1650 */
1651 static void __cpuinit
1652 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1653 unsigned int ptr)
1654 {
1655 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1656 | _PAGE_DIRTY);
1657
1658 iPTE_SW(p, r, pte, ptr, mode);
1659 }
1660
1661 /*
1662 * Check if PTE can be modified, if not branch to LABEL. Regardless
1663 * restore PTE with value from PTR when done.
1664 */
1665 static void __cpuinit
1666 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1667 unsigned int pte, unsigned int ptr, int scratch,
1668 enum label_id lid)
1669 {
1670 if (use_bbit_insns()) {
1671 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1672 uasm_i_nop(p);
1673 } else {
1674 int t = scratch >= 0 ? scratch : pte;
1675 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1676 uasm_il_beqz(p, r, t, lid);
1677 if (pte == t)
1678 /* You lose the SMP race :-(*/
1679 iPTE_LW(p, pte, ptr);
1680 }
1681 }
1682
1683 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1684
1685
1686 /*
1687 * R3000 style TLB load/store/modify handlers.
1688 */
1689
1690 /*
1691 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1692 * Then it returns.
1693 */
1694 static void __cpuinit
1695 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1696 {
1697 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1698 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1699 uasm_i_tlbwi(p);
1700 uasm_i_jr(p, tmp);
1701 uasm_i_rfe(p); /* branch delay */
1702 }
1703
1704 /*
1705 * This places the pte into ENTRYLO0 and writes it with tlbwi
1706 * or tlbwr as appropriate. This is because the index register
1707 * may have the probe fail bit set as a result of a trap on a
1708 * kseg2 access, i.e. without refill. Then it returns.
1709 */
1710 static void __cpuinit
1711 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1712 struct uasm_reloc **r, unsigned int pte,
1713 unsigned int tmp)
1714 {
1715 uasm_i_mfc0(p, tmp, C0_INDEX);
1716 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1717 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1718 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1719 uasm_i_tlbwi(p); /* cp0 delay */
1720 uasm_i_jr(p, tmp);
1721 uasm_i_rfe(p); /* branch delay */
1722 uasm_l_r3000_write_probe_fail(l, *p);
1723 uasm_i_tlbwr(p); /* cp0 delay */
1724 uasm_i_jr(p, tmp);
1725 uasm_i_rfe(p); /* branch delay */
1726 }
1727
1728 static void __cpuinit
1729 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1730 unsigned int ptr)
1731 {
1732 long pgdc = (long)pgd_current;
1733
1734 uasm_i_mfc0(p, pte, C0_BADVADDR);
1735 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1736 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1737 uasm_i_srl(p, pte, pte, 22); /* load delay */
1738 uasm_i_sll(p, pte, pte, 2);
1739 uasm_i_addu(p, ptr, ptr, pte);
1740 uasm_i_mfc0(p, pte, C0_CONTEXT);
1741 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1742 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1743 uasm_i_addu(p, ptr, ptr, pte);
1744 uasm_i_lw(p, pte, 0, ptr);
1745 uasm_i_tlbp(p); /* load delay */
1746 }
1747
1748 static void __cpuinit build_r3000_tlb_load_handler(void)
1749 {
1750 u32 *p = handle_tlbl;
1751 struct uasm_label *l = labels;
1752 struct uasm_reloc *r = relocs;
1753
1754 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1755 memset(labels, 0, sizeof(labels));
1756 memset(relocs, 0, sizeof(relocs));
1757
1758 build_r3000_tlbchange_handler_head(&p, K0, K1);
1759 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1760 uasm_i_nop(&p); /* load delay */
1761 build_make_valid(&p, &r, K0, K1);
1762 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1763
1764 uasm_l_nopage_tlbl(&l, p);
1765 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1766 uasm_i_nop(&p);
1767
1768 if ((p - handle_tlbl) > FASTPATH_SIZE)
1769 panic("TLB load handler fastpath space exceeded");
1770
1771 uasm_resolve_relocs(relocs, labels);
1772 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1773 (unsigned int)(p - handle_tlbl));
1774
1775 dump_handler("r3000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
1776 }
1777
1778 static void __cpuinit build_r3000_tlb_store_handler(void)
1779 {
1780 u32 *p = handle_tlbs;
1781 struct uasm_label *l = labels;
1782 struct uasm_reloc *r = relocs;
1783
1784 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1785 memset(labels, 0, sizeof(labels));
1786 memset(relocs, 0, sizeof(relocs));
1787
1788 build_r3000_tlbchange_handler_head(&p, K0, K1);
1789 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1790 uasm_i_nop(&p); /* load delay */
1791 build_make_write(&p, &r, K0, K1);
1792 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1793
1794 uasm_l_nopage_tlbs(&l, p);
1795 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1796 uasm_i_nop(&p);
1797
1798 if ((p - handle_tlbs) > FASTPATH_SIZE)
1799 panic("TLB store handler fastpath space exceeded");
1800
1801 uasm_resolve_relocs(relocs, labels);
1802 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1803 (unsigned int)(p - handle_tlbs));
1804
1805 dump_handler("r3000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
1806 }
1807
1808 static void __cpuinit build_r3000_tlb_modify_handler(void)
1809 {
1810 u32 *p = handle_tlbm;
1811 struct uasm_label *l = labels;
1812 struct uasm_reloc *r = relocs;
1813
1814 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1815 memset(labels, 0, sizeof(labels));
1816 memset(relocs, 0, sizeof(relocs));
1817
1818 build_r3000_tlbchange_handler_head(&p, K0, K1);
1819 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1820 uasm_i_nop(&p); /* load delay */
1821 build_make_write(&p, &r, K0, K1);
1822 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1823
1824 uasm_l_nopage_tlbm(&l, p);
1825 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1826 uasm_i_nop(&p);
1827
1828 if ((p - handle_tlbm) > FASTPATH_SIZE)
1829 panic("TLB modify handler fastpath space exceeded");
1830
1831 uasm_resolve_relocs(relocs, labels);
1832 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1833 (unsigned int)(p - handle_tlbm));
1834
1835 dump_handler("r3000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
1836 }
1837 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1838
1839 /*
1840 * R4000 style TLB load/store/modify handlers.
1841 */
1842 static struct work_registers __cpuinit
1843 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1844 struct uasm_reloc **r)
1845 {
1846 struct work_registers wr = build_get_work_registers(p);
1847
1848 #ifdef CONFIG_64BIT
1849 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1850 #else
1851 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1852 #endif
1853
1854 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1855 /*
1856 * For huge tlb entries, pmd doesn't contain an address but
1857 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1858 * see if we need to jump to huge tlb processing.
1859 */
1860 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1861 #endif
1862
1863 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1864 UASM_i_LW(p, wr.r2, 0, wr.r2);
1865 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1866 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1867 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1868
1869 #ifdef CONFIG_SMP
1870 uasm_l_smp_pgtable_change(l, *p);
1871 #endif
1872 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1873 if (!m4kc_tlbp_war())
1874 build_tlb_probe_entry(p);
1875 return wr;
1876 }
1877
1878 static void __cpuinit
1879 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1880 struct uasm_reloc **r, unsigned int tmp,
1881 unsigned int ptr)
1882 {
1883 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1884 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1885 build_update_entries(p, tmp, ptr);
1886 build_tlb_write_entry(p, l, r, tlb_indexed);
1887 uasm_l_leave(l, *p);
1888 build_restore_work_registers(p);
1889 uasm_i_eret(p); /* return from trap */
1890
1891 #ifdef CONFIG_64BIT
1892 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1893 #endif
1894 }
1895
1896 static void __cpuinit build_r4000_tlb_load_handler(void)
1897 {
1898 u32 *p = handle_tlbl;
1899 struct uasm_label *l = labels;
1900 struct uasm_reloc *r = relocs;
1901 struct work_registers wr;
1902
1903 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1904 memset(labels, 0, sizeof(labels));
1905 memset(relocs, 0, sizeof(relocs));
1906
1907 if (bcm1250_m3_war()) {
1908 unsigned int segbits = 44;
1909
1910 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1911 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1912 uasm_i_xor(&p, K0, K0, K1);
1913 uasm_i_dsrl_safe(&p, K1, K0, 62);
1914 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1915 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1916 uasm_i_or(&p, K0, K0, K1);
1917 uasm_il_bnez(&p, &r, K0, label_leave);
1918 /* No need for uasm_i_nop */
1919 }
1920
1921 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1922 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1923 if (m4kc_tlbp_war())
1924 build_tlb_probe_entry(&p);
1925
1926 if (cpu_has_rixi) {
1927 /*
1928 * If the page is not _PAGE_VALID, RI or XI could not
1929 * have triggered it. Skip the expensive test..
1930 */
1931 if (use_bbit_insns()) {
1932 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1933 label_tlbl_goaround1);
1934 } else {
1935 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1936 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1937 }
1938 uasm_i_nop(&p);
1939
1940 uasm_i_tlbr(&p);
1941 /* Examine entrylo 0 or 1 based on ptr. */
1942 if (use_bbit_insns()) {
1943 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1944 } else {
1945 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1946 uasm_i_beqz(&p, wr.r3, 8);
1947 }
1948 /* load it in the delay slot*/
1949 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1950 /* load it if ptr is odd */
1951 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1952 /*
1953 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1954 * XI must have triggered it.
1955 */
1956 if (use_bbit_insns()) {
1957 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1958 uasm_i_nop(&p);
1959 uasm_l_tlbl_goaround1(&l, p);
1960 } else {
1961 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1962 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1963 uasm_i_nop(&p);
1964 }
1965 uasm_l_tlbl_goaround1(&l, p);
1966 }
1967 build_make_valid(&p, &r, wr.r1, wr.r2);
1968 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1969
1970 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1971 /*
1972 * This is the entry point when build_r4000_tlbchange_handler_head
1973 * spots a huge page.
1974 */
1975 uasm_l_tlb_huge_update(&l, p);
1976 iPTE_LW(&p, wr.r1, wr.r2);
1977 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1978 build_tlb_probe_entry(&p);
1979
1980 if (cpu_has_rixi) {
1981 /*
1982 * If the page is not _PAGE_VALID, RI or XI could not
1983 * have triggered it. Skip the expensive test..
1984 */
1985 if (use_bbit_insns()) {
1986 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1987 label_tlbl_goaround2);
1988 } else {
1989 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1990 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1991 }
1992 uasm_i_nop(&p);
1993
1994 uasm_i_tlbr(&p);
1995 /* Examine entrylo 0 or 1 based on ptr. */
1996 if (use_bbit_insns()) {
1997 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1998 } else {
1999 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2000 uasm_i_beqz(&p, wr.r3, 8);
2001 }
2002 /* load it in the delay slot*/
2003 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2004 /* load it if ptr is odd */
2005 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2006 /*
2007 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2008 * XI must have triggered it.
2009 */
2010 if (use_bbit_insns()) {
2011 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2012 } else {
2013 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2014 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2015 }
2016 if (PM_DEFAULT_MASK == 0)
2017 uasm_i_nop(&p);
2018 /*
2019 * We clobbered C0_PAGEMASK, restore it. On the other branch
2020 * it is restored in build_huge_tlb_write_entry.
2021 */
2022 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2023
2024 uasm_l_tlbl_goaround2(&l, p);
2025 }
2026 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2027 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2028 #endif
2029
2030 uasm_l_nopage_tlbl(&l, p);
2031 build_restore_work_registers(&p);
2032 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2033 uasm_i_nop(&p);
2034
2035 if ((p - handle_tlbl) > FASTPATH_SIZE)
2036 panic("TLB load handler fastpath space exceeded");
2037
2038 uasm_resolve_relocs(relocs, labels);
2039 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2040 (unsigned int)(p - handle_tlbl));
2041
2042 dump_handler("r4000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
2043 }
2044
2045 static void __cpuinit build_r4000_tlb_store_handler(void)
2046 {
2047 u32 *p = handle_tlbs;
2048 struct uasm_label *l = labels;
2049 struct uasm_reloc *r = relocs;
2050 struct work_registers wr;
2051
2052 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2053 memset(labels, 0, sizeof(labels));
2054 memset(relocs, 0, sizeof(relocs));
2055
2056 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2057 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2058 if (m4kc_tlbp_war())
2059 build_tlb_probe_entry(&p);
2060 build_make_write(&p, &r, wr.r1, wr.r2);
2061 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2062
2063 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2064 /*
2065 * This is the entry point when
2066 * build_r4000_tlbchange_handler_head spots a huge page.
2067 */
2068 uasm_l_tlb_huge_update(&l, p);
2069 iPTE_LW(&p, wr.r1, wr.r2);
2070 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2071 build_tlb_probe_entry(&p);
2072 uasm_i_ori(&p, wr.r1, wr.r1,
2073 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2074 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2075 #endif
2076
2077 uasm_l_nopage_tlbs(&l, p);
2078 build_restore_work_registers(&p);
2079 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2080 uasm_i_nop(&p);
2081
2082 if ((p - handle_tlbs) > FASTPATH_SIZE)
2083 panic("TLB store handler fastpath space exceeded");
2084
2085 uasm_resolve_relocs(relocs, labels);
2086 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2087 (unsigned int)(p - handle_tlbs));
2088
2089 dump_handler("r4000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
2090 }
2091
2092 static void __cpuinit build_r4000_tlb_modify_handler(void)
2093 {
2094 u32 *p = handle_tlbm;
2095 struct uasm_label *l = labels;
2096 struct uasm_reloc *r = relocs;
2097 struct work_registers wr;
2098
2099 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2100 memset(labels, 0, sizeof(labels));
2101 memset(relocs, 0, sizeof(relocs));
2102
2103 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2104 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2105 if (m4kc_tlbp_war())
2106 build_tlb_probe_entry(&p);
2107 /* Present and writable bits set, set accessed and dirty bits. */
2108 build_make_write(&p, &r, wr.r1, wr.r2);
2109 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2110
2111 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2112 /*
2113 * This is the entry point when
2114 * build_r4000_tlbchange_handler_head spots a huge page.
2115 */
2116 uasm_l_tlb_huge_update(&l, p);
2117 iPTE_LW(&p, wr.r1, wr.r2);
2118 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2119 build_tlb_probe_entry(&p);
2120 uasm_i_ori(&p, wr.r1, wr.r1,
2121 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2122 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2123 #endif
2124
2125 uasm_l_nopage_tlbm(&l, p);
2126 build_restore_work_registers(&p);
2127 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2128 uasm_i_nop(&p);
2129
2130 if ((p - handle_tlbm) > FASTPATH_SIZE)
2131 panic("TLB modify handler fastpath space exceeded");
2132
2133 uasm_resolve_relocs(relocs, labels);
2134 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2135 (unsigned int)(p - handle_tlbm));
2136
2137 dump_handler("r4000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
2138 }
2139
2140 void __cpuinit build_tlb_refill_handler(void)
2141 {
2142 /*
2143 * The refill handler is generated per-CPU, multi-node systems
2144 * may have local storage for it. The other handlers are only
2145 * needed once.
2146 */
2147 static int run_once = 0;
2148
2149 output_pgtable_bits_defines();
2150
2151 #ifdef CONFIG_64BIT
2152 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2153 #endif
2154
2155 switch (current_cpu_type()) {
2156 case CPU_R2000:
2157 case CPU_R3000:
2158 case CPU_R3000A:
2159 case CPU_R3081E:
2160 case CPU_TX3912:
2161 case CPU_TX3922:
2162 case CPU_TX3927:
2163 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2164 build_r3000_tlb_refill_handler();
2165 if (!run_once) {
2166 build_r3000_tlb_load_handler();
2167 build_r3000_tlb_store_handler();
2168 build_r3000_tlb_modify_handler();
2169 run_once++;
2170 }
2171 #else
2172 panic("No R3000 TLB refill handler");
2173 #endif
2174 break;
2175
2176 case CPU_R6000:
2177 case CPU_R6000A:
2178 panic("No R6000 TLB refill handler yet");
2179 break;
2180
2181 case CPU_R8000:
2182 panic("No R8000 TLB refill handler yet");
2183 break;
2184
2185 default:
2186 if (!run_once) {
2187 scratch_reg = allocate_kscratch();
2188 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2189 build_r4000_setup_pgd();
2190 #endif
2191 build_r4000_tlb_load_handler();
2192 build_r4000_tlb_store_handler();
2193 build_r4000_tlb_modify_handler();
2194 run_once++;
2195 }
2196 build_r4000_tlb_refill_handler();
2197 }
2198 }
2199
2200 void __cpuinit flush_tlb_handlers(void)
2201 {
2202 local_flush_icache_range((unsigned long)handle_tlbl,
2203 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2204 local_flush_icache_range((unsigned long)handle_tlbs,
2205 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2206 local_flush_icache_range((unsigned long)handle_tlbm,
2207 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2208 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2209 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2210 (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2211 #endif
2212 }