Merge tag 'armsoc-tee' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / arch / mips / kvm / mips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/bootmem.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100 /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
45 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
46 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
47 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
48 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
54 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
56 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
57 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
59 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 #ifdef CONFIG_KVM_MIPS_VZ
63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits), KVM_STAT_VCPU },
64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits), KVM_STAT_VCPU },
65 { "vz_hc", VCPU_STAT(vz_hc_exits), KVM_STAT_VCPU },
66 { "vz_grr", VCPU_STAT(vz_grr_exits), KVM_STAT_VCPU },
67 { "vz_gva", VCPU_STAT(vz_gva_exits), KVM_STAT_VCPU },
68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits), KVM_STAT_VCPU },
69 { "vz_gpa", VCPU_STAT(vz_gpa_exits), KVM_STAT_VCPU },
70 { "vz_resvd", VCPU_STAT(vz_resvd_exits), KVM_STAT_VCPU },
71 #endif
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
76 {NULL}
77 };
78
79 bool kvm_trace_guest_mode_change;
80
81 int kvm_guest_mode_change_trace_reg(void)
82 {
83 kvm_trace_guest_mode_change = 1;
84 return 0;
85 }
86
87 void kvm_guest_mode_change_trace_unreg(void)
88 {
89 kvm_trace_guest_mode_change = 0;
90 }
91
92 /*
93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94 * Config7, so we are "runnable" if interrupts are pending
95 */
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97 {
98 return !!(vcpu->arch.pending_exceptions);
99 }
100
101 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
102 {
103 return 1;
104 }
105
106 int kvm_arch_hardware_enable(void)
107 {
108 return kvm_mips_callbacks->hardware_enable();
109 }
110
111 void kvm_arch_hardware_disable(void)
112 {
113 kvm_mips_callbacks->hardware_disable();
114 }
115
116 int kvm_arch_hardware_setup(void)
117 {
118 return 0;
119 }
120
121 void kvm_arch_check_processor_compat(void *rtn)
122 {
123 *(int *)rtn = 0;
124 }
125
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128 switch (type) {
129 #ifdef CONFIG_KVM_MIPS_VZ
130 case KVM_VM_MIPS_VZ:
131 #else
132 case KVM_VM_MIPS_TE:
133 #endif
134 break;
135 default:
136 /* Unsupported KVM type */
137 return -EINVAL;
138 };
139
140 /* Allocate page table to map GPA -> RPA */
141 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
142 if (!kvm->arch.gpa_mm.pgd)
143 return -ENOMEM;
144
145 return 0;
146 }
147
148 bool kvm_arch_has_vcpu_debugfs(void)
149 {
150 return false;
151 }
152
153 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
154 {
155 return 0;
156 }
157
158 void kvm_mips_free_vcpus(struct kvm *kvm)
159 {
160 unsigned int i;
161 struct kvm_vcpu *vcpu;
162
163 kvm_for_each_vcpu(i, vcpu, kvm) {
164 kvm_arch_vcpu_free(vcpu);
165 }
166
167 mutex_lock(&kvm->lock);
168
169 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
170 kvm->vcpus[i] = NULL;
171
172 atomic_set(&kvm->online_vcpus, 0);
173
174 mutex_unlock(&kvm->lock);
175 }
176
177 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
178 {
179 /* It should always be safe to remove after flushing the whole range */
180 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
181 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
182 }
183
184 void kvm_arch_destroy_vm(struct kvm *kvm)
185 {
186 kvm_mips_free_vcpus(kvm);
187 kvm_mips_free_gpa_pt(kvm);
188 }
189
190 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
191 unsigned long arg)
192 {
193 return -ENOIOCTLCMD;
194 }
195
196 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
197 unsigned long npages)
198 {
199 return 0;
200 }
201
202 void kvm_arch_flush_shadow_all(struct kvm *kvm)
203 {
204 /* Flush whole GPA */
205 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
206
207 /* Let implementation do the rest */
208 kvm_mips_callbacks->flush_shadow_all(kvm);
209 }
210
211 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
212 struct kvm_memory_slot *slot)
213 {
214 /*
215 * The slot has been made invalid (ready for moving or deletion), so we
216 * need to ensure that it can no longer be accessed by any guest VCPUs.
217 */
218
219 spin_lock(&kvm->mmu_lock);
220 /* Flush slot from GPA */
221 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
222 slot->base_gfn + slot->npages - 1);
223 /* Let implementation do the rest */
224 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
225 spin_unlock(&kvm->mmu_lock);
226 }
227
228 int kvm_arch_prepare_memory_region(struct kvm *kvm,
229 struct kvm_memory_slot *memslot,
230 const struct kvm_userspace_memory_region *mem,
231 enum kvm_mr_change change)
232 {
233 return 0;
234 }
235
236 void kvm_arch_commit_memory_region(struct kvm *kvm,
237 const struct kvm_userspace_memory_region *mem,
238 const struct kvm_memory_slot *old,
239 const struct kvm_memory_slot *new,
240 enum kvm_mr_change change)
241 {
242 int needs_flush;
243
244 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
245 __func__, kvm, mem->slot, mem->guest_phys_addr,
246 mem->memory_size, mem->userspace_addr);
247
248 /*
249 * If dirty page logging is enabled, write protect all pages in the slot
250 * ready for dirty logging.
251 *
252 * There is no need to do this in any of the following cases:
253 * CREATE: No dirty mappings will already exist.
254 * MOVE/DELETE: The old mappings will already have been cleaned up by
255 * kvm_arch_flush_shadow_memslot()
256 */
257 if (change == KVM_MR_FLAGS_ONLY &&
258 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
259 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
260 spin_lock(&kvm->mmu_lock);
261 /* Write protect GPA page table entries */
262 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
263 new->base_gfn + new->npages - 1);
264 /* Let implementation do the rest */
265 if (needs_flush)
266 kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
267 spin_unlock(&kvm->mmu_lock);
268 }
269 }
270
271 static inline void dump_handler(const char *symbol, void *start, void *end)
272 {
273 u32 *p;
274
275 pr_debug("LEAF(%s)\n", symbol);
276
277 pr_debug("\t.set push\n");
278 pr_debug("\t.set noreorder\n");
279
280 for (p = start; p < (u32 *)end; ++p)
281 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
282
283 pr_debug("\t.set\tpop\n");
284
285 pr_debug("\tEND(%s)\n", symbol);
286 }
287
288 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
289 {
290 int err, size;
291 void *gebase, *p, *handler, *refill_start, *refill_end;
292 int i;
293
294 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
295
296 if (!vcpu) {
297 err = -ENOMEM;
298 goto out;
299 }
300
301 err = kvm_vcpu_init(vcpu, kvm, id);
302
303 if (err)
304 goto out_free_cpu;
305
306 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
307
308 /*
309 * Allocate space for host mode exception handlers that handle
310 * guest mode exits
311 */
312 if (cpu_has_veic || cpu_has_vint)
313 size = 0x200 + VECTORSPACING * 64;
314 else
315 size = 0x4000;
316
317 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
318
319 if (!gebase) {
320 err = -ENOMEM;
321 goto out_uninit_cpu;
322 }
323 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
324 ALIGN(size, PAGE_SIZE), gebase);
325
326 /*
327 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
328 * limits us to the low 512MB of physical address space. If the memory
329 * we allocate is out of range, just give up now.
330 */
331 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
332 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
333 gebase);
334 err = -ENOMEM;
335 goto out_free_gebase;
336 }
337
338 /* Save new ebase */
339 vcpu->arch.guest_ebase = gebase;
340
341 /* Build guest exception vectors dynamically in unmapped memory */
342 handler = gebase + 0x2000;
343
344 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
345 refill_start = gebase;
346 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
347 refill_start += 0x080;
348 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
349
350 /* General Exception Entry point */
351 kvm_mips_build_exception(gebase + 0x180, handler);
352
353 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
354 for (i = 0; i < 8; i++) {
355 kvm_debug("L1 Vectored handler @ %p\n",
356 gebase + 0x200 + (i * VECTORSPACING));
357 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
358 handler);
359 }
360
361 /* General exit handler */
362 p = handler;
363 p = kvm_mips_build_exit(p);
364
365 /* Guest entry routine */
366 vcpu->arch.vcpu_run = p;
367 p = kvm_mips_build_vcpu_run(p);
368
369 /* Dump the generated code */
370 pr_debug("#include <asm/asm.h>\n");
371 pr_debug("#include <asm/regdef.h>\n");
372 pr_debug("\n");
373 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
374 dump_handler("kvm_tlb_refill", refill_start, refill_end);
375 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
376 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
377
378 /* Invalidate the icache for these ranges */
379 flush_icache_range((unsigned long)gebase,
380 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
381
382 /*
383 * Allocate comm page for guest kernel, a TLB will be reserved for
384 * mapping GVA @ 0xFFFF8000 to this page
385 */
386 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
387
388 if (!vcpu->arch.kseg0_commpage) {
389 err = -ENOMEM;
390 goto out_free_gebase;
391 }
392
393 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
394 kvm_mips_commpage_init(vcpu);
395
396 /* Init */
397 vcpu->arch.last_sched_cpu = -1;
398 vcpu->arch.last_exec_cpu = -1;
399
400 return vcpu;
401
402 out_free_gebase:
403 kfree(gebase);
404
405 out_uninit_cpu:
406 kvm_vcpu_uninit(vcpu);
407
408 out_free_cpu:
409 kfree(vcpu);
410
411 out:
412 return ERR_PTR(err);
413 }
414
415 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
416 {
417 hrtimer_cancel(&vcpu->arch.comparecount_timer);
418
419 kvm_vcpu_uninit(vcpu);
420
421 kvm_mips_dump_stats(vcpu);
422
423 kvm_mmu_free_memory_caches(vcpu);
424 kfree(vcpu->arch.guest_ebase);
425 kfree(vcpu->arch.kseg0_commpage);
426 kfree(vcpu);
427 }
428
429 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
430 {
431 kvm_arch_vcpu_free(vcpu);
432 }
433
434 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
435 struct kvm_guest_debug *dbg)
436 {
437 return -ENOIOCTLCMD;
438 }
439
440 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
441 {
442 int r = -EINTR;
443 sigset_t sigsaved;
444
445 if (vcpu->sigset_active)
446 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
447
448 if (vcpu->mmio_needed) {
449 if (!vcpu->mmio_is_write)
450 kvm_mips_complete_mmio_load(vcpu, run);
451 vcpu->mmio_needed = 0;
452 }
453
454 if (run->immediate_exit)
455 goto out;
456
457 lose_fpu(1);
458
459 local_irq_disable();
460 guest_enter_irqoff();
461 trace_kvm_enter(vcpu);
462
463 /*
464 * Make sure the read of VCPU requests in vcpu_run() callback is not
465 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
466 * flush request while the requester sees the VCPU as outside of guest
467 * mode and not needing an IPI.
468 */
469 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
470
471 r = kvm_mips_callbacks->vcpu_run(run, vcpu);
472
473 trace_kvm_out(vcpu);
474 guest_exit_irqoff();
475 local_irq_enable();
476
477 out:
478 if (vcpu->sigset_active)
479 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
480
481 return r;
482 }
483
484 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
485 struct kvm_mips_interrupt *irq)
486 {
487 int intr = (int)irq->irq;
488 struct kvm_vcpu *dvcpu = NULL;
489
490 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
491 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
492 (int)intr);
493
494 if (irq->cpu == -1)
495 dvcpu = vcpu;
496 else
497 dvcpu = vcpu->kvm->vcpus[irq->cpu];
498
499 if (intr == 2 || intr == 3 || intr == 4) {
500 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
501
502 } else if (intr == -2 || intr == -3 || intr == -4) {
503 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
504 } else {
505 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
506 irq->cpu, irq->irq);
507 return -EINVAL;
508 }
509
510 dvcpu->arch.wait = 0;
511
512 if (swait_active(&dvcpu->wq))
513 swake_up(&dvcpu->wq);
514
515 return 0;
516 }
517
518 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
519 struct kvm_mp_state *mp_state)
520 {
521 return -ENOIOCTLCMD;
522 }
523
524 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
525 struct kvm_mp_state *mp_state)
526 {
527 return -ENOIOCTLCMD;
528 }
529
530 static u64 kvm_mips_get_one_regs[] = {
531 KVM_REG_MIPS_R0,
532 KVM_REG_MIPS_R1,
533 KVM_REG_MIPS_R2,
534 KVM_REG_MIPS_R3,
535 KVM_REG_MIPS_R4,
536 KVM_REG_MIPS_R5,
537 KVM_REG_MIPS_R6,
538 KVM_REG_MIPS_R7,
539 KVM_REG_MIPS_R8,
540 KVM_REG_MIPS_R9,
541 KVM_REG_MIPS_R10,
542 KVM_REG_MIPS_R11,
543 KVM_REG_MIPS_R12,
544 KVM_REG_MIPS_R13,
545 KVM_REG_MIPS_R14,
546 KVM_REG_MIPS_R15,
547 KVM_REG_MIPS_R16,
548 KVM_REG_MIPS_R17,
549 KVM_REG_MIPS_R18,
550 KVM_REG_MIPS_R19,
551 KVM_REG_MIPS_R20,
552 KVM_REG_MIPS_R21,
553 KVM_REG_MIPS_R22,
554 KVM_REG_MIPS_R23,
555 KVM_REG_MIPS_R24,
556 KVM_REG_MIPS_R25,
557 KVM_REG_MIPS_R26,
558 KVM_REG_MIPS_R27,
559 KVM_REG_MIPS_R28,
560 KVM_REG_MIPS_R29,
561 KVM_REG_MIPS_R30,
562 KVM_REG_MIPS_R31,
563
564 #ifndef CONFIG_CPU_MIPSR6
565 KVM_REG_MIPS_HI,
566 KVM_REG_MIPS_LO,
567 #endif
568 KVM_REG_MIPS_PC,
569 };
570
571 static u64 kvm_mips_get_one_regs_fpu[] = {
572 KVM_REG_MIPS_FCR_IR,
573 KVM_REG_MIPS_FCR_CSR,
574 };
575
576 static u64 kvm_mips_get_one_regs_msa[] = {
577 KVM_REG_MIPS_MSA_IR,
578 KVM_REG_MIPS_MSA_CSR,
579 };
580
581 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
582 {
583 unsigned long ret;
584
585 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
586 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
587 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
588 /* odd doubles */
589 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
590 ret += 16;
591 }
592 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
593 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
594 ret += kvm_mips_callbacks->num_regs(vcpu);
595
596 return ret;
597 }
598
599 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
600 {
601 u64 index;
602 unsigned int i;
603
604 if (copy_to_user(indices, kvm_mips_get_one_regs,
605 sizeof(kvm_mips_get_one_regs)))
606 return -EFAULT;
607 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
608
609 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
610 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
611 sizeof(kvm_mips_get_one_regs_fpu)))
612 return -EFAULT;
613 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
614
615 for (i = 0; i < 32; ++i) {
616 index = KVM_REG_MIPS_FPR_32(i);
617 if (copy_to_user(indices, &index, sizeof(index)))
618 return -EFAULT;
619 ++indices;
620
621 /* skip odd doubles if no F64 */
622 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
623 continue;
624
625 index = KVM_REG_MIPS_FPR_64(i);
626 if (copy_to_user(indices, &index, sizeof(index)))
627 return -EFAULT;
628 ++indices;
629 }
630 }
631
632 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
633 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
634 sizeof(kvm_mips_get_one_regs_msa)))
635 return -EFAULT;
636 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
637
638 for (i = 0; i < 32; ++i) {
639 index = KVM_REG_MIPS_VEC_128(i);
640 if (copy_to_user(indices, &index, sizeof(index)))
641 return -EFAULT;
642 ++indices;
643 }
644 }
645
646 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
647 }
648
649 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
650 const struct kvm_one_reg *reg)
651 {
652 struct mips_coproc *cop0 = vcpu->arch.cop0;
653 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
654 int ret;
655 s64 v;
656 s64 vs[2];
657 unsigned int idx;
658
659 switch (reg->id) {
660 /* General purpose registers */
661 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
662 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
663 break;
664 #ifndef CONFIG_CPU_MIPSR6
665 case KVM_REG_MIPS_HI:
666 v = (long)vcpu->arch.hi;
667 break;
668 case KVM_REG_MIPS_LO:
669 v = (long)vcpu->arch.lo;
670 break;
671 #endif
672 case KVM_REG_MIPS_PC:
673 v = (long)vcpu->arch.pc;
674 break;
675
676 /* Floating point registers */
677 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
678 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
679 return -EINVAL;
680 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
681 /* Odd singles in top of even double when FR=0 */
682 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
683 v = get_fpr32(&fpu->fpr[idx], 0);
684 else
685 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
686 break;
687 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
688 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
689 return -EINVAL;
690 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
691 /* Can't access odd doubles in FR=0 mode */
692 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
693 return -EINVAL;
694 v = get_fpr64(&fpu->fpr[idx], 0);
695 break;
696 case KVM_REG_MIPS_FCR_IR:
697 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698 return -EINVAL;
699 v = boot_cpu_data.fpu_id;
700 break;
701 case KVM_REG_MIPS_FCR_CSR:
702 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
703 return -EINVAL;
704 v = fpu->fcr31;
705 break;
706
707 /* MIPS SIMD Architecture (MSA) registers */
708 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
709 if (!kvm_mips_guest_has_msa(&vcpu->arch))
710 return -EINVAL;
711 /* Can't access MSA registers in FR=0 mode */
712 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
713 return -EINVAL;
714 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
715 #ifdef CONFIG_CPU_LITTLE_ENDIAN
716 /* least significant byte first */
717 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
718 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
719 #else
720 /* most significant byte first */
721 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
722 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
723 #endif
724 break;
725 case KVM_REG_MIPS_MSA_IR:
726 if (!kvm_mips_guest_has_msa(&vcpu->arch))
727 return -EINVAL;
728 v = boot_cpu_data.msa_id;
729 break;
730 case KVM_REG_MIPS_MSA_CSR:
731 if (!kvm_mips_guest_has_msa(&vcpu->arch))
732 return -EINVAL;
733 v = fpu->msacsr;
734 break;
735
736 /* registers to be handled specially */
737 default:
738 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
739 if (ret)
740 return ret;
741 break;
742 }
743 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
744 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
745
746 return put_user(v, uaddr64);
747 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
748 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
749 u32 v32 = (u32)v;
750
751 return put_user(v32, uaddr32);
752 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
753 void __user *uaddr = (void __user *)(long)reg->addr;
754
755 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
756 } else {
757 return -EINVAL;
758 }
759 }
760
761 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
762 const struct kvm_one_reg *reg)
763 {
764 struct mips_coproc *cop0 = vcpu->arch.cop0;
765 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
766 s64 v;
767 s64 vs[2];
768 unsigned int idx;
769
770 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
771 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
772
773 if (get_user(v, uaddr64) != 0)
774 return -EFAULT;
775 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
776 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
777 s32 v32;
778
779 if (get_user(v32, uaddr32) != 0)
780 return -EFAULT;
781 v = (s64)v32;
782 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
783 void __user *uaddr = (void __user *)(long)reg->addr;
784
785 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
786 } else {
787 return -EINVAL;
788 }
789
790 switch (reg->id) {
791 /* General purpose registers */
792 case KVM_REG_MIPS_R0:
793 /* Silently ignore requests to set $0 */
794 break;
795 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
796 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
797 break;
798 #ifndef CONFIG_CPU_MIPSR6
799 case KVM_REG_MIPS_HI:
800 vcpu->arch.hi = v;
801 break;
802 case KVM_REG_MIPS_LO:
803 vcpu->arch.lo = v;
804 break;
805 #endif
806 case KVM_REG_MIPS_PC:
807 vcpu->arch.pc = v;
808 break;
809
810 /* Floating point registers */
811 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
812 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
813 return -EINVAL;
814 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
815 /* Odd singles in top of even double when FR=0 */
816 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
817 set_fpr32(&fpu->fpr[idx], 0, v);
818 else
819 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
820 break;
821 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
822 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
823 return -EINVAL;
824 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
825 /* Can't access odd doubles in FR=0 mode */
826 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
827 return -EINVAL;
828 set_fpr64(&fpu->fpr[idx], 0, v);
829 break;
830 case KVM_REG_MIPS_FCR_IR:
831 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
832 return -EINVAL;
833 /* Read-only */
834 break;
835 case KVM_REG_MIPS_FCR_CSR:
836 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
837 return -EINVAL;
838 fpu->fcr31 = v;
839 break;
840
841 /* MIPS SIMD Architecture (MSA) registers */
842 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
843 if (!kvm_mips_guest_has_msa(&vcpu->arch))
844 return -EINVAL;
845 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
846 #ifdef CONFIG_CPU_LITTLE_ENDIAN
847 /* least significant byte first */
848 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
849 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
850 #else
851 /* most significant byte first */
852 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
853 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
854 #endif
855 break;
856 case KVM_REG_MIPS_MSA_IR:
857 if (!kvm_mips_guest_has_msa(&vcpu->arch))
858 return -EINVAL;
859 /* Read-only */
860 break;
861 case KVM_REG_MIPS_MSA_CSR:
862 if (!kvm_mips_guest_has_msa(&vcpu->arch))
863 return -EINVAL;
864 fpu->msacsr = v;
865 break;
866
867 /* registers to be handled specially */
868 default:
869 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
870 }
871 return 0;
872 }
873
874 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
875 struct kvm_enable_cap *cap)
876 {
877 int r = 0;
878
879 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
880 return -EINVAL;
881 if (cap->flags)
882 return -EINVAL;
883 if (cap->args[0])
884 return -EINVAL;
885
886 switch (cap->cap) {
887 case KVM_CAP_MIPS_FPU:
888 vcpu->arch.fpu_enabled = true;
889 break;
890 case KVM_CAP_MIPS_MSA:
891 vcpu->arch.msa_enabled = true;
892 break;
893 default:
894 r = -EINVAL;
895 break;
896 }
897
898 return r;
899 }
900
901 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
902 unsigned long arg)
903 {
904 struct kvm_vcpu *vcpu = filp->private_data;
905 void __user *argp = (void __user *)arg;
906 long r;
907
908 switch (ioctl) {
909 case KVM_SET_ONE_REG:
910 case KVM_GET_ONE_REG: {
911 struct kvm_one_reg reg;
912
913 if (copy_from_user(&reg, argp, sizeof(reg)))
914 return -EFAULT;
915 if (ioctl == KVM_SET_ONE_REG)
916 return kvm_mips_set_reg(vcpu, &reg);
917 else
918 return kvm_mips_get_reg(vcpu, &reg);
919 }
920 case KVM_GET_REG_LIST: {
921 struct kvm_reg_list __user *user_list = argp;
922 struct kvm_reg_list reg_list;
923 unsigned n;
924
925 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
926 return -EFAULT;
927 n = reg_list.n;
928 reg_list.n = kvm_mips_num_regs(vcpu);
929 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
930 return -EFAULT;
931 if (n < reg_list.n)
932 return -E2BIG;
933 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
934 }
935 case KVM_INTERRUPT:
936 {
937 struct kvm_mips_interrupt irq;
938
939 if (copy_from_user(&irq, argp, sizeof(irq)))
940 return -EFAULT;
941 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
942 irq.irq);
943
944 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
945 break;
946 }
947 case KVM_ENABLE_CAP: {
948 struct kvm_enable_cap cap;
949
950 if (copy_from_user(&cap, argp, sizeof(cap)))
951 return -EFAULT;
952 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
953 break;
954 }
955 default:
956 r = -ENOIOCTLCMD;
957 }
958 return r;
959 }
960
961 /**
962 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
963 * @kvm: kvm instance
964 * @log: slot id and address to which we copy the log
965 *
966 * Steps 1-4 below provide general overview of dirty page logging. See
967 * kvm_get_dirty_log_protect() function description for additional details.
968 *
969 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
970 * always flush the TLB (step 4) even if previous step failed and the dirty
971 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
972 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
973 * writes will be marked dirty for next log read.
974 *
975 * 1. Take a snapshot of the bit and clear it if needed.
976 * 2. Write protect the corresponding page.
977 * 3. Copy the snapshot to the userspace.
978 * 4. Flush TLB's if needed.
979 */
980 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
981 {
982 struct kvm_memslots *slots;
983 struct kvm_memory_slot *memslot;
984 bool is_dirty = false;
985 int r;
986
987 mutex_lock(&kvm->slots_lock);
988
989 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
990
991 if (is_dirty) {
992 slots = kvm_memslots(kvm);
993 memslot = id_to_memslot(slots, log->slot);
994
995 /* Let implementation handle TLB/GVA invalidation */
996 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
997 }
998
999 mutex_unlock(&kvm->slots_lock);
1000 return r;
1001 }
1002
1003 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1004 {
1005 long r;
1006
1007 switch (ioctl) {
1008 default:
1009 r = -ENOIOCTLCMD;
1010 }
1011
1012 return r;
1013 }
1014
1015 int kvm_arch_init(void *opaque)
1016 {
1017 if (kvm_mips_callbacks) {
1018 kvm_err("kvm: module already exists\n");
1019 return -EEXIST;
1020 }
1021
1022 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1023 }
1024
1025 void kvm_arch_exit(void)
1026 {
1027 kvm_mips_callbacks = NULL;
1028 }
1029
1030 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1031 struct kvm_sregs *sregs)
1032 {
1033 return -ENOIOCTLCMD;
1034 }
1035
1036 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1037 struct kvm_sregs *sregs)
1038 {
1039 return -ENOIOCTLCMD;
1040 }
1041
1042 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1043 {
1044 }
1045
1046 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1047 {
1048 return -ENOIOCTLCMD;
1049 }
1050
1051 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1052 {
1053 return -ENOIOCTLCMD;
1054 }
1055
1056 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1057 {
1058 return VM_FAULT_SIGBUS;
1059 }
1060
1061 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1062 {
1063 int r;
1064
1065 switch (ext) {
1066 case KVM_CAP_ONE_REG:
1067 case KVM_CAP_ENABLE_CAP:
1068 case KVM_CAP_READONLY_MEM:
1069 case KVM_CAP_SYNC_MMU:
1070 case KVM_CAP_IMMEDIATE_EXIT:
1071 r = 1;
1072 break;
1073 case KVM_CAP_NR_VCPUS:
1074 r = num_online_cpus();
1075 break;
1076 case KVM_CAP_MAX_VCPUS:
1077 r = KVM_MAX_VCPUS;
1078 break;
1079 case KVM_CAP_MIPS_FPU:
1080 /* We don't handle systems with inconsistent cpu_has_fpu */
1081 r = !!raw_cpu_has_fpu;
1082 break;
1083 case KVM_CAP_MIPS_MSA:
1084 /*
1085 * We don't support MSA vector partitioning yet:
1086 * 1) It would require explicit support which can't be tested
1087 * yet due to lack of support in current hardware.
1088 * 2) It extends the state that would need to be saved/restored
1089 * by e.g. QEMU for migration.
1090 *
1091 * When vector partitioning hardware becomes available, support
1092 * could be added by requiring a flag when enabling
1093 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1094 * to save/restore the appropriate extra state.
1095 */
1096 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1097 break;
1098 default:
1099 r = kvm_mips_callbacks->check_extension(kvm, ext);
1100 break;
1101 }
1102 return r;
1103 }
1104
1105 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1106 {
1107 return kvm_mips_pending_timer(vcpu) ||
1108 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1109 }
1110
1111 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1112 {
1113 int i;
1114 struct mips_coproc *cop0;
1115
1116 if (!vcpu)
1117 return -1;
1118
1119 kvm_debug("VCPU Register Dump:\n");
1120 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1121 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1122
1123 for (i = 0; i < 32; i += 4) {
1124 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1125 vcpu->arch.gprs[i],
1126 vcpu->arch.gprs[i + 1],
1127 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1128 }
1129 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1130 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1131
1132 cop0 = vcpu->arch.cop0;
1133 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1134 kvm_read_c0_guest_status(cop0),
1135 kvm_read_c0_guest_cause(cop0));
1136
1137 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1138
1139 return 0;
1140 }
1141
1142 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1143 {
1144 int i;
1145
1146 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1147 vcpu->arch.gprs[i] = regs->gpr[i];
1148 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1149 vcpu->arch.hi = regs->hi;
1150 vcpu->arch.lo = regs->lo;
1151 vcpu->arch.pc = regs->pc;
1152
1153 return 0;
1154 }
1155
1156 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1157 {
1158 int i;
1159
1160 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1161 regs->gpr[i] = vcpu->arch.gprs[i];
1162
1163 regs->hi = vcpu->arch.hi;
1164 regs->lo = vcpu->arch.lo;
1165 regs->pc = vcpu->arch.pc;
1166
1167 return 0;
1168 }
1169
1170 static void kvm_mips_comparecount_func(unsigned long data)
1171 {
1172 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1173
1174 kvm_mips_callbacks->queue_timer_int(vcpu);
1175
1176 vcpu->arch.wait = 0;
1177 if (swait_active(&vcpu->wq))
1178 swake_up(&vcpu->wq);
1179 }
1180
1181 /* low level hrtimer wake routine */
1182 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1183 {
1184 struct kvm_vcpu *vcpu;
1185
1186 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1187 kvm_mips_comparecount_func((unsigned long) vcpu);
1188 return kvm_mips_count_timeout(vcpu);
1189 }
1190
1191 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1192 {
1193 int err;
1194
1195 err = kvm_mips_callbacks->vcpu_init(vcpu);
1196 if (err)
1197 return err;
1198
1199 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1200 HRTIMER_MODE_REL);
1201 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1202 return 0;
1203 }
1204
1205 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1206 {
1207 kvm_mips_callbacks->vcpu_uninit(vcpu);
1208 }
1209
1210 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1211 struct kvm_translation *tr)
1212 {
1213 return 0;
1214 }
1215
1216 /* Initial guest state */
1217 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1218 {
1219 return kvm_mips_callbacks->vcpu_setup(vcpu);
1220 }
1221
1222 static void kvm_mips_set_c0_status(void)
1223 {
1224 u32 status = read_c0_status();
1225
1226 if (cpu_has_dsp)
1227 status |= (ST0_MX);
1228
1229 write_c0_status(status);
1230 ehb();
1231 }
1232
1233 /*
1234 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1235 */
1236 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1237 {
1238 u32 cause = vcpu->arch.host_cp0_cause;
1239 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1240 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1241 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1242 enum emulation_result er = EMULATE_DONE;
1243 u32 inst;
1244 int ret = RESUME_GUEST;
1245
1246 vcpu->mode = OUTSIDE_GUEST_MODE;
1247
1248 /* re-enable HTW before enabling interrupts */
1249 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1250 htw_start();
1251
1252 /* Set a default exit reason */
1253 run->exit_reason = KVM_EXIT_UNKNOWN;
1254 run->ready_for_interrupt_injection = 1;
1255
1256 /*
1257 * Set the appropriate status bits based on host CPU features,
1258 * before we hit the scheduler
1259 */
1260 kvm_mips_set_c0_status();
1261
1262 local_irq_enable();
1263
1264 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1265 cause, opc, run, vcpu);
1266 trace_kvm_exit(vcpu, exccode);
1267
1268 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1269 /*
1270 * Do a privilege check, if in UM most of these exit conditions
1271 * end up causing an exception to be delivered to the Guest
1272 * Kernel
1273 */
1274 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1275 if (er == EMULATE_PRIV_FAIL) {
1276 goto skip_emul;
1277 } else if (er == EMULATE_FAIL) {
1278 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1279 ret = RESUME_HOST;
1280 goto skip_emul;
1281 }
1282 }
1283
1284 switch (exccode) {
1285 case EXCCODE_INT:
1286 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1287
1288 ++vcpu->stat.int_exits;
1289
1290 if (need_resched())
1291 cond_resched();
1292
1293 ret = RESUME_GUEST;
1294 break;
1295
1296 case EXCCODE_CPU:
1297 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1298
1299 ++vcpu->stat.cop_unusable_exits;
1300 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1301 /* XXXKYMA: Might need to return to user space */
1302 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1303 ret = RESUME_HOST;
1304 break;
1305
1306 case EXCCODE_MOD:
1307 ++vcpu->stat.tlbmod_exits;
1308 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1309 break;
1310
1311 case EXCCODE_TLBS:
1312 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1313 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1314 badvaddr);
1315
1316 ++vcpu->stat.tlbmiss_st_exits;
1317 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1318 break;
1319
1320 case EXCCODE_TLBL:
1321 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1322 cause, opc, badvaddr);
1323
1324 ++vcpu->stat.tlbmiss_ld_exits;
1325 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1326 break;
1327
1328 case EXCCODE_ADES:
1329 ++vcpu->stat.addrerr_st_exits;
1330 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1331 break;
1332
1333 case EXCCODE_ADEL:
1334 ++vcpu->stat.addrerr_ld_exits;
1335 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1336 break;
1337
1338 case EXCCODE_SYS:
1339 ++vcpu->stat.syscall_exits;
1340 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1341 break;
1342
1343 case EXCCODE_RI:
1344 ++vcpu->stat.resvd_inst_exits;
1345 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1346 break;
1347
1348 case EXCCODE_BP:
1349 ++vcpu->stat.break_inst_exits;
1350 ret = kvm_mips_callbacks->handle_break(vcpu);
1351 break;
1352
1353 case EXCCODE_TR:
1354 ++vcpu->stat.trap_inst_exits;
1355 ret = kvm_mips_callbacks->handle_trap(vcpu);
1356 break;
1357
1358 case EXCCODE_MSAFPE:
1359 ++vcpu->stat.msa_fpe_exits;
1360 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1361 break;
1362
1363 case EXCCODE_FPE:
1364 ++vcpu->stat.fpe_exits;
1365 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1366 break;
1367
1368 case EXCCODE_MSADIS:
1369 ++vcpu->stat.msa_disabled_exits;
1370 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1371 break;
1372
1373 case EXCCODE_GE:
1374 /* defer exit accounting to handler */
1375 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1376 break;
1377
1378 default:
1379 if (cause & CAUSEF_BD)
1380 opc += 1;
1381 inst = 0;
1382 kvm_get_badinstr(opc, vcpu, &inst);
1383 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1384 exccode, opc, inst, badvaddr,
1385 kvm_read_c0_guest_status(vcpu->arch.cop0));
1386 kvm_arch_vcpu_dump_regs(vcpu);
1387 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1388 ret = RESUME_HOST;
1389 break;
1390
1391 }
1392
1393 skip_emul:
1394 local_irq_disable();
1395
1396 if (ret == RESUME_GUEST)
1397 kvm_vz_acquire_htimer(vcpu);
1398
1399 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1400 kvm_mips_deliver_interrupts(vcpu, cause);
1401
1402 if (!(ret & RESUME_HOST)) {
1403 /* Only check for signals if not already exiting to userspace */
1404 if (signal_pending(current)) {
1405 run->exit_reason = KVM_EXIT_INTR;
1406 ret = (-EINTR << 2) | RESUME_HOST;
1407 ++vcpu->stat.signal_exits;
1408 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1409 }
1410 }
1411
1412 if (ret == RESUME_GUEST) {
1413 trace_kvm_reenter(vcpu);
1414
1415 /*
1416 * Make sure the read of VCPU requests in vcpu_reenter()
1417 * callback is not reordered ahead of the write to vcpu->mode,
1418 * or we could miss a TLB flush request while the requester sees
1419 * the VCPU as outside of guest mode and not needing an IPI.
1420 */
1421 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1422
1423 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1424
1425 /*
1426 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1427 * is live), restore FCR31 / MSACSR.
1428 *
1429 * This should be before returning to the guest exception
1430 * vector, as it may well cause an [MSA] FP exception if there
1431 * are pending exception bits unmasked. (see
1432 * kvm_mips_csr_die_notifier() for how that is handled).
1433 */
1434 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1435 read_c0_status() & ST0_CU1)
1436 __kvm_restore_fcsr(&vcpu->arch);
1437
1438 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1439 read_c0_config5() & MIPS_CONF5_MSAEN)
1440 __kvm_restore_msacsr(&vcpu->arch);
1441 }
1442
1443 /* Disable HTW before returning to guest or host */
1444 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1445 htw_stop();
1446
1447 return ret;
1448 }
1449
1450 /* Enable FPU for guest and restore context */
1451 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1452 {
1453 struct mips_coproc *cop0 = vcpu->arch.cop0;
1454 unsigned int sr, cfg5;
1455
1456 preempt_disable();
1457
1458 sr = kvm_read_c0_guest_status(cop0);
1459
1460 /*
1461 * If MSA state is already live, it is undefined how it interacts with
1462 * FR=0 FPU state, and we don't want to hit reserved instruction
1463 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1464 * play it safe and save it first.
1465 *
1466 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1467 * get called when guest CU1 is set, however we can't trust the guest
1468 * not to clobber the status register directly via the commpage.
1469 */
1470 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1471 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1472 kvm_lose_fpu(vcpu);
1473
1474 /*
1475 * Enable FPU for guest
1476 * We set FR and FRE according to guest context
1477 */
1478 change_c0_status(ST0_CU1 | ST0_FR, sr);
1479 if (cpu_has_fre) {
1480 cfg5 = kvm_read_c0_guest_config5(cop0);
1481 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1482 }
1483 enable_fpu_hazard();
1484
1485 /* If guest FPU state not active, restore it now */
1486 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1487 __kvm_restore_fpu(&vcpu->arch);
1488 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1489 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1490 } else {
1491 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1492 }
1493
1494 preempt_enable();
1495 }
1496
1497 #ifdef CONFIG_CPU_HAS_MSA
1498 /* Enable MSA for guest and restore context */
1499 void kvm_own_msa(struct kvm_vcpu *vcpu)
1500 {
1501 struct mips_coproc *cop0 = vcpu->arch.cop0;
1502 unsigned int sr, cfg5;
1503
1504 preempt_disable();
1505
1506 /*
1507 * Enable FPU if enabled in guest, since we're restoring FPU context
1508 * anyway. We set FR and FRE according to guest context.
1509 */
1510 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1511 sr = kvm_read_c0_guest_status(cop0);
1512
1513 /*
1514 * If FR=0 FPU state is already live, it is undefined how it
1515 * interacts with MSA state, so play it safe and save it first.
1516 */
1517 if (!(sr & ST0_FR) &&
1518 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1519 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1520 kvm_lose_fpu(vcpu);
1521
1522 change_c0_status(ST0_CU1 | ST0_FR, sr);
1523 if (sr & ST0_CU1 && cpu_has_fre) {
1524 cfg5 = kvm_read_c0_guest_config5(cop0);
1525 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1526 }
1527 }
1528
1529 /* Enable MSA for guest */
1530 set_c0_config5(MIPS_CONF5_MSAEN);
1531 enable_fpu_hazard();
1532
1533 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1534 case KVM_MIPS_AUX_FPU:
1535 /*
1536 * Guest FPU state already loaded, only restore upper MSA state
1537 */
1538 __kvm_restore_msa_upper(&vcpu->arch);
1539 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1540 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1541 break;
1542 case 0:
1543 /* Neither FPU or MSA already active, restore full MSA state */
1544 __kvm_restore_msa(&vcpu->arch);
1545 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1546 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1547 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1548 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1549 KVM_TRACE_AUX_FPU_MSA);
1550 break;
1551 default:
1552 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1553 break;
1554 }
1555
1556 preempt_enable();
1557 }
1558 #endif
1559
1560 /* Drop FPU & MSA without saving it */
1561 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1562 {
1563 preempt_disable();
1564 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1565 disable_msa();
1566 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1567 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1568 }
1569 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1570 clear_c0_status(ST0_CU1 | ST0_FR);
1571 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1572 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1573 }
1574 preempt_enable();
1575 }
1576
1577 /* Save and disable FPU & MSA */
1578 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1579 {
1580 /*
1581 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1582 * is disabled in guest context (software), but the register state in
1583 * the hardware may still be in use.
1584 * This is why we explicitly re-enable the hardware before saving.
1585 */
1586
1587 preempt_disable();
1588 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1589 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1590 set_c0_config5(MIPS_CONF5_MSAEN);
1591 enable_fpu_hazard();
1592 }
1593
1594 __kvm_save_msa(&vcpu->arch);
1595 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1596
1597 /* Disable MSA & FPU */
1598 disable_msa();
1599 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1600 clear_c0_status(ST0_CU1 | ST0_FR);
1601 disable_fpu_hazard();
1602 }
1603 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1604 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1605 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1606 set_c0_status(ST0_CU1);
1607 enable_fpu_hazard();
1608 }
1609
1610 __kvm_save_fpu(&vcpu->arch);
1611 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1612 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1613
1614 /* Disable FPU */
1615 clear_c0_status(ST0_CU1 | ST0_FR);
1616 disable_fpu_hazard();
1617 }
1618 preempt_enable();
1619 }
1620
1621 /*
1622 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1623 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1624 * exception if cause bits are set in the value being written.
1625 */
1626 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1627 unsigned long cmd, void *ptr)
1628 {
1629 struct die_args *args = (struct die_args *)ptr;
1630 struct pt_regs *regs = args->regs;
1631 unsigned long pc;
1632
1633 /* Only interested in FPE and MSAFPE */
1634 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1635 return NOTIFY_DONE;
1636
1637 /* Return immediately if guest context isn't active */
1638 if (!(current->flags & PF_VCPU))
1639 return NOTIFY_DONE;
1640
1641 /* Should never get here from user mode */
1642 BUG_ON(user_mode(regs));
1643
1644 pc = instruction_pointer(regs);
1645 switch (cmd) {
1646 case DIE_FP:
1647 /* match 2nd instruction in __kvm_restore_fcsr */
1648 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1649 return NOTIFY_DONE;
1650 break;
1651 case DIE_MSAFP:
1652 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1653 if (!cpu_has_msa ||
1654 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1655 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1656 return NOTIFY_DONE;
1657 break;
1658 }
1659
1660 /* Move PC forward a little and continue executing */
1661 instruction_pointer(regs) += 4;
1662
1663 return NOTIFY_STOP;
1664 }
1665
1666 static struct notifier_block kvm_mips_csr_die_notifier = {
1667 .notifier_call = kvm_mips_csr_die_notify,
1668 };
1669
1670 static int __init kvm_mips_init(void)
1671 {
1672 int ret;
1673
1674 ret = kvm_mips_entry_setup();
1675 if (ret)
1676 return ret;
1677
1678 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1679
1680 if (ret)
1681 return ret;
1682
1683 register_die_notifier(&kvm_mips_csr_die_notifier);
1684
1685 return 0;
1686 }
1687
1688 static void __exit kvm_mips_exit(void)
1689 {
1690 kvm_exit();
1691
1692 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1693 }
1694
1695 module_init(kvm_mips_init);
1696 module_exit(kvm_mips_exit);
1697
1698 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);