Merge tag 'armsoc-tee' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / arch / mips / kvm / entry.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Generation of main entry point for the guest, exception handling.
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 *
11 * Copyright (C) 2016 Imagination Technologies Ltd.
12 */
13
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
17 #include <asm/msa.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
20 #include <asm/uasm.h>
21
22 /* Register names */
23 #define ZERO 0
24 #define AT 1
25 #define V0 2
26 #define V1 3
27 #define A0 4
28 #define A1 5
29
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
31 #define T0 8
32 #define T1 9
33 #define T2 10
34 #define T3 11
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38 #define T0 12
39 #define T1 13
40 #define T2 14
41 #define T3 15
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43
44 #define S0 16
45 #define S1 17
46 #define T9 25
47 #define K0 26
48 #define K1 27
49 #define GP 28
50 #define SP 29
51 #define RA 31
52
53 /* Some CP0 registers */
54 #define C0_PWBASE 5, 5
55 #define C0_HWRENA 7, 0
56 #define C0_BADVADDR 8, 0
57 #define C0_BADINSTR 8, 1
58 #define C0_BADINSTRP 8, 2
59 #define C0_ENTRYHI 10, 0
60 #define C0_GUESTCTL1 10, 4
61 #define C0_STATUS 12, 0
62 #define C0_GUESTCTL0 12, 6
63 #define C0_CAUSE 13, 0
64 #define C0_EPC 14, 0
65 #define C0_EBASE 15, 1
66 #define C0_CONFIG5 16, 5
67 #define C0_DDATA_LO 28, 3
68 #define C0_ERROREPC 30, 0
69
70 #define CALLFRAME_SIZ 32
71
72 #ifdef CONFIG_64BIT
73 #define ST0_KX_IF_64 ST0_KX
74 #else
75 #define ST0_KX_IF_64 0
76 #endif
77
78 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
79 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
80
81 enum label_id {
82 label_fpu_1 = 1,
83 label_msa_1,
84 label_return_to_host,
85 label_kernel_asid,
86 label_exit_common,
87 };
88
89 UASM_L_LA(_fpu_1)
90 UASM_L_LA(_msa_1)
91 UASM_L_LA(_return_to_host)
92 UASM_L_LA(_kernel_asid)
93 UASM_L_LA(_exit_common)
94
95 static void *kvm_mips_build_enter_guest(void *addr);
96 static void *kvm_mips_build_ret_from_exit(void *addr);
97 static void *kvm_mips_build_ret_to_guest(void *addr);
98 static void *kvm_mips_build_ret_to_host(void *addr);
99
100 /*
101 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
102 * we assume symmetry.
103 */
104 static int c0_kscratch(void)
105 {
106 switch (boot_cpu_type()) {
107 case CPU_XLP:
108 case CPU_XLR:
109 return 22;
110 default:
111 return 31;
112 }
113 }
114
115 /**
116 * kvm_mips_entry_setup() - Perform global setup for entry code.
117 *
118 * Perform global setup for entry code, such as choosing a scratch register.
119 *
120 * Returns: 0 on success.
121 * -errno on failure.
122 */
123 int kvm_mips_entry_setup(void)
124 {
125 /*
126 * We prefer to use KScratchN registers if they are available over the
127 * defaults above, which may not work on all cores.
128 */
129 unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
130
131 if (pgd_reg != -1)
132 kscratch_mask &= ~BIT(pgd_reg);
133
134 /* Pick a scratch register for storing VCPU */
135 if (kscratch_mask) {
136 scratch_vcpu[0] = c0_kscratch();
137 scratch_vcpu[1] = ffs(kscratch_mask) - 1;
138 kscratch_mask &= ~BIT(scratch_vcpu[1]);
139 }
140
141 /* Pick a scratch register to use as a temp for saving state */
142 if (kscratch_mask) {
143 scratch_tmp[0] = c0_kscratch();
144 scratch_tmp[1] = ffs(kscratch_mask) - 1;
145 kscratch_mask &= ~BIT(scratch_tmp[1]);
146 }
147
148 return 0;
149 }
150
151 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
152 unsigned int frame)
153 {
154 /* Save the VCPU scratch register value in cp0_epc of the stack frame */
155 UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
156 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
157
158 /* Save the temp scratch register value in cp0_cause of stack frame */
159 if (scratch_tmp[0] == c0_kscratch()) {
160 UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
161 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
162 }
163 }
164
165 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
166 unsigned int frame)
167 {
168 /*
169 * Restore host scratch register values saved by
170 * kvm_mips_build_save_scratch().
171 */
172 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
173 UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
174
175 if (scratch_tmp[0] == c0_kscratch()) {
176 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
177 UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
178 }
179 }
180
181 /**
182 * build_set_exc_base() - Assemble code to write exception base address.
183 * @p: Code buffer pointer.
184 * @reg: Source register (generated code may set WG bit in @reg).
185 *
186 * Assemble code to modify the exception base address in the EBase register,
187 * using the appropriately sized access and setting the WG bit if necessary.
188 */
189 static inline void build_set_exc_base(u32 **p, unsigned int reg)
190 {
191 if (cpu_has_ebase_wg) {
192 /* Set WG so that all the bits get written */
193 uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
194 UASM_i_MTC0(p, reg, C0_EBASE);
195 } else {
196 uasm_i_mtc0(p, reg, C0_EBASE);
197 }
198 }
199
200 /**
201 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
202 * @addr: Address to start writing code.
203 *
204 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
205 * conforms to the following prototype:
206 *
207 * int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
208 *
209 * The exit from the guest and return to the caller is handled by the code
210 * generated by kvm_mips_build_ret_to_host().
211 *
212 * Returns: Next address after end of written function.
213 */
214 void *kvm_mips_build_vcpu_run(void *addr)
215 {
216 u32 *p = addr;
217 unsigned int i;
218
219 /*
220 * A0: run
221 * A1: vcpu
222 */
223
224 /* k0/k1 not being used in host kernel context */
225 UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
226 for (i = 16; i < 32; ++i) {
227 if (i == 24)
228 i = 28;
229 UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
230 }
231
232 /* Save host status */
233 uasm_i_mfc0(&p, V0, C0_STATUS);
234 UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
235
236 /* Save scratch registers, will be used to store pointer to vcpu etc */
237 kvm_mips_build_save_scratch(&p, V1, K1);
238
239 /* VCPU scratch register has pointer to vcpu */
240 UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
241
242 /* Offset into vcpu->arch */
243 UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
244
245 /*
246 * Save the host stack to VCPU, used for exception processing
247 * when we exit from the Guest
248 */
249 UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
250
251 /* Save the kernel gp as well */
252 UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
253
254 /*
255 * Setup status register for running the guest in UM, interrupts
256 * are disabled
257 */
258 UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
259 uasm_i_mtc0(&p, K0, C0_STATUS);
260 uasm_i_ehb(&p);
261
262 /* load up the new EBASE */
263 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
264 build_set_exc_base(&p, K0);
265
266 /*
267 * Now that the new EBASE has been loaded, unset BEV, set
268 * interrupt mask as it was but make sure that timer interrupts
269 * are enabled
270 */
271 uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
272 uasm_i_andi(&p, V0, V0, ST0_IM);
273 uasm_i_or(&p, K0, K0, V0);
274 uasm_i_mtc0(&p, K0, C0_STATUS);
275 uasm_i_ehb(&p);
276
277 p = kvm_mips_build_enter_guest(p);
278
279 return p;
280 }
281
282 /**
283 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
284 * @addr: Address to start writing code.
285 *
286 * Assemble the code to resume guest execution. This code is common between the
287 * initial entry into the guest from the host, and returning from the exit
288 * handler back to the guest.
289 *
290 * Returns: Next address after end of written function.
291 */
292 static void *kvm_mips_build_enter_guest(void *addr)
293 {
294 u32 *p = addr;
295 unsigned int i;
296 struct uasm_label labels[2];
297 struct uasm_reloc relocs[2];
298 struct uasm_label __maybe_unused *l = labels;
299 struct uasm_reloc __maybe_unused *r = relocs;
300
301 memset(labels, 0, sizeof(labels));
302 memset(relocs, 0, sizeof(relocs));
303
304 /* Set Guest EPC */
305 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
306 UASM_i_MTC0(&p, T0, C0_EPC);
307
308 #ifdef CONFIG_KVM_MIPS_VZ
309 /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
310 UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
311 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
312
313 /*
314 * Set up KVM GPA pgd.
315 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
316 * - call tlbmiss_handler_setup_pgd(mm->pgd)
317 * - write mm->pgd into CP0_PWBase
318 *
319 * We keep S0 pointing at struct kvm so we can load the ASID below.
320 */
321 UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
322 (int)offsetof(struct kvm_vcpu, arch), K1);
323 UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
324 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
325 uasm_i_jalr(&p, RA, T9);
326 /* delay slot */
327 if (cpu_has_htw)
328 UASM_i_MTC0(&p, A0, C0_PWBASE);
329 else
330 uasm_i_nop(&p);
331
332 /* Set GM bit to setup eret to VZ guest context */
333 uasm_i_addiu(&p, V1, ZERO, 1);
334 uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
335 uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
336 uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
337
338 if (cpu_has_guestid) {
339 /*
340 * Set root mode GuestID, so that root TLB refill handler can
341 * use the correct GuestID in the root TLB.
342 */
343
344 /* Get current GuestID */
345 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
346 /* Set GuestCtl1.RID = GuestCtl1.ID */
347 uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
348 MIPS_GCTL1_ID_WIDTH);
349 uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
350 MIPS_GCTL1_RID_WIDTH);
351 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
352
353 /* GuestID handles dealiasing so we don't need to touch ASID */
354 goto skip_asid_restore;
355 }
356
357 /* Root ASID Dealias (RAD) */
358
359 /* Save host ASID */
360 UASM_i_MFC0(&p, K0, C0_ENTRYHI);
361 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
362 K1);
363
364 /* Set the root ASID for the Guest */
365 UASM_i_ADDIU(&p, T1, S0,
366 offsetof(struct kvm, arch.gpa_mm.context.asid));
367 #else
368 /* Set the ASID for the Guest Kernel or User */
369 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
370 UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
371 T0);
372 uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
373 uasm_i_xori(&p, T0, T0, KSU_USER);
374 uasm_il_bnez(&p, &r, T0, label_kernel_asid);
375 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
376 guest_kernel_mm.context.asid));
377 /* else user */
378 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
379 guest_user_mm.context.asid));
380 uasm_l_kernel_asid(&l, p);
381 #endif
382
383 /* t1: contains the base of the ASID array, need to get the cpu id */
384 /* smp_processor_id */
385 uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
386 /* index the ASID array */
387 uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
388 UASM_i_ADDU(&p, T3, T1, T2);
389 UASM_i_LW(&p, K0, 0, T3);
390 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
391 /*
392 * reuse ASID array offset
393 * cpuinfo_mips is a multiple of sizeof(long)
394 */
395 uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
396 uasm_i_mul(&p, T2, T2, T3);
397
398 UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
399 UASM_i_ADDU(&p, AT, AT, T2);
400 UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
401 uasm_i_and(&p, K0, K0, T2);
402 #else
403 uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
404 #endif
405
406 #ifndef CONFIG_KVM_MIPS_VZ
407 /*
408 * Set up KVM T&E GVA pgd.
409 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
410 * - call tlbmiss_handler_setup_pgd(mm->pgd)
411 * - but skips write into CP0_PWBase for now
412 */
413 UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
414 (int)offsetof(struct mm_struct, context.asid), T1);
415
416 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
417 uasm_i_jalr(&p, RA, T9);
418 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
419 #else
420 /* Set up KVM VZ root ASID (!guestid) */
421 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
422 skip_asid_restore:
423 #endif
424 uasm_i_ehb(&p);
425
426 /* Disable RDHWR access */
427 uasm_i_mtc0(&p, ZERO, C0_HWRENA);
428
429 /* load the guest context from VCPU and return */
430 for (i = 1; i < 32; ++i) {
431 /* Guest k0/k1 loaded later */
432 if (i == K0 || i == K1)
433 continue;
434 UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
435 }
436
437 #ifndef CONFIG_CPU_MIPSR6
438 /* Restore hi/lo */
439 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
440 uasm_i_mthi(&p, K0);
441
442 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
443 uasm_i_mtlo(&p, K0);
444 #endif
445
446 /* Restore the guest's k0/k1 registers */
447 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
448 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
449
450 /* Jump to guest */
451 uasm_i_eret(&p);
452
453 uasm_resolve_relocs(relocs, labels);
454
455 return p;
456 }
457
458 /**
459 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
460 * @addr: Address to start writing code.
461 * @handler: Address of common handler (within range of @addr).
462 *
463 * Assemble TLB refill exception fast path handler for guest execution.
464 *
465 * Returns: Next address after end of written function.
466 */
467 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
468 {
469 u32 *p = addr;
470 struct uasm_label labels[2];
471 struct uasm_reloc relocs[2];
472 struct uasm_label *l = labels;
473 struct uasm_reloc *r = relocs;
474
475 memset(labels, 0, sizeof(labels));
476 memset(relocs, 0, sizeof(relocs));
477
478 /* Save guest k1 into scratch register */
479 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
480
481 /* Get the VCPU pointer from the VCPU scratch register */
482 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
483
484 /* Save guest k0 into VCPU structure */
485 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
486
487 /*
488 * Some of the common tlbex code uses current_cpu_type(). For KVM we
489 * assume symmetry and just disable preemption to silence the warning.
490 */
491 preempt_disable();
492
493 /*
494 * Now for the actual refill bit. A lot of this can be common with the
495 * Linux TLB refill handler, however we don't need to handle so many
496 * cases. We only need to handle user mode refills, and user mode runs
497 * with 32-bit addressing.
498 *
499 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
500 * that isn't resolved should never actually get taken and is harmless
501 * to leave in place for now.
502 */
503
504 #ifdef CONFIG_64BIT
505 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
506 #else
507 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
508 #endif
509
510 /* we don't support huge pages yet */
511
512 build_get_ptep(&p, K0, K1);
513 build_update_entries(&p, K0, K1);
514 build_tlb_write_entry(&p, &l, &r, tlb_random);
515
516 preempt_enable();
517
518 /* Get the VCPU pointer from the VCPU scratch register again */
519 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
520
521 /* Restore the guest's k0/k1 registers */
522 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
523 uasm_i_ehb(&p);
524 UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
525
526 /* Jump to guest */
527 uasm_i_eret(&p);
528
529 return p;
530 }
531
532 /**
533 * kvm_mips_build_exception() - Assemble first level guest exception handler.
534 * @addr: Address to start writing code.
535 * @handler: Address of common handler (within range of @addr).
536 *
537 * Assemble exception vector code for guest execution. The generated vector will
538 * branch to the common exception handler generated by kvm_mips_build_exit().
539 *
540 * Returns: Next address after end of written function.
541 */
542 void *kvm_mips_build_exception(void *addr, void *handler)
543 {
544 u32 *p = addr;
545 struct uasm_label labels[2];
546 struct uasm_reloc relocs[2];
547 struct uasm_label *l = labels;
548 struct uasm_reloc *r = relocs;
549
550 memset(labels, 0, sizeof(labels));
551 memset(relocs, 0, sizeof(relocs));
552
553 /* Save guest k1 into scratch register */
554 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
555
556 /* Get the VCPU pointer from the VCPU scratch register */
557 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
558 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
559
560 /* Save guest k0 into VCPU structure */
561 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
562
563 /* Branch to the common handler */
564 uasm_il_b(&p, &r, label_exit_common);
565 uasm_i_nop(&p);
566
567 uasm_l_exit_common(&l, handler);
568 uasm_resolve_relocs(relocs, labels);
569
570 return p;
571 }
572
573 /**
574 * kvm_mips_build_exit() - Assemble common guest exit handler.
575 * @addr: Address to start writing code.
576 *
577 * Assemble the generic guest exit handling code. This is called by the
578 * exception vectors (generated by kvm_mips_build_exception()), and calls
579 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
580 * depending on the return value.
581 *
582 * Returns: Next address after end of written function.
583 */
584 void *kvm_mips_build_exit(void *addr)
585 {
586 u32 *p = addr;
587 unsigned int i;
588 struct uasm_label labels[3];
589 struct uasm_reloc relocs[3];
590 struct uasm_label *l = labels;
591 struct uasm_reloc *r = relocs;
592
593 memset(labels, 0, sizeof(labels));
594 memset(relocs, 0, sizeof(relocs));
595
596 /*
597 * Generic Guest exception handler. We end up here when the guest
598 * does something that causes a trap to kernel mode.
599 *
600 * Both k0/k1 registers will have already been saved (k0 into the vcpu
601 * structure, and k1 into the scratch_tmp register).
602 *
603 * The k1 register will already contain the kvm_vcpu_arch pointer.
604 */
605
606 /* Start saving Guest context to VCPU */
607 for (i = 0; i < 32; ++i) {
608 /* Guest k0/k1 saved later */
609 if (i == K0 || i == K1)
610 continue;
611 UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
612 }
613
614 #ifndef CONFIG_CPU_MIPSR6
615 /* We need to save hi/lo and restore them on the way out */
616 uasm_i_mfhi(&p, T0);
617 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
618
619 uasm_i_mflo(&p, T0);
620 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
621 #endif
622
623 /* Finally save guest k1 to VCPU */
624 uasm_i_ehb(&p);
625 UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
626 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
627
628 /* Now that context has been saved, we can use other registers */
629
630 /* Restore vcpu */
631 UASM_i_MFC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
632
633 /* Restore run (vcpu->run) */
634 UASM_i_LW(&p, S0, offsetof(struct kvm_vcpu, run), S1);
635
636 /*
637 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
638 * the exception
639 */
640 UASM_i_MFC0(&p, K0, C0_EPC);
641 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
642
643 UASM_i_MFC0(&p, K0, C0_BADVADDR);
644 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
645 K1);
646
647 uasm_i_mfc0(&p, K0, C0_CAUSE);
648 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
649
650 if (cpu_has_badinstr) {
651 uasm_i_mfc0(&p, K0, C0_BADINSTR);
652 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
653 host_cp0_badinstr), K1);
654 }
655
656 if (cpu_has_badinstrp) {
657 uasm_i_mfc0(&p, K0, C0_BADINSTRP);
658 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
659 host_cp0_badinstrp), K1);
660 }
661
662 /* Now restore the host state just enough to run the handlers */
663
664 /* Switch EBASE to the one used by Linux */
665 /* load up the host EBASE */
666 uasm_i_mfc0(&p, V0, C0_STATUS);
667
668 uasm_i_lui(&p, AT, ST0_BEV >> 16);
669 uasm_i_or(&p, K0, V0, AT);
670
671 uasm_i_mtc0(&p, K0, C0_STATUS);
672 uasm_i_ehb(&p);
673
674 UASM_i_LA_mostly(&p, K0, (long)&ebase);
675 UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
676 build_set_exc_base(&p, K0);
677
678 if (raw_cpu_has_fpu) {
679 /*
680 * If FPU is enabled, save FCR31 and clear it so that later
681 * ctc1's don't trigger FPE for pending exceptions.
682 */
683 uasm_i_lui(&p, AT, ST0_CU1 >> 16);
684 uasm_i_and(&p, V1, V0, AT);
685 uasm_il_beqz(&p, &r, V1, label_fpu_1);
686 uasm_i_nop(&p);
687 uasm_i_cfc1(&p, T0, 31);
688 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
689 K1);
690 uasm_i_ctc1(&p, ZERO, 31);
691 uasm_l_fpu_1(&l, p);
692 }
693
694 if (cpu_has_msa) {
695 /*
696 * If MSA is enabled, save MSACSR and clear it so that later
697 * instructions don't trigger MSAFPE for pending exceptions.
698 */
699 uasm_i_mfc0(&p, T0, C0_CONFIG5);
700 uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
701 uasm_il_beqz(&p, &r, T0, label_msa_1);
702 uasm_i_nop(&p);
703 uasm_i_cfcmsa(&p, T0, MSA_CSR);
704 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
705 K1);
706 uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
707 uasm_l_msa_1(&l, p);
708 }
709
710 #ifdef CONFIG_KVM_MIPS_VZ
711 /* Restore host ASID */
712 if (!cpu_has_guestid) {
713 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
714 K1);
715 UASM_i_MTC0(&p, K0, C0_ENTRYHI);
716 }
717
718 /*
719 * Set up normal Linux process pgd.
720 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
721 * - call tlbmiss_handler_setup_pgd(mm->pgd)
722 * - write mm->pgd into CP0_PWBase
723 */
724 UASM_i_LW(&p, A0,
725 offsetof(struct kvm_vcpu_arch, host_pgd), K1);
726 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
727 uasm_i_jalr(&p, RA, T9);
728 /* delay slot */
729 if (cpu_has_htw)
730 UASM_i_MTC0(&p, A0, C0_PWBASE);
731 else
732 uasm_i_nop(&p);
733
734 /* Clear GM bit so we don't enter guest mode when EXL is cleared */
735 uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
736 uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
737 uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
738
739 /* Save GuestCtl0 so we can access GExcCode after CPU migration */
740 uasm_i_sw(&p, K0,
741 offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
742
743 if (cpu_has_guestid) {
744 /*
745 * Clear root mode GuestID, so that root TLB operations use the
746 * root GuestID in the root TLB.
747 */
748 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
749 /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
750 uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
751 MIPS_GCTL1_RID_WIDTH);
752 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
753 }
754 #endif
755
756 /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
757 uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
758 uasm_i_and(&p, V0, V0, AT);
759 uasm_i_lui(&p, AT, ST0_CU0 >> 16);
760 uasm_i_or(&p, V0, V0, AT);
761 #ifdef CONFIG_64BIT
762 uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
763 #endif
764 uasm_i_mtc0(&p, V0, C0_STATUS);
765 uasm_i_ehb(&p);
766
767 /* Load up host GP */
768 UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
769
770 /* Need a stack before we can jump to "C" */
771 UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
772
773 /* Saved host state */
774 UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
775
776 /*
777 * XXXKYMA do we need to load the host ASID, maybe not because the
778 * kernel entries are marked GLOBAL, need to verify
779 */
780
781 /* Restore host scratch registers, as we'll have clobbered them */
782 kvm_mips_build_restore_scratch(&p, K0, SP);
783
784 /* Restore RDHWR access */
785 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
786 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
787 uasm_i_mtc0(&p, K0, C0_HWRENA);
788
789 /* Jump to handler */
790 /*
791 * XXXKYMA: not sure if this is safe, how large is the stack??
792 * Now jump to the kvm_mips_handle_exit() to see if we can deal
793 * with this in the kernel
794 */
795 uasm_i_move(&p, A0, S0);
796 uasm_i_move(&p, A1, S1);
797 UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
798 uasm_i_jalr(&p, RA, T9);
799 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
800
801 uasm_resolve_relocs(relocs, labels);
802
803 p = kvm_mips_build_ret_from_exit(p);
804
805 return p;
806 }
807
808 /**
809 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
810 * @addr: Address to start writing code.
811 *
812 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
813 * resuming the guest or returning to the host depending on the return value.
814 *
815 * Returns: Next address after end of written function.
816 */
817 static void *kvm_mips_build_ret_from_exit(void *addr)
818 {
819 u32 *p = addr;
820 struct uasm_label labels[2];
821 struct uasm_reloc relocs[2];
822 struct uasm_label *l = labels;
823 struct uasm_reloc *r = relocs;
824
825 memset(labels, 0, sizeof(labels));
826 memset(relocs, 0, sizeof(relocs));
827
828 /* Return from handler Make sure interrupts are disabled */
829 uasm_i_di(&p, ZERO);
830 uasm_i_ehb(&p);
831
832 /*
833 * XXXKYMA: k0/k1 could have been blown away if we processed
834 * an exception while we were handling the exception from the
835 * guest, reload k1
836 */
837
838 uasm_i_move(&p, K1, S1);
839 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
840
841 /*
842 * Check return value, should tell us if we are returning to the
843 * host (handle I/O etc)or resuming the guest
844 */
845 uasm_i_andi(&p, T0, V0, RESUME_HOST);
846 uasm_il_bnez(&p, &r, T0, label_return_to_host);
847 uasm_i_nop(&p);
848
849 p = kvm_mips_build_ret_to_guest(p);
850
851 uasm_l_return_to_host(&l, p);
852 p = kvm_mips_build_ret_to_host(p);
853
854 uasm_resolve_relocs(relocs, labels);
855
856 return p;
857 }
858
859 /**
860 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
861 * @addr: Address to start writing code.
862 *
863 * Assemble the code to handle return from the guest exit handler
864 * (kvm_mips_handle_exit()) back to the guest.
865 *
866 * Returns: Next address after end of written function.
867 */
868 static void *kvm_mips_build_ret_to_guest(void *addr)
869 {
870 u32 *p = addr;
871
872 /* Put the saved pointer to vcpu (s1) back into the scratch register */
873 UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
874
875 /* Load up the Guest EBASE to minimize the window where BEV is set */
876 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
877
878 /* Switch EBASE back to the one used by KVM */
879 uasm_i_mfc0(&p, V1, C0_STATUS);
880 uasm_i_lui(&p, AT, ST0_BEV >> 16);
881 uasm_i_or(&p, K0, V1, AT);
882 uasm_i_mtc0(&p, K0, C0_STATUS);
883 uasm_i_ehb(&p);
884 build_set_exc_base(&p, T0);
885
886 /* Setup status register for running guest in UM */
887 uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
888 UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
889 uasm_i_and(&p, V1, V1, AT);
890 uasm_i_mtc0(&p, V1, C0_STATUS);
891 uasm_i_ehb(&p);
892
893 p = kvm_mips_build_enter_guest(p);
894
895 return p;
896 }
897
898 /**
899 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
900 * @addr: Address to start writing code.
901 *
902 * Assemble the code to handle return from the guest exit handler
903 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
904 * function generated by kvm_mips_build_vcpu_run().
905 *
906 * Returns: Next address after end of written function.
907 */
908 static void *kvm_mips_build_ret_to_host(void *addr)
909 {
910 u32 *p = addr;
911 unsigned int i;
912
913 /* EBASE is already pointing to Linux */
914 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
915 UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
916
917 /*
918 * r2/v0 is the return code, shift it down by 2 (arithmetic)
919 * to recover the err code
920 */
921 uasm_i_sra(&p, K0, V0, 2);
922 uasm_i_move(&p, V0, K0);
923
924 /* Load context saved on the host stack */
925 for (i = 16; i < 31; ++i) {
926 if (i == 24)
927 i = 28;
928 UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
929 }
930
931 /* Restore RDHWR access */
932 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
933 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
934 uasm_i_mtc0(&p, K0, C0_HWRENA);
935
936 /* Restore RA, which is the address we will return to */
937 UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
938 uasm_i_jr(&p, RA);
939 uasm_i_nop(&p);
940
941 return p;
942 }
943