include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / kernel / smtc.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
18 */
19
20 #include <linux/clockchips.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/cpumask.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/ftrace.h>
29 #include <linux/slab.h>
30
31 #include <asm/cpu.h>
32 #include <asm/processor.h>
33 #include <asm/atomic.h>
34 #include <asm/system.h>
35 #include <asm/hardirq.h>
36 #include <asm/hazards.h>
37 #include <asm/irq.h>
38 #include <asm/mmu_context.h>
39 #include <asm/mipsregs.h>
40 #include <asm/cacheflush.h>
41 #include <asm/time.h>
42 #include <asm/addrspace.h>
43 #include <asm/smtc.h>
44 #include <asm/smtc_proc.h>
45
46 /*
47 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
48 * in do_IRQ. These are passed in setup_irq_smtc() and stored
49 * in this table.
50 */
51 unsigned long irq_hwmask[NR_IRQS];
52
53 #define LOCK_MT_PRA() \
54 local_irq_save(flags); \
55 mtflags = dmt()
56
57 #define UNLOCK_MT_PRA() \
58 emt(mtflags); \
59 local_irq_restore(flags)
60
61 #define LOCK_CORE_PRA() \
62 local_irq_save(flags); \
63 mtflags = dvpe()
64
65 #define UNLOCK_CORE_PRA() \
66 evpe(mtflags); \
67 local_irq_restore(flags)
68
69 /*
70 * Data structures purely associated with SMTC parallelism
71 */
72
73
74 /*
75 * Table for tracking ASIDs whose lifetime is prolonged.
76 */
77
78 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
79
80 /*
81 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
82 */
83
84 #define IPIBUF_PER_CPU 4
85
86 struct smtc_ipi_q IPIQ[NR_CPUS];
87 static struct smtc_ipi_q freeIPIq;
88
89
90 /* Forward declarations */
91
92 void ipi_decode(struct smtc_ipi *);
93 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
94 static void setup_cross_vpe_interrupts(unsigned int nvpe);
95 void init_smtc_stats(void);
96
97 /* Global SMTC Status */
98
99 unsigned int smtc_status;
100
101 /* Boot command line configuration overrides */
102
103 static int vpe0limit;
104 static int ipibuffers;
105 static int nostlb;
106 static int asidmask;
107 unsigned long smtc_asid_mask = 0xff;
108
109 static int __init vpe0tcs(char *str)
110 {
111 get_option(&str, &vpe0limit);
112
113 return 1;
114 }
115
116 static int __init ipibufs(char *str)
117 {
118 get_option(&str, &ipibuffers);
119 return 1;
120 }
121
122 static int __init stlb_disable(char *s)
123 {
124 nostlb = 1;
125 return 1;
126 }
127
128 static int __init asidmask_set(char *str)
129 {
130 get_option(&str, &asidmask);
131 switch (asidmask) {
132 case 0x1:
133 case 0x3:
134 case 0x7:
135 case 0xf:
136 case 0x1f:
137 case 0x3f:
138 case 0x7f:
139 case 0xff:
140 smtc_asid_mask = (unsigned long)asidmask;
141 break;
142 default:
143 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
144 }
145 return 1;
146 }
147
148 __setup("vpe0tcs=", vpe0tcs);
149 __setup("ipibufs=", ipibufs);
150 __setup("nostlb", stlb_disable);
151 __setup("asidmask=", asidmask_set);
152
153 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
154
155 static int hang_trig;
156
157 static int __init hangtrig_enable(char *s)
158 {
159 hang_trig = 1;
160 return 1;
161 }
162
163
164 __setup("hangtrig", hangtrig_enable);
165
166 #define DEFAULT_BLOCKED_IPI_LIMIT 32
167
168 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
169
170 static int __init tintq(char *str)
171 {
172 get_option(&str, &timerq_limit);
173 return 1;
174 }
175
176 __setup("tintq=", tintq);
177
178 static int imstuckcount[2][8];
179 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
180 static int vpemask[2][8] = {
181 {0, 0, 1, 0, 0, 0, 0, 1},
182 {0, 0, 0, 0, 0, 0, 0, 1}
183 };
184 int tcnoprog[NR_CPUS];
185 static atomic_t idle_hook_initialized = {0};
186 static int clock_hang_reported[NR_CPUS];
187
188 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
189
190 /*
191 * Configure shared TLB - VPC configuration bit must be set by caller
192 */
193
194 static void smtc_configure_tlb(void)
195 {
196 int i, tlbsiz, vpes;
197 unsigned long mvpconf0;
198 unsigned long config1val;
199
200 /* Set up ASID preservation table */
201 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
202 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
203 smtc_live_asid[vpes][i] = 0;
204 }
205 }
206 mvpconf0 = read_c0_mvpconf0();
207
208 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
209 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
210 /* If we have multiple VPEs, try to share the TLB */
211 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
212 /*
213 * If TLB sizing is programmable, shared TLB
214 * size is the total available complement.
215 * Otherwise, we have to take the sum of all
216 * static VPE TLB entries.
217 */
218 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
219 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
220 /*
221 * If there's more than one VPE, there had better
222 * be more than one TC, because we need one to bind
223 * to each VPE in turn to be able to read
224 * its configuration state!
225 */
226 settc(1);
227 /* Stop the TC from doing anything foolish */
228 write_tc_c0_tchalt(TCHALT_H);
229 mips_ihb();
230 /* No need to un-Halt - that happens later anyway */
231 for (i=0; i < vpes; i++) {
232 write_tc_c0_tcbind(i);
233 /*
234 * To be 100% sure we're really getting the right
235 * information, we exit the configuration state
236 * and do an IHB after each rebinding.
237 */
238 write_c0_mvpcontrol(
239 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
240 mips_ihb();
241 /*
242 * Only count if the MMU Type indicated is TLB
243 */
244 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
245 config1val = read_vpe_c0_config1();
246 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
247 }
248
249 /* Put core back in configuration state */
250 write_c0_mvpcontrol(
251 read_c0_mvpcontrol() | MVPCONTROL_VPC );
252 mips_ihb();
253 }
254 }
255 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
256 ehb();
257
258 /*
259 * Setup kernel data structures to use software total,
260 * rather than read the per-VPE Config1 value. The values
261 * for "CPU 0" gets copied to all the other CPUs as part
262 * of their initialization in smtc_cpu_setup().
263 */
264
265 /* MIPS32 limits TLB indices to 64 */
266 if (tlbsiz > 64)
267 tlbsiz = 64;
268 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
269 smtc_status |= SMTC_TLB_SHARED;
270 local_flush_tlb_all();
271
272 printk("TLB of %d entry pairs shared by %d VPEs\n",
273 tlbsiz, vpes);
274 } else {
275 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
276 }
277 }
278 }
279
280
281 /*
282 * Incrementally build the CPU map out of constituent MIPS MT cores,
283 * using the specified available VPEs and TCs. Plaform code needs
284 * to ensure that each MIPS MT core invokes this routine on reset,
285 * one at a time(!).
286 *
287 * This version of the build_cpu_map and prepare_cpus routines assumes
288 * that *all* TCs of a MIPS MT core will be used for Linux, and that
289 * they will be spread across *all* available VPEs (to minimise the
290 * loss of efficiency due to exception service serialization).
291 * An improved version would pick up configuration information and
292 * possibly leave some TCs/VPEs as "slave" processors.
293 *
294 * Use c0_MVPConf0 to find out how many TCs are available, setting up
295 * cpu_possible_map and the logical/physical mappings.
296 */
297
298 int __init smtc_build_cpu_map(int start_cpu_slot)
299 {
300 int i, ntcs;
301
302 /*
303 * The CPU map isn't actually used for anything at this point,
304 * so it's not clear what else we should do apart from set
305 * everything up so that "logical" = "physical".
306 */
307 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
308 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
309 set_cpu_possible(i, true);
310 __cpu_number_map[i] = i;
311 __cpu_logical_map[i] = i;
312 }
313 #ifdef CONFIG_MIPS_MT_FPAFF
314 /* Initialize map of CPUs with FPUs */
315 cpus_clear(mt_fpu_cpumask);
316 #endif
317
318 /* One of those TC's is the one booting, and not a secondary... */
319 printk("%i available secondary CPU TC(s)\n", i - 1);
320
321 return i;
322 }
323
324 /*
325 * Common setup before any secondaries are started
326 * Make sure all CPU's are in a sensible state before we boot any of the
327 * secondaries.
328 *
329 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
330 * as possible across the available VPEs.
331 */
332
333 static void smtc_tc_setup(int vpe, int tc, int cpu)
334 {
335 settc(tc);
336 write_tc_c0_tchalt(TCHALT_H);
337 mips_ihb();
338 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
339 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
340 | TCSTATUS_A);
341 /*
342 * TCContext gets an offset from the base of the IPIQ array
343 * to be used in low-level code to detect the presence of
344 * an active IPI queue
345 */
346 write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
347 /* Bind tc to vpe */
348 write_tc_c0_tcbind(vpe);
349 /* In general, all TCs should have the same cpu_data indications */
350 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
351 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
352 if (cpu_data[0].cputype == CPU_34K ||
353 cpu_data[0].cputype == CPU_1004K)
354 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
355 cpu_data[cpu].vpe_id = vpe;
356 cpu_data[cpu].tc_id = tc;
357 /* Multi-core SMTC hasn't been tested, but be prepared */
358 cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
359 }
360
361 /*
362 * Tweak to get Count registes in as close a sync as possible.
363 * Value seems good for 34K-class cores.
364 */
365
366 #define CP0_SKEW 8
367
368 void smtc_prepare_cpus(int cpus)
369 {
370 int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
371 unsigned long flags;
372 unsigned long val;
373 int nipi;
374 struct smtc_ipi *pipi;
375
376 /* disable interrupts so we can disable MT */
377 local_irq_save(flags);
378 /* disable MT so we can configure */
379 dvpe();
380 dmt();
381
382 spin_lock_init(&freeIPIq.lock);
383
384 /*
385 * We probably don't have as many VPEs as we do SMP "CPUs",
386 * but it's possible - and in any case we'll never use more!
387 */
388 for (i=0; i<NR_CPUS; i++) {
389 IPIQ[i].head = IPIQ[i].tail = NULL;
390 spin_lock_init(&IPIQ[i].lock);
391 IPIQ[i].depth = 0;
392 IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
393 }
394
395 /* cpu_data index starts at zero */
396 cpu = 0;
397 cpu_data[cpu].vpe_id = 0;
398 cpu_data[cpu].tc_id = 0;
399 cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
400 cpu++;
401
402 /* Report on boot-time options */
403 mips_mt_set_cpuoptions();
404 if (vpelimit > 0)
405 printk("Limit of %d VPEs set\n", vpelimit);
406 if (tclimit > 0)
407 printk("Limit of %d TCs set\n", tclimit);
408 if (nostlb) {
409 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
410 }
411 if (asidmask)
412 printk("ASID mask value override to 0x%x\n", asidmask);
413
414 /* Temporary */
415 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
416 if (hang_trig)
417 printk("Logic Analyser Trigger on suspected TC hang\n");
418 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
419
420 /* Put MVPE's into 'configuration state' */
421 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
422
423 val = read_c0_mvpconf0();
424 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
425 if (vpelimit > 0 && nvpe > vpelimit)
426 nvpe = vpelimit;
427 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
428 if (ntc > NR_CPUS)
429 ntc = NR_CPUS;
430 if (tclimit > 0 && ntc > tclimit)
431 ntc = tclimit;
432 slop = ntc % nvpe;
433 for (i = 0; i < nvpe; i++) {
434 tcpervpe[i] = ntc / nvpe;
435 if (slop) {
436 if((slop - i) > 0) tcpervpe[i]++;
437 }
438 }
439 /* Handle command line override for VPE0 */
440 if (vpe0limit > ntc) vpe0limit = ntc;
441 if (vpe0limit > 0) {
442 int slopslop;
443 if (vpe0limit < tcpervpe[0]) {
444 /* Reducing TC count - distribute to others */
445 slop = tcpervpe[0] - vpe0limit;
446 slopslop = slop % (nvpe - 1);
447 tcpervpe[0] = vpe0limit;
448 for (i = 1; i < nvpe; i++) {
449 tcpervpe[i] += slop / (nvpe - 1);
450 if(slopslop && ((slopslop - (i - 1) > 0)))
451 tcpervpe[i]++;
452 }
453 } else if (vpe0limit > tcpervpe[0]) {
454 /* Increasing TC count - steal from others */
455 slop = vpe0limit - tcpervpe[0];
456 slopslop = slop % (nvpe - 1);
457 tcpervpe[0] = vpe0limit;
458 for (i = 1; i < nvpe; i++) {
459 tcpervpe[i] -= slop / (nvpe - 1);
460 if(slopslop && ((slopslop - (i - 1) > 0)))
461 tcpervpe[i]--;
462 }
463 }
464 }
465
466 /* Set up shared TLB */
467 smtc_configure_tlb();
468
469 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
470 if (tcpervpe[vpe] == 0)
471 continue;
472 if (vpe != 0)
473 printk(", ");
474 printk("VPE %d: TC", vpe);
475 for (i = 0; i < tcpervpe[vpe]; i++) {
476 /*
477 * TC 0 is bound to VPE 0 at reset,
478 * and is presumably executing this
479 * code. Leave it alone!
480 */
481 if (tc != 0) {
482 smtc_tc_setup(vpe, tc, cpu);
483 cpu++;
484 }
485 printk(" %d", tc);
486 tc++;
487 }
488 if (vpe != 0) {
489 /*
490 * Allow this VPE to control others.
491 */
492 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
493 VPECONF0_MVP);
494
495 /*
496 * Clear any stale software interrupts from VPE's Cause
497 */
498 write_vpe_c0_cause(0);
499
500 /*
501 * Clear ERL/EXL of VPEs other than 0
502 * and set restricted interrupt enable/mask.
503 */
504 write_vpe_c0_status((read_vpe_c0_status()
505 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
506 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
507 | ST0_IE));
508 /*
509 * set config to be the same as vpe0,
510 * particularly kseg0 coherency alg
511 */
512 write_vpe_c0_config(read_c0_config());
513 /* Clear any pending timer interrupt */
514 write_vpe_c0_compare(0);
515 /* Propagate Config7 */
516 write_vpe_c0_config7(read_c0_config7());
517 write_vpe_c0_count(read_c0_count() + CP0_SKEW);
518 ehb();
519 }
520 /* enable multi-threading within VPE */
521 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
522 /* enable the VPE */
523 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
524 }
525
526 /*
527 * Pull any physically present but unused TCs out of circulation.
528 */
529 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
530 set_cpu_possible(tc, false);
531 set_cpu_present(tc, false);
532 tc++;
533 }
534
535 /* release config state */
536 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
537
538 printk("\n");
539
540 /* Set up coprocessor affinity CPU mask(s) */
541
542 #ifdef CONFIG_MIPS_MT_FPAFF
543 for (tc = 0; tc < ntc; tc++) {
544 if (cpu_data[tc].options & MIPS_CPU_FPU)
545 cpu_set(tc, mt_fpu_cpumask);
546 }
547 #endif
548
549 /* set up ipi interrupts... */
550
551 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
552
553 setup_cross_vpe_interrupts(nvpe);
554
555 /* Set up queue of free IPI "messages". */
556 nipi = NR_CPUS * IPIBUF_PER_CPU;
557 if (ipibuffers > 0)
558 nipi = ipibuffers;
559
560 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
561 if (pipi == NULL)
562 panic("kmalloc of IPI message buffers failed\n");
563 else
564 printk("IPI buffer pool of %d buffers\n", nipi);
565 for (i = 0; i < nipi; i++) {
566 smtc_ipi_nq(&freeIPIq, pipi);
567 pipi++;
568 }
569
570 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
571 emt(EMT_ENABLE);
572 evpe(EVPE_ENABLE);
573 local_irq_restore(flags);
574 /* Initialize SMTC /proc statistics/diagnostics */
575 init_smtc_stats();
576 }
577
578
579 /*
580 * Setup the PC, SP, and GP of a secondary processor and start it
581 * running!
582 * smp_bootstrap is the place to resume from
583 * __KSTK_TOS(idle) is apparently the stack pointer
584 * (unsigned long)idle->thread_info the gp
585 *
586 */
587 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
588 {
589 extern u32 kernelsp[NR_CPUS];
590 unsigned long flags;
591 int mtflags;
592
593 LOCK_MT_PRA();
594 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
595 dvpe();
596 }
597 settc(cpu_data[cpu].tc_id);
598
599 /* pc */
600 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
601
602 /* stack pointer */
603 kernelsp[cpu] = __KSTK_TOS(idle);
604 write_tc_gpr_sp(__KSTK_TOS(idle));
605
606 /* global pointer */
607 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
608
609 smtc_status |= SMTC_MTC_ACTIVE;
610 write_tc_c0_tchalt(0);
611 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
612 evpe(EVPE_ENABLE);
613 }
614 UNLOCK_MT_PRA();
615 }
616
617 void smtc_init_secondary(void)
618 {
619 local_irq_enable();
620 }
621
622 void smtc_smp_finish(void)
623 {
624 int cpu = smp_processor_id();
625
626 /*
627 * Lowest-numbered CPU per VPE starts a clock tick.
628 * Like per_cpu_trap_init() hack, this assumes that
629 * SMTC init code assigns TCs consdecutively and
630 * in ascending order across available VPEs.
631 */
632 if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
633 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
634
635 printk("TC %d going on-line as CPU %d\n",
636 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
637 }
638
639 void smtc_cpus_done(void)
640 {
641 }
642
643 /*
644 * Support for SMTC-optimized driver IRQ registration
645 */
646
647 /*
648 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
649 * in do_IRQ. These are passed in setup_irq_smtc() and stored
650 * in this table.
651 */
652
653 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
654 unsigned long hwmask)
655 {
656 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
657 unsigned int vpe = current_cpu_data.vpe_id;
658
659 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
660 #endif
661 irq_hwmask[irq] = hwmask;
662
663 return setup_irq(irq, new);
664 }
665
666 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
667 /*
668 * Support for IRQ affinity to TCs
669 */
670
671 void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
672 {
673 /*
674 * If a "fast path" cache of quickly decodable affinity state
675 * is maintained, this is where it gets done, on a call up
676 * from the platform affinity code.
677 */
678 }
679
680 void smtc_forward_irq(unsigned int irq)
681 {
682 int target;
683
684 /*
685 * OK wise guy, now figure out how to get the IRQ
686 * to be serviced on an authorized "CPU".
687 *
688 * Ideally, to handle the situation where an IRQ has multiple
689 * eligible CPUS, we would maintain state per IRQ that would
690 * allow a fair distribution of service requests. Since the
691 * expected use model is any-or-only-one, for simplicity
692 * and efficiency, we just pick the easiest one to find.
693 */
694
695 target = cpumask_first(irq_desc[irq].affinity);
696
697 /*
698 * We depend on the platform code to have correctly processed
699 * IRQ affinity change requests to ensure that the IRQ affinity
700 * mask has been purged of bits corresponding to nonexistent and
701 * offline "CPUs", and to TCs bound to VPEs other than the VPE
702 * connected to the physical interrupt input for the interrupt
703 * in question. Otherwise we have a nasty problem with interrupt
704 * mask management. This is best handled in non-performance-critical
705 * platform IRQ affinity setting code, to minimize interrupt-time
706 * checks.
707 */
708
709 /* If no one is eligible, service locally */
710 if (target >= NR_CPUS) {
711 do_IRQ_no_affinity(irq);
712 return;
713 }
714
715 smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
716 }
717
718 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
719
720 /*
721 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
722 * Within a VPE one TC can interrupt another by different approaches.
723 * The easiest to get right would probably be to make all TCs except
724 * the target IXMT and set a software interrupt, but an IXMT-based
725 * scheme requires that a handler must run before a new IPI could
726 * be sent, which would break the "broadcast" loops in MIPS MT.
727 * A more gonzo approach within a VPE is to halt the TC, extract
728 * its Restart, Status, and a couple of GPRs, and program the Restart
729 * address to emulate an interrupt.
730 *
731 * Within a VPE, one can be confident that the target TC isn't in
732 * a critical EXL state when halted, since the write to the Halt
733 * register could not have issued on the writing thread if the
734 * halting thread had EXL set. So k0 and k1 of the target TC
735 * can be used by the injection code. Across VPEs, one can't
736 * be certain that the target TC isn't in a critical exception
737 * state. So we try a two-step process of sending a software
738 * interrupt to the target VPE, which either handles the event
739 * itself (if it was the target) or injects the event within
740 * the VPE.
741 */
742
743 static void smtc_ipi_qdump(void)
744 {
745 int i;
746 struct smtc_ipi *temp;
747
748 for (i = 0; i < NR_CPUS ;i++) {
749 pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
750 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
751 IPIQ[i].depth);
752 temp = IPIQ[i].head;
753
754 while (temp != IPIQ[i].tail) {
755 pr_debug("%d %d %d: ", temp->type, temp->dest,
756 (int)temp->arg);
757 #ifdef SMTC_IPI_DEBUG
758 pr_debug("%u %lu\n", temp->sender, temp->stamp);
759 #else
760 pr_debug("\n");
761 #endif
762 temp = temp->flink;
763 }
764 }
765 }
766
767 /*
768 * The standard atomic.h primitives don't quite do what we want
769 * here: We need an atomic add-and-return-previous-value (which
770 * could be done with atomic_add_return and a decrement) and an
771 * atomic set/zero-and-return-previous-value (which can't really
772 * be done with the atomic.h primitives). And since this is
773 * MIPS MT, we can assume that we have LL/SC.
774 */
775 static inline int atomic_postincrement(atomic_t *v)
776 {
777 unsigned long result;
778
779 unsigned long temp;
780
781 __asm__ __volatile__(
782 "1: ll %0, %2 \n"
783 " addu %1, %0, 1 \n"
784 " sc %1, %2 \n"
785 " beqz %1, 1b \n"
786 __WEAK_LLSC_MB
787 : "=&r" (result), "=&r" (temp), "=m" (v->counter)
788 : "m" (v->counter)
789 : "memory");
790
791 return result;
792 }
793
794 void smtc_send_ipi(int cpu, int type, unsigned int action)
795 {
796 int tcstatus;
797 struct smtc_ipi *pipi;
798 unsigned long flags;
799 int mtflags;
800 unsigned long tcrestart;
801 extern void r4k_wait_irqoff(void), __pastwait(void);
802 int set_resched_flag = (type == LINUX_SMP_IPI &&
803 action == SMP_RESCHEDULE_YOURSELF);
804
805 if (cpu == smp_processor_id()) {
806 printk("Cannot Send IPI to self!\n");
807 return;
808 }
809 if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
810 return; /* There is a reschedule queued already */
811
812 /* Set up a descriptor, to be delivered either promptly or queued */
813 pipi = smtc_ipi_dq(&freeIPIq);
814 if (pipi == NULL) {
815 bust_spinlocks(1);
816 mips_mt_regdump(dvpe());
817 panic("IPI Msg. Buffers Depleted\n");
818 }
819 pipi->type = type;
820 pipi->arg = (void *)action;
821 pipi->dest = cpu;
822 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
823 /* If not on same VPE, enqueue and send cross-VPE interrupt */
824 IPIQ[cpu].resched_flag |= set_resched_flag;
825 smtc_ipi_nq(&IPIQ[cpu], pipi);
826 LOCK_CORE_PRA();
827 settc(cpu_data[cpu].tc_id);
828 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
829 UNLOCK_CORE_PRA();
830 } else {
831 /*
832 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
833 * since ASID shootdown on the other VPE may
834 * collide with this operation.
835 */
836 LOCK_CORE_PRA();
837 settc(cpu_data[cpu].tc_id);
838 /* Halt the targeted TC */
839 write_tc_c0_tchalt(TCHALT_H);
840 mips_ihb();
841
842 /*
843 * Inspect TCStatus - if IXMT is set, we have to queue
844 * a message. Otherwise, we set up the "interrupt"
845 * of the other TC
846 */
847 tcstatus = read_tc_c0_tcstatus();
848
849 if ((tcstatus & TCSTATUS_IXMT) != 0) {
850 /*
851 * If we're in the the irq-off version of the wait
852 * loop, we need to force exit from the wait and
853 * do a direct post of the IPI.
854 */
855 if (cpu_wait == r4k_wait_irqoff) {
856 tcrestart = read_tc_c0_tcrestart();
857 if (tcrestart >= (unsigned long)r4k_wait_irqoff
858 && tcrestart < (unsigned long)__pastwait) {
859 write_tc_c0_tcrestart(__pastwait);
860 tcstatus &= ~TCSTATUS_IXMT;
861 write_tc_c0_tcstatus(tcstatus);
862 goto postdirect;
863 }
864 }
865 /*
866 * Otherwise we queue the message for the target TC
867 * to pick up when he does a local_irq_restore()
868 */
869 write_tc_c0_tchalt(0);
870 UNLOCK_CORE_PRA();
871 IPIQ[cpu].resched_flag |= set_resched_flag;
872 smtc_ipi_nq(&IPIQ[cpu], pipi);
873 } else {
874 postdirect:
875 post_direct_ipi(cpu, pipi);
876 write_tc_c0_tchalt(0);
877 UNLOCK_CORE_PRA();
878 }
879 }
880 }
881
882 /*
883 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
884 */
885 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
886 {
887 struct pt_regs *kstack;
888 unsigned long tcstatus;
889 unsigned long tcrestart;
890 extern u32 kernelsp[NR_CPUS];
891 extern void __smtc_ipi_vector(void);
892 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
893
894 /* Extract Status, EPC from halted TC */
895 tcstatus = read_tc_c0_tcstatus();
896 tcrestart = read_tc_c0_tcrestart();
897 /* If TCRestart indicates a WAIT instruction, advance the PC */
898 if ((tcrestart & 0x80000000)
899 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
900 tcrestart += 4;
901 }
902 /*
903 * Save on TC's future kernel stack
904 *
905 * CU bit of Status is indicator that TC was
906 * already running on a kernel stack...
907 */
908 if (tcstatus & ST0_CU0) {
909 /* Note that this "- 1" is pointer arithmetic */
910 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
911 } else {
912 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
913 }
914
915 kstack->cp0_epc = (long)tcrestart;
916 /* Save TCStatus */
917 kstack->cp0_tcstatus = tcstatus;
918 /* Pass token of operation to be performed kernel stack pad area */
919 kstack->pad0[4] = (unsigned long)pipi;
920 /* Pass address of function to be called likewise */
921 kstack->pad0[5] = (unsigned long)&ipi_decode;
922 /* Set interrupt exempt and kernel mode */
923 tcstatus |= TCSTATUS_IXMT;
924 tcstatus &= ~TCSTATUS_TKSU;
925 write_tc_c0_tcstatus(tcstatus);
926 ehb();
927 /* Set TC Restart address to be SMTC IPI vector */
928 write_tc_c0_tcrestart(__smtc_ipi_vector);
929 }
930
931 static void ipi_resched_interrupt(void)
932 {
933 /* Return from interrupt should be enough to cause scheduler check */
934 }
935
936 static void ipi_call_interrupt(void)
937 {
938 /* Invoke generic function invocation code in smp.c */
939 smp_call_function_interrupt();
940 }
941
942 DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
943
944 static void __irq_entry smtc_clock_tick_interrupt(void)
945 {
946 unsigned int cpu = smp_processor_id();
947 struct clock_event_device *cd;
948 int irq = MIPS_CPU_IRQ_BASE + 1;
949
950 irq_enter();
951 kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
952 cd = &per_cpu(mips_clockevent_device, cpu);
953 cd->event_handler(cd);
954 irq_exit();
955 }
956
957 void ipi_decode(struct smtc_ipi *pipi)
958 {
959 void *arg_copy = pipi->arg;
960 int type_copy = pipi->type;
961
962 smtc_ipi_nq(&freeIPIq, pipi);
963
964 switch (type_copy) {
965 case SMTC_CLOCK_TICK:
966 smtc_clock_tick_interrupt();
967 break;
968
969 case LINUX_SMP_IPI:
970 switch ((int)arg_copy) {
971 case SMP_RESCHEDULE_YOURSELF:
972 ipi_resched_interrupt();
973 break;
974 case SMP_CALL_FUNCTION:
975 ipi_call_interrupt();
976 break;
977 default:
978 printk("Impossible SMTC IPI Argument 0x%x\n",
979 (int)arg_copy);
980 break;
981 }
982 break;
983 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
984 case IRQ_AFFINITY_IPI:
985 /*
986 * Accept a "forwarded" interrupt that was initially
987 * taken by a TC who doesn't have affinity for the IRQ.
988 */
989 do_IRQ_no_affinity((int)arg_copy);
990 break;
991 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
992 default:
993 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
994 break;
995 }
996 }
997
998 /*
999 * Similar to smtc_ipi_replay(), but invoked from context restore,
1000 * so it reuses the current exception frame rather than set up a
1001 * new one with self_ipi.
1002 */
1003
1004 void deferred_smtc_ipi(void)
1005 {
1006 int cpu = smp_processor_id();
1007
1008 /*
1009 * Test is not atomic, but much faster than a dequeue,
1010 * and the vast majority of invocations will have a null queue.
1011 * If irq_disabled when this was called, then any IPIs queued
1012 * after we test last will be taken on the next irq_enable/restore.
1013 * If interrupts were enabled, then any IPIs added after the
1014 * last test will be taken directly.
1015 */
1016
1017 while (IPIQ[cpu].head != NULL) {
1018 struct smtc_ipi_q *q = &IPIQ[cpu];
1019 struct smtc_ipi *pipi;
1020 unsigned long flags;
1021
1022 /*
1023 * It may be possible we'll come in with interrupts
1024 * already enabled.
1025 */
1026 local_irq_save(flags);
1027 spin_lock(&q->lock);
1028 pipi = __smtc_ipi_dq(q);
1029 spin_unlock(&q->lock);
1030 if (pipi != NULL) {
1031 if (pipi->type == LINUX_SMP_IPI &&
1032 (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1033 IPIQ[cpu].resched_flag = 0;
1034 ipi_decode(pipi);
1035 }
1036 /*
1037 * The use of the __raw_local restore isn't
1038 * as obviously necessary here as in smtc_ipi_replay(),
1039 * but it's more efficient, given that we're already
1040 * running down the IPI queue.
1041 */
1042 __raw_local_irq_restore(flags);
1043 }
1044 }
1045
1046 /*
1047 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1048 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1049 * in some regards preferable to have external logic for "doorbell" hardware
1050 * interrupts.
1051 */
1052
1053 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1054
1055 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1056 {
1057 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1058 int my_tc = cpu_data[smp_processor_id()].tc_id;
1059 int cpu;
1060 struct smtc_ipi *pipi;
1061 unsigned long tcstatus;
1062 int sent;
1063 unsigned long flags;
1064 unsigned int mtflags;
1065 unsigned int vpflags;
1066
1067 /*
1068 * So long as cross-VPE interrupts are done via
1069 * MFTR/MTTR read-modify-writes of Cause, we need
1070 * to stop other VPEs whenever the local VPE does
1071 * anything similar.
1072 */
1073 local_irq_save(flags);
1074 vpflags = dvpe();
1075 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1076 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1077 irq_enable_hazard();
1078 evpe(vpflags);
1079 local_irq_restore(flags);
1080
1081 /*
1082 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1083 * queued for TCs on this VPE other than the current one.
1084 * Return-from-interrupt should cause us to drain the queue
1085 * for the current TC, so we ought not to have to do it explicitly here.
1086 */
1087
1088 for_each_online_cpu(cpu) {
1089 if (cpu_data[cpu].vpe_id != my_vpe)
1090 continue;
1091
1092 pipi = smtc_ipi_dq(&IPIQ[cpu]);
1093 if (pipi != NULL) {
1094 if (cpu_data[cpu].tc_id != my_tc) {
1095 sent = 0;
1096 LOCK_MT_PRA();
1097 settc(cpu_data[cpu].tc_id);
1098 write_tc_c0_tchalt(TCHALT_H);
1099 mips_ihb();
1100 tcstatus = read_tc_c0_tcstatus();
1101 if ((tcstatus & TCSTATUS_IXMT) == 0) {
1102 post_direct_ipi(cpu, pipi);
1103 sent = 1;
1104 }
1105 write_tc_c0_tchalt(0);
1106 UNLOCK_MT_PRA();
1107 if (!sent) {
1108 smtc_ipi_req(&IPIQ[cpu], pipi);
1109 }
1110 } else {
1111 /*
1112 * ipi_decode() should be called
1113 * with interrupts off
1114 */
1115 local_irq_save(flags);
1116 if (pipi->type == LINUX_SMP_IPI &&
1117 (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1118 IPIQ[cpu].resched_flag = 0;
1119 ipi_decode(pipi);
1120 local_irq_restore(flags);
1121 }
1122 }
1123 }
1124
1125 return IRQ_HANDLED;
1126 }
1127
1128 static void ipi_irq_dispatch(void)
1129 {
1130 do_IRQ(cpu_ipi_irq);
1131 }
1132
1133 static struct irqaction irq_ipi = {
1134 .handler = ipi_interrupt,
1135 .flags = IRQF_DISABLED | IRQF_PERCPU,
1136 .name = "SMTC_IPI"
1137 };
1138
1139 static void setup_cross_vpe_interrupts(unsigned int nvpe)
1140 {
1141 if (nvpe < 1)
1142 return;
1143
1144 if (!cpu_has_vint)
1145 panic("SMTC Kernel requires Vectored Interrupt support");
1146
1147 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1148
1149 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1150
1151 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1152 }
1153
1154 /*
1155 * SMTC-specific hacks invoked from elsewhere in the kernel.
1156 */
1157
1158 /*
1159 * smtc_ipi_replay is called from raw_local_irq_restore
1160 */
1161
1162 void smtc_ipi_replay(void)
1163 {
1164 unsigned int cpu = smp_processor_id();
1165
1166 /*
1167 * To the extent that we've ever turned interrupts off,
1168 * we may have accumulated deferred IPIs. This is subtle.
1169 * we should be OK: If we pick up something and dispatch
1170 * it here, that's great. If we see nothing, but concurrent
1171 * with this operation, another TC sends us an IPI, IXMT
1172 * is clear, and we'll handle it as a real pseudo-interrupt
1173 * and not a pseudo-pseudo interrupt. The important thing
1174 * is to do the last check for queued message *after* the
1175 * re-enabling of interrupts.
1176 */
1177 while (IPIQ[cpu].head != NULL) {
1178 struct smtc_ipi_q *q = &IPIQ[cpu];
1179 struct smtc_ipi *pipi;
1180 unsigned long flags;
1181
1182 /*
1183 * It's just possible we'll come in with interrupts
1184 * already enabled.
1185 */
1186 local_irq_save(flags);
1187
1188 spin_lock(&q->lock);
1189 pipi = __smtc_ipi_dq(q);
1190 spin_unlock(&q->lock);
1191 /*
1192 ** But use a raw restore here to avoid recursion.
1193 */
1194 __raw_local_irq_restore(flags);
1195
1196 if (pipi) {
1197 self_ipi(pipi);
1198 smtc_cpu_stats[cpu].selfipis++;
1199 }
1200 }
1201 }
1202
1203 EXPORT_SYMBOL(smtc_ipi_replay);
1204
1205 void smtc_idle_loop_hook(void)
1206 {
1207 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1208 int im;
1209 int flags;
1210 int mtflags;
1211 int bit;
1212 int vpe;
1213 int tc;
1214 int hook_ntcs;
1215 /*
1216 * printk within DMT-protected regions can deadlock,
1217 * so buffer diagnostic messages for later output.
1218 */
1219 char *pdb_msg;
1220 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1221
1222 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1223 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1224 int mvpconf0;
1225 /* Tedious stuff to just do once */
1226 mvpconf0 = read_c0_mvpconf0();
1227 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1228 if (hook_ntcs > NR_CPUS)
1229 hook_ntcs = NR_CPUS;
1230 for (tc = 0; tc < hook_ntcs; tc++) {
1231 tcnoprog[tc] = 0;
1232 clock_hang_reported[tc] = 0;
1233 }
1234 for (vpe = 0; vpe < 2; vpe++)
1235 for (im = 0; im < 8; im++)
1236 imstuckcount[vpe][im] = 0;
1237 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1238 atomic_set(&idle_hook_initialized, 1000);
1239 } else {
1240 /* Someone else is initializing in parallel - let 'em finish */
1241 while (atomic_read(&idle_hook_initialized) < 1000)
1242 ;
1243 }
1244 }
1245
1246 /* Have we stupidly left IXMT set somewhere? */
1247 if (read_c0_tcstatus() & 0x400) {
1248 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1249 ehb();
1250 printk("Dangling IXMT in cpu_idle()\n");
1251 }
1252
1253 /* Have we stupidly left an IM bit turned off? */
1254 #define IM_LIMIT 2000
1255 local_irq_save(flags);
1256 mtflags = dmt();
1257 pdb_msg = &id_ho_db_msg[0];
1258 im = read_c0_status();
1259 vpe = current_cpu_data.vpe_id;
1260 for (bit = 0; bit < 8; bit++) {
1261 /*
1262 * In current prototype, I/O interrupts
1263 * are masked for VPE > 0
1264 */
1265 if (vpemask[vpe][bit]) {
1266 if (!(im & (0x100 << bit)))
1267 imstuckcount[vpe][bit]++;
1268 else
1269 imstuckcount[vpe][bit] = 0;
1270 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1271 set_c0_status(0x100 << bit);
1272 ehb();
1273 imstuckcount[vpe][bit] = 0;
1274 pdb_msg += sprintf(pdb_msg,
1275 "Dangling IM %d fixed for VPE %d\n", bit,
1276 vpe);
1277 }
1278 }
1279 }
1280
1281 emt(mtflags);
1282 local_irq_restore(flags);
1283 if (pdb_msg != &id_ho_db_msg[0])
1284 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1285 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1286
1287 smtc_ipi_replay();
1288 }
1289
1290 void smtc_soft_dump(void)
1291 {
1292 int i;
1293
1294 printk("Counter Interrupts taken per CPU (TC)\n");
1295 for (i=0; i < NR_CPUS; i++) {
1296 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1297 }
1298 printk("Self-IPI invocations:\n");
1299 for (i=0; i < NR_CPUS; i++) {
1300 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1301 }
1302 smtc_ipi_qdump();
1303 printk("%d Recoveries of \"stolen\" FPU\n",
1304 atomic_read(&smtc_fpu_recoveries));
1305 }
1306
1307
1308 /*
1309 * TLB management routines special to SMTC
1310 */
1311
1312 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1313 {
1314 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1315 int tlb, i;
1316
1317 /*
1318 * It would be nice to be able to use a spinlock here,
1319 * but this is invoked from within TLB flush routines
1320 * that protect themselves with DVPE, so if a lock is
1321 * held by another TC, it'll never be freed.
1322 *
1323 * DVPE/DMT must not be done with interrupts enabled,
1324 * so even so most callers will already have disabled
1325 * them, let's be really careful...
1326 */
1327
1328 local_irq_save(flags);
1329 if (smtc_status & SMTC_TLB_SHARED) {
1330 mtflags = dvpe();
1331 tlb = 0;
1332 } else {
1333 mtflags = dmt();
1334 tlb = cpu_data[cpu].vpe_id;
1335 }
1336 asid = asid_cache(cpu);
1337
1338 do {
1339 if (!((asid += ASID_INC) & ASID_MASK) ) {
1340 if (cpu_has_vtag_icache)
1341 flush_icache_all();
1342 /* Traverse all online CPUs (hack requires contiguous range) */
1343 for_each_online_cpu(i) {
1344 /*
1345 * We don't need to worry about our own CPU, nor those of
1346 * CPUs who don't share our TLB.
1347 */
1348 if ((i != smp_processor_id()) &&
1349 ((smtc_status & SMTC_TLB_SHARED) ||
1350 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1351 settc(cpu_data[i].tc_id);
1352 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1353 if (!prevhalt) {
1354 write_tc_c0_tchalt(TCHALT_H);
1355 mips_ihb();
1356 }
1357 tcstat = read_tc_c0_tcstatus();
1358 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1359 if (!prevhalt)
1360 write_tc_c0_tchalt(0);
1361 }
1362 }
1363 if (!asid) /* fix version if needed */
1364 asid = ASID_FIRST_VERSION;
1365 local_flush_tlb_all(); /* start new asid cycle */
1366 }
1367 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1368
1369 /*
1370 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1371 */
1372 for_each_online_cpu(i) {
1373 if ((smtc_status & SMTC_TLB_SHARED) ||
1374 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1375 cpu_context(i, mm) = asid_cache(i) = asid;
1376 }
1377
1378 if (smtc_status & SMTC_TLB_SHARED)
1379 evpe(mtflags);
1380 else
1381 emt(mtflags);
1382 local_irq_restore(flags);
1383 }
1384
1385 /*
1386 * Invoked from macros defined in mmu_context.h
1387 * which must already have disabled interrupts
1388 * and done a DVPE or DMT as appropriate.
1389 */
1390
1391 void smtc_flush_tlb_asid(unsigned long asid)
1392 {
1393 int entry;
1394 unsigned long ehi;
1395
1396 entry = read_c0_wired();
1397
1398 /* Traverse all non-wired entries */
1399 while (entry < current_cpu_data.tlbsize) {
1400 write_c0_index(entry);
1401 ehb();
1402 tlb_read();
1403 ehb();
1404 ehi = read_c0_entryhi();
1405 if ((ehi & ASID_MASK) == asid) {
1406 /*
1407 * Invalidate only entries with specified ASID,
1408 * makiing sure all entries differ.
1409 */
1410 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1411 write_c0_entrylo0(0);
1412 write_c0_entrylo1(0);
1413 mtc0_tlbw_hazard();
1414 tlb_write_indexed();
1415 }
1416 entry++;
1417 }
1418 write_c0_index(PARKED_INDEX);
1419 tlbw_use_hazard();
1420 }
1421
1422 /*
1423 * Support for single-threading cache flush operations.
1424 */
1425
1426 static int halt_state_save[NR_CPUS];
1427
1428 /*
1429 * To really, really be sure that nothing is being done
1430 * by other TCs, halt them all. This code assumes that
1431 * a DVPE has already been done, so while their Halted
1432 * state is theoretically architecturally unstable, in
1433 * practice, it's not going to change while we're looking
1434 * at it.
1435 */
1436
1437 void smtc_cflush_lockdown(void)
1438 {
1439 int cpu;
1440
1441 for_each_online_cpu(cpu) {
1442 if (cpu != smp_processor_id()) {
1443 settc(cpu_data[cpu].tc_id);
1444 halt_state_save[cpu] = read_tc_c0_tchalt();
1445 write_tc_c0_tchalt(TCHALT_H);
1446 }
1447 }
1448 mips_ihb();
1449 }
1450
1451 /* It would be cheating to change the cpu_online states during a flush! */
1452
1453 void smtc_cflush_release(void)
1454 {
1455 int cpu;
1456
1457 /*
1458 * Start with a hazard barrier to ensure
1459 * that all CACHE ops have played through.
1460 */
1461 mips_ihb();
1462
1463 for_each_online_cpu(cpu) {
1464 if (cpu != smp_processor_id()) {
1465 settc(cpu_data[cpu].tc_id);
1466 write_tc_c0_tchalt(halt_state_save[cpu]);
1467 }
1468 }
1469 mips_ihb();
1470 }