c7f90519e58ce0ade98dd826752fbaa1d2287da0
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / kernel / setup.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27
28 #include <asm/addrspace.h>
29 #include <asm/bootinfo.h>
30 #include <asm/bugs.h>
31 #include <asm/cache.h>
32 #include <asm/cpu.h>
33 #include <asm/sections.h>
34 #include <asm/setup.h>
35 #include <asm/smp-ops.h>
36 #include <asm/prom.h>
37
38 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
39
40 EXPORT_SYMBOL(cpu_data);
41
42 #ifdef CONFIG_VT
43 struct screen_info screen_info;
44 #endif
45
46 /*
47 * Despite it's name this variable is even if we don't have PCI
48 */
49 unsigned int PCI_DMA_BUS_IS_PHYS;
50
51 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
52
53 /*
54 * Setup information
55 *
56 * These are initialized so they are in the .data section
57 */
58 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
59
60 EXPORT_SYMBOL(mips_machtype);
61
62 struct boot_mem_map boot_mem_map;
63
64 static char __initdata command_line[COMMAND_LINE_SIZE];
65 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
66
67 #ifdef CONFIG_CMDLINE_BOOL
68 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
69 #endif
70
71 /*
72 * mips_io_port_base is the begin of the address space to which x86 style
73 * I/O ports are mapped.
74 */
75 const unsigned long mips_io_port_base = -1;
76 EXPORT_SYMBOL(mips_io_port_base);
77
78 static struct resource code_resource = { .name = "Kernel code", };
79 static struct resource data_resource = { .name = "Kernel data", };
80
81 static void *detect_magic __initdata = detect_memory_region;
82
83 void __init add_memory_region(phys_t start, phys_t size, long type)
84 {
85 int x = boot_mem_map.nr_map;
86 int i;
87
88 /* Sanity check */
89 if (start + size < start) {
90 pr_warning("Trying to add an invalid memory region, skipped\n");
91 return;
92 }
93
94 /*
95 * Try to merge with existing entry, if any.
96 */
97 for (i = 0; i < boot_mem_map.nr_map; i++) {
98 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
99 unsigned long top;
100
101 if (entry->type != type)
102 continue;
103
104 if (start + size < entry->addr)
105 continue; /* no overlap */
106
107 if (entry->addr + entry->size < start)
108 continue; /* no overlap */
109
110 top = max(entry->addr + entry->size, start + size);
111 entry->addr = min(entry->addr, start);
112 entry->size = top - entry->addr;
113
114 return;
115 }
116
117 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
118 pr_err("Ooops! Too many entries in the memory map!\n");
119 return;
120 }
121
122 boot_mem_map.map[x].addr = start;
123 boot_mem_map.map[x].size = size;
124 boot_mem_map.map[x].type = type;
125 boot_mem_map.nr_map++;
126 }
127
128 void __init detect_memory_region(phys_t start, phys_t sz_min, phys_t sz_max)
129 {
130 void *dm = &detect_magic;
131 phys_t size;
132
133 for (size = sz_min; size < sz_max; size <<= 1) {
134 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
135 break;
136 }
137
138 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
139 ((unsigned long long) size) / SZ_1M,
140 (unsigned long long) start,
141 ((unsigned long long) sz_min) / SZ_1M,
142 ((unsigned long long) sz_max) / SZ_1M);
143
144 add_memory_region(start, size, BOOT_MEM_RAM);
145 }
146
147 static void __init print_memory_map(void)
148 {
149 int i;
150 const int field = 2 * sizeof(unsigned long);
151
152 for (i = 0; i < boot_mem_map.nr_map; i++) {
153 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
154 field, (unsigned long long) boot_mem_map.map[i].size,
155 field, (unsigned long long) boot_mem_map.map[i].addr);
156
157 switch (boot_mem_map.map[i].type) {
158 case BOOT_MEM_RAM:
159 printk(KERN_CONT "(usable)\n");
160 break;
161 case BOOT_MEM_INIT_RAM:
162 printk(KERN_CONT "(usable after init)\n");
163 break;
164 case BOOT_MEM_ROM_DATA:
165 printk(KERN_CONT "(ROM data)\n");
166 break;
167 case BOOT_MEM_RESERVED:
168 printk(KERN_CONT "(reserved)\n");
169 break;
170 default:
171 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
172 break;
173 }
174 }
175 }
176
177 /*
178 * Manage initrd
179 */
180 #ifdef CONFIG_BLK_DEV_INITRD
181
182 static int __init rd_start_early(char *p)
183 {
184 unsigned long start = memparse(p, &p);
185
186 #ifdef CONFIG_64BIT
187 /* Guess if the sign extension was forgotten by bootloader */
188 if (start < XKPHYS)
189 start = (int)start;
190 #endif
191 initrd_start = start;
192 initrd_end += start;
193 return 0;
194 }
195 early_param("rd_start", rd_start_early);
196
197 static int __init rd_size_early(char *p)
198 {
199 initrd_end += memparse(p, &p);
200 return 0;
201 }
202 early_param("rd_size", rd_size_early);
203
204 /* it returns the next free pfn after initrd */
205 static unsigned long __init init_initrd(void)
206 {
207 unsigned long end;
208
209 /*
210 * Board specific code or command line parser should have
211 * already set up initrd_start and initrd_end. In these cases
212 * perfom sanity checks and use them if all looks good.
213 */
214 if (!initrd_start || initrd_end <= initrd_start)
215 goto disable;
216
217 if (initrd_start & ~PAGE_MASK) {
218 pr_err("initrd start must be page aligned\n");
219 goto disable;
220 }
221 if (initrd_start < PAGE_OFFSET) {
222 pr_err("initrd start < PAGE_OFFSET\n");
223 goto disable;
224 }
225
226 /*
227 * Sanitize initrd addresses. For example firmware
228 * can't guess if they need to pass them through
229 * 64-bits values if the kernel has been built in pure
230 * 32-bit. We need also to switch from KSEG0 to XKPHYS
231 * addresses now, so the code can now safely use __pa().
232 */
233 end = __pa(initrd_end);
234 initrd_end = (unsigned long)__va(end);
235 initrd_start = (unsigned long)__va(__pa(initrd_start));
236
237 ROOT_DEV = Root_RAM0;
238 return PFN_UP(end);
239 disable:
240 initrd_start = 0;
241 initrd_end = 0;
242 return 0;
243 }
244
245 static void __init finalize_initrd(void)
246 {
247 unsigned long size = initrd_end - initrd_start;
248
249 if (size == 0) {
250 printk(KERN_INFO "Initrd not found or empty");
251 goto disable;
252 }
253 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
254 printk(KERN_ERR "Initrd extends beyond end of memory");
255 goto disable;
256 }
257
258 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
259 initrd_below_start_ok = 1;
260
261 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
262 initrd_start, size);
263 return;
264 disable:
265 printk(KERN_CONT " - disabling initrd\n");
266 initrd_start = 0;
267 initrd_end = 0;
268 }
269
270 #else /* !CONFIG_BLK_DEV_INITRD */
271
272 static unsigned long __init init_initrd(void)
273 {
274 return 0;
275 }
276
277 #define finalize_initrd() do {} while (0)
278
279 #endif
280
281 /*
282 * Initialize the bootmem allocator. It also setup initrd related data
283 * if needed.
284 */
285 #ifdef CONFIG_SGI_IP27
286
287 static void __init bootmem_init(void)
288 {
289 init_initrd();
290 finalize_initrd();
291 }
292
293 #else /* !CONFIG_SGI_IP27 */
294
295 static void __init bootmem_init(void)
296 {
297 unsigned long reserved_end;
298 unsigned long mapstart = ~0UL;
299 unsigned long bootmap_size;
300 int i;
301
302 /*
303 * Init any data related to initrd. It's a nop if INITRD is
304 * not selected. Once that done we can determine the low bound
305 * of usable memory.
306 */
307 reserved_end = max(init_initrd(),
308 (unsigned long) PFN_UP(__pa_symbol(&_end)));
309
310 /*
311 * max_low_pfn is not a number of pages. The number of pages
312 * of the system is given by 'max_low_pfn - min_low_pfn'.
313 */
314 min_low_pfn = ~0UL;
315 max_low_pfn = 0;
316
317 /*
318 * Find the highest page frame number we have available.
319 */
320 for (i = 0; i < boot_mem_map.nr_map; i++) {
321 unsigned long start, end;
322
323 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
324 continue;
325
326 start = PFN_UP(boot_mem_map.map[i].addr);
327 end = PFN_DOWN(boot_mem_map.map[i].addr
328 + boot_mem_map.map[i].size);
329
330 if (end > max_low_pfn)
331 max_low_pfn = end;
332 if (start < min_low_pfn)
333 min_low_pfn = start;
334 if (end <= reserved_end)
335 continue;
336 if (start >= mapstart)
337 continue;
338 mapstart = max(reserved_end, start);
339 }
340
341 if (min_low_pfn >= max_low_pfn)
342 panic("Incorrect memory mapping !!!");
343 if (min_low_pfn > ARCH_PFN_OFFSET) {
344 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
345 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
346 min_low_pfn - ARCH_PFN_OFFSET);
347 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
348 pr_info("%lu free pages won't be used\n",
349 ARCH_PFN_OFFSET - min_low_pfn);
350 }
351 min_low_pfn = ARCH_PFN_OFFSET;
352
353 /*
354 * Determine low and high memory ranges
355 */
356 max_pfn = max_low_pfn;
357 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
358 #ifdef CONFIG_HIGHMEM
359 highstart_pfn = PFN_DOWN(HIGHMEM_START);
360 highend_pfn = max_low_pfn;
361 #endif
362 max_low_pfn = PFN_DOWN(HIGHMEM_START);
363 }
364
365 /*
366 * Initialize the boot-time allocator with low memory only.
367 */
368 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
369 min_low_pfn, max_low_pfn);
370
371
372 for (i = 0; i < boot_mem_map.nr_map; i++) {
373 unsigned long start, end;
374
375 start = PFN_UP(boot_mem_map.map[i].addr);
376 end = PFN_DOWN(boot_mem_map.map[i].addr
377 + boot_mem_map.map[i].size);
378
379 if (start <= min_low_pfn)
380 start = min_low_pfn;
381 if (start >= end)
382 continue;
383
384 #ifndef CONFIG_HIGHMEM
385 if (end > max_low_pfn)
386 end = max_low_pfn;
387
388 /*
389 * ... finally, is the area going away?
390 */
391 if (end <= start)
392 continue;
393 #endif
394
395 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
396 }
397
398 /*
399 * Register fully available low RAM pages with the bootmem allocator.
400 */
401 for (i = 0; i < boot_mem_map.nr_map; i++) {
402 unsigned long start, end, size;
403
404 start = PFN_UP(boot_mem_map.map[i].addr);
405 end = PFN_DOWN(boot_mem_map.map[i].addr
406 + boot_mem_map.map[i].size);
407
408 /*
409 * Reserve usable memory.
410 */
411 switch (boot_mem_map.map[i].type) {
412 case BOOT_MEM_RAM:
413 break;
414 case BOOT_MEM_INIT_RAM:
415 memory_present(0, start, end);
416 continue;
417 default:
418 /* Not usable memory */
419 continue;
420 }
421
422 /*
423 * We are rounding up the start address of usable memory
424 * and at the end of the usable range downwards.
425 */
426 if (start >= max_low_pfn)
427 continue;
428 if (start < reserved_end)
429 start = reserved_end;
430 if (end > max_low_pfn)
431 end = max_low_pfn;
432
433 /*
434 * ... finally, is the area going away?
435 */
436 if (end <= start)
437 continue;
438 size = end - start;
439
440 /* Register lowmem ranges */
441 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
442 memory_present(0, start, end);
443 }
444
445 /*
446 * Reserve the bootmap memory.
447 */
448 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
449
450 /*
451 * Reserve initrd memory if needed.
452 */
453 finalize_initrd();
454 }
455
456 #endif /* CONFIG_SGI_IP27 */
457
458 /*
459 * arch_mem_init - initialize memory management subsystem
460 *
461 * o plat_mem_setup() detects the memory configuration and will record detected
462 * memory areas using add_memory_region.
463 *
464 * At this stage the memory configuration of the system is known to the
465 * kernel but generic memory management system is still entirely uninitialized.
466 *
467 * o bootmem_init()
468 * o sparse_init()
469 * o paging_init()
470 *
471 * At this stage the bootmem allocator is ready to use.
472 *
473 * NOTE: historically plat_mem_setup did the entire platform initialization.
474 * This was rather impractical because it meant plat_mem_setup had to
475 * get away without any kind of memory allocator. To keep old code from
476 * breaking plat_setup was just renamed to plat_setup and a second platform
477 * initialization hook for anything else was introduced.
478 */
479
480 static int usermem __initdata;
481
482 static int __init early_parse_mem(char *p)
483 {
484 unsigned long start, size;
485
486 /*
487 * If a user specifies memory size, we
488 * blow away any automatically generated
489 * size.
490 */
491 if (usermem == 0) {
492 boot_mem_map.nr_map = 0;
493 usermem = 1;
494 }
495 start = 0;
496 size = memparse(p, &p);
497 if (*p == '@')
498 start = memparse(p + 1, &p);
499
500 add_memory_region(start, size, BOOT_MEM_RAM);
501 return 0;
502 }
503 early_param("mem", early_parse_mem);
504
505 #ifdef CONFIG_PROC_VMCORE
506 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
507 static int __init early_parse_elfcorehdr(char *p)
508 {
509 int i;
510
511 setup_elfcorehdr = memparse(p, &p);
512
513 for (i = 0; i < boot_mem_map.nr_map; i++) {
514 unsigned long start = boot_mem_map.map[i].addr;
515 unsigned long end = (boot_mem_map.map[i].addr +
516 boot_mem_map.map[i].size);
517 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
518 /*
519 * Reserve from the elf core header to the end of
520 * the memory segment, that should all be kdump
521 * reserved memory.
522 */
523 setup_elfcorehdr_size = end - setup_elfcorehdr;
524 break;
525 }
526 }
527 /*
528 * If we don't find it in the memory map, then we shouldn't
529 * have to worry about it, as the new kernel won't use it.
530 */
531 return 0;
532 }
533 early_param("elfcorehdr", early_parse_elfcorehdr);
534 #endif
535
536 static void __init arch_mem_addpart(phys_t mem, phys_t end, int type)
537 {
538 phys_t size;
539 int i;
540
541 size = end - mem;
542 if (!size)
543 return;
544
545 /* Make sure it is in the boot_mem_map */
546 for (i = 0; i < boot_mem_map.nr_map; i++) {
547 if (mem >= boot_mem_map.map[i].addr &&
548 mem < (boot_mem_map.map[i].addr +
549 boot_mem_map.map[i].size))
550 return;
551 }
552 add_memory_region(mem, size, type);
553 }
554
555 static void __init arch_mem_init(char **cmdline_p)
556 {
557 extern void plat_mem_setup(void);
558
559 /* call board setup routine */
560 plat_mem_setup();
561
562 /*
563 * Make sure all kernel memory is in the maps. The "UP" and
564 * "DOWN" are opposite for initdata since if it crosses over
565 * into another memory section you don't want that to be
566 * freed when the initdata is freed.
567 */
568 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
569 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
570 BOOT_MEM_RAM);
571 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
572 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
573 BOOT_MEM_INIT_RAM);
574
575 pr_info("Determined physical RAM map:\n");
576 print_memory_map();
577
578 #ifdef CONFIG_CMDLINE_BOOL
579 #ifdef CONFIG_CMDLINE_OVERRIDE
580 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
581 #else
582 if (builtin_cmdline[0]) {
583 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
584 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
585 }
586 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
587 #endif
588 #else
589 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
590 #endif
591 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
592
593 *cmdline_p = command_line;
594
595 parse_early_param();
596
597 if (usermem) {
598 pr_info("User-defined physical RAM map:\n");
599 print_memory_map();
600 }
601
602 bootmem_init();
603 #ifdef CONFIG_PROC_VMCORE
604 if (setup_elfcorehdr && setup_elfcorehdr_size) {
605 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
606 setup_elfcorehdr, setup_elfcorehdr_size);
607 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
608 BOOTMEM_DEFAULT);
609 }
610 #endif
611 #ifdef CONFIG_KEXEC
612 if (crashk_res.start != crashk_res.end)
613 reserve_bootmem(crashk_res.start,
614 crashk_res.end - crashk_res.start + 1,
615 BOOTMEM_DEFAULT);
616 #endif
617 device_tree_init();
618 sparse_init();
619 plat_swiotlb_setup();
620 paging_init();
621 }
622
623 #ifdef CONFIG_KEXEC
624 static inline unsigned long long get_total_mem(void)
625 {
626 unsigned long long total;
627
628 total = max_pfn - min_low_pfn;
629 return total << PAGE_SHIFT;
630 }
631
632 static void __init mips_parse_crashkernel(void)
633 {
634 unsigned long long total_mem;
635 unsigned long long crash_size, crash_base;
636 int ret;
637
638 total_mem = get_total_mem();
639 ret = parse_crashkernel(boot_command_line, total_mem,
640 &crash_size, &crash_base);
641 if (ret != 0 || crash_size <= 0)
642 return;
643
644 crashk_res.start = crash_base;
645 crashk_res.end = crash_base + crash_size - 1;
646 }
647
648 static void __init request_crashkernel(struct resource *res)
649 {
650 int ret;
651
652 ret = request_resource(res, &crashk_res);
653 if (!ret)
654 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
655 (unsigned long)((crashk_res.end -
656 crashk_res.start + 1) >> 20),
657 (unsigned long)(crashk_res.start >> 20));
658 }
659 #else /* !defined(CONFIG_KEXEC) */
660 static void __init mips_parse_crashkernel(void)
661 {
662 }
663
664 static void __init request_crashkernel(struct resource *res)
665 {
666 }
667 #endif /* !defined(CONFIG_KEXEC) */
668
669 static void __init resource_init(void)
670 {
671 int i;
672
673 if (UNCAC_BASE != IO_BASE)
674 return;
675
676 code_resource.start = __pa_symbol(&_text);
677 code_resource.end = __pa_symbol(&_etext) - 1;
678 data_resource.start = __pa_symbol(&_etext);
679 data_resource.end = __pa_symbol(&_edata) - 1;
680
681 /*
682 * Request address space for all standard RAM.
683 */
684 mips_parse_crashkernel();
685
686 for (i = 0; i < boot_mem_map.nr_map; i++) {
687 struct resource *res;
688 unsigned long start, end;
689
690 start = boot_mem_map.map[i].addr;
691 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
692 if (start >= HIGHMEM_START)
693 continue;
694 if (end >= HIGHMEM_START)
695 end = HIGHMEM_START - 1;
696
697 res = alloc_bootmem(sizeof(struct resource));
698 switch (boot_mem_map.map[i].type) {
699 case BOOT_MEM_RAM:
700 case BOOT_MEM_INIT_RAM:
701 case BOOT_MEM_ROM_DATA:
702 res->name = "System RAM";
703 break;
704 case BOOT_MEM_RESERVED:
705 default:
706 res->name = "reserved";
707 }
708
709 res->start = start;
710 res->end = end;
711
712 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
713 request_resource(&iomem_resource, res);
714
715 /*
716 * We don't know which RAM region contains kernel data,
717 * so we try it repeatedly and let the resource manager
718 * test it.
719 */
720 request_resource(res, &code_resource);
721 request_resource(res, &data_resource);
722 request_crashkernel(res);
723 }
724 }
725
726 void __init setup_arch(char **cmdline_p)
727 {
728 cpu_probe();
729 prom_init();
730
731 #ifdef CONFIG_EARLY_PRINTK
732 setup_early_printk();
733 #endif
734 cpu_report();
735 check_bugs_early();
736
737 #if defined(CONFIG_VT)
738 #if defined(CONFIG_VGA_CONSOLE)
739 conswitchp = &vga_con;
740 #elif defined(CONFIG_DUMMY_CONSOLE)
741 conswitchp = &dummy_con;
742 #endif
743 #endif
744
745 arch_mem_init(cmdline_p);
746
747 resource_init();
748 plat_smp_setup();
749
750 cpu_cache_init();
751 }
752
753 unsigned long kernelsp[NR_CPUS];
754 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
755
756 #ifdef CONFIG_DEBUG_FS
757 struct dentry *mips_debugfs_dir;
758 static int __init debugfs_mips(void)
759 {
760 struct dentry *d;
761
762 d = debugfs_create_dir("mips", NULL);
763 if (!d)
764 return -ENOMEM;
765 mips_debugfs_dir = d;
766 return 0;
767 }
768 arch_initcall(debugfs_mips);
769 #endif