ARM: at91: fix board-rm9200-dt after sys_timer conversion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33
34 struct cpu_hw_events {
35 /* Array of events on this cpu. */
36 struct perf_event *events[MIPS_MAX_HWEVENTS];
37
38 /*
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
41 */
42 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
44 /*
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
48 */
49 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
50 };
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 .saved_ctrl = {0},
53 };
54
55 /* The description of MIPS performance events. */
56 struct mips_perf_event {
57 unsigned int event_id;
58 /*
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
61 * even numbers.
62 */
63 unsigned int cntr_mask;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
66 #define CNTR_ALL 0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
68 enum {
69 T = 0,
70 V = 1,
71 P = 2,
72 } range;
73 #else
74 #define T
75 #define V
76 #define P
77 #endif
78 };
79
80 static struct mips_perf_event raw_event;
81 static DEFINE_MUTEX(raw_event_mutex);
82
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84
85 struct mips_pmu {
86 u64 max_period;
87 u64 valid_count;
88 u64 overflow;
89 const char *name;
90 int irq;
91 u64 (*read_counter)(unsigned int idx);
92 void (*write_counter)(unsigned int idx, u64 val);
93 const struct mips_perf_event *(*map_raw_event)(u64 config);
94 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 const struct mips_perf_event (*cache_event_map)
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 unsigned int num_counters;
100 };
101
102 static struct mips_pmu mipspmu;
103
104 #define M_CONFIG1_PC (1 << 4)
105
106 #define M_PERFCTL_EXL (1 << 0)
107 #define M_PERFCTL_KERNEL (1 << 1)
108 #define M_PERFCTL_SUPERVISOR (1 << 2)
109 #define M_PERFCTL_USER (1 << 3)
110 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
111 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
112 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
113
114 #ifdef CONFIG_CPU_BMIPS5000
115 #define M_PERFCTL_MT_EN(filter) 0
116 #else /* !CONFIG_CPU_BMIPS5000 */
117 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
118 #endif /* CONFIG_CPU_BMIPS5000 */
119
120 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
121 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
122 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
123 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
124 #define M_PERFCTL_WIDE (1 << 30)
125 #define M_PERFCTL_MORE (1 << 31)
126 #define M_PERFCTL_TC (1 << 30)
127
128 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
129 M_PERFCTL_KERNEL | \
130 M_PERFCTL_USER | \
131 M_PERFCTL_SUPERVISOR | \
132 M_PERFCTL_INTERRUPT_ENABLE)
133
134 #ifdef CONFIG_MIPS_MT_SMP
135 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
136 #else
137 #define M_PERFCTL_CONFIG_MASK 0x1f
138 #endif
139 #define M_PERFCTL_EVENT_MASK 0xfe0
140
141
142 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143 static int cpu_has_mipsmt_pertccounters;
144
145 static DEFINE_RWLOCK(pmuint_rwlock);
146
147 #if defined(CONFIG_CPU_BMIPS5000)
148 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
149 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150 #else
151 /*
152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154 */
155 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
156 0 : smp_processor_id())
157 #endif
158
159 /* Copied from op_model_mipsxx.c */
160 static unsigned int vpe_shift(void)
161 {
162 if (num_possible_cpus() > 1)
163 return 1;
164
165 return 0;
166 }
167
168 static unsigned int counters_total_to_per_cpu(unsigned int counters)
169 {
170 return counters >> vpe_shift();
171 }
172
173 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174 #define vpe_id() 0
175
176 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177
178 static void resume_local_counters(void);
179 static void pause_local_counters(void);
180 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181 static int mipsxx_pmu_handle_shared_irq(void);
182
183 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184 {
185 if (vpe_id() == 1)
186 idx = (idx + 2) & 3;
187 return idx;
188 }
189
190 static u64 mipsxx_pmu_read_counter(unsigned int idx)
191 {
192 idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194 switch (idx) {
195 case 0:
196 /*
197 * The counters are unsigned, we must cast to truncate
198 * off the high bits.
199 */
200 return (u32)read_c0_perfcntr0();
201 case 1:
202 return (u32)read_c0_perfcntr1();
203 case 2:
204 return (u32)read_c0_perfcntr2();
205 case 3:
206 return (u32)read_c0_perfcntr3();
207 default:
208 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209 return 0;
210 }
211 }
212
213 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214 {
215 idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217 switch (idx) {
218 case 0:
219 return read_c0_perfcntr0_64();
220 case 1:
221 return read_c0_perfcntr1_64();
222 case 2:
223 return read_c0_perfcntr2_64();
224 case 3:
225 return read_c0_perfcntr3_64();
226 default:
227 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228 return 0;
229 }
230 }
231
232 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233 {
234 idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236 switch (idx) {
237 case 0:
238 write_c0_perfcntr0(val);
239 return;
240 case 1:
241 write_c0_perfcntr1(val);
242 return;
243 case 2:
244 write_c0_perfcntr2(val);
245 return;
246 case 3:
247 write_c0_perfcntr3(val);
248 return;
249 }
250 }
251
252 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253 {
254 idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256 switch (idx) {
257 case 0:
258 write_c0_perfcntr0_64(val);
259 return;
260 case 1:
261 write_c0_perfcntr1_64(val);
262 return;
263 case 2:
264 write_c0_perfcntr2_64(val);
265 return;
266 case 3:
267 write_c0_perfcntr3_64(val);
268 return;
269 }
270 }
271
272 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273 {
274 idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276 switch (idx) {
277 case 0:
278 return read_c0_perfctrl0();
279 case 1:
280 return read_c0_perfctrl1();
281 case 2:
282 return read_c0_perfctrl2();
283 case 3:
284 return read_c0_perfctrl3();
285 default:
286 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287 return 0;
288 }
289 }
290
291 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292 {
293 idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295 switch (idx) {
296 case 0:
297 write_c0_perfctrl0(val);
298 return;
299 case 1:
300 write_c0_perfctrl1(val);
301 return;
302 case 2:
303 write_c0_perfctrl2(val);
304 return;
305 case 3:
306 write_c0_perfctrl3(val);
307 return;
308 }
309 }
310
311 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312 struct hw_perf_event *hwc)
313 {
314 int i;
315
316 /*
317 * We only need to care the counter mask. The range has been
318 * checked definitely.
319 */
320 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323 /*
324 * Note that some MIPS perf events can be counted by both
325 * even and odd counters, wheresas many other are only by
326 * even _or_ odd counters. This introduces an issue that
327 * when the former kind of event takes the counter the
328 * latter kind of event wants to use, then the "counter
329 * allocation" for the latter event will fail. In fact if
330 * they can be dynamically swapped, they both feel happy.
331 * But here we leave this issue alone for now.
332 */
333 if (test_bit(i, &cntr_mask) &&
334 !test_and_set_bit(i, cpuc->used_mask))
335 return i;
336 }
337
338 return -EAGAIN;
339 }
340
341 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342 {
343 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
344
345 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
349 /* Make sure interrupt enabled. */
350 M_PERFCTL_INTERRUPT_ENABLE;
351 if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352 /* enable the counter for the calling thread */
353 cpuc->saved_ctrl[idx] |=
354 (1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
356 /*
357 * We do not actually let the counter run. Leave it until start().
358 */
359 }
360
361 static void mipsxx_pmu_disable_event(int idx)
362 {
363 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
364 unsigned long flags;
365
366 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368 local_irq_save(flags);
369 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
371 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372 local_irq_restore(flags);
373 }
374
375 static int mipspmu_event_set_period(struct perf_event *event,
376 struct hw_perf_event *hwc,
377 int idx)
378 {
379 u64 left = local64_read(&hwc->period_left);
380 u64 period = hwc->sample_period;
381 int ret = 0;
382
383 if (unlikely((left + period) & (1ULL << 63))) {
384 /* left underflowed by more than period. */
385 left = period;
386 local64_set(&hwc->period_left, left);
387 hwc->last_period = period;
388 ret = 1;
389 } else if (unlikely((left + period) <= period)) {
390 /* left underflowed by less than period. */
391 left += period;
392 local64_set(&hwc->period_left, left);
393 hwc->last_period = period;
394 ret = 1;
395 }
396
397 if (left > mipspmu.max_period) {
398 left = mipspmu.max_period;
399 local64_set(&hwc->period_left, left);
400 }
401
402 local64_set(&hwc->prev_count, mipspmu.overflow - left);
403
404 mipspmu.write_counter(idx, mipspmu.overflow - left);
405
406 perf_event_update_userpage(event);
407
408 return ret;
409 }
410
411 static void mipspmu_event_update(struct perf_event *event,
412 struct hw_perf_event *hwc,
413 int idx)
414 {
415 u64 prev_raw_count, new_raw_count;
416 u64 delta;
417
418 again:
419 prev_raw_count = local64_read(&hwc->prev_count);
420 new_raw_count = mipspmu.read_counter(idx);
421
422 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423 new_raw_count) != prev_raw_count)
424 goto again;
425
426 delta = new_raw_count - prev_raw_count;
427
428 local64_add(delta, &event->count);
429 local64_sub(delta, &hwc->period_left);
430 }
431
432 static void mipspmu_start(struct perf_event *event, int flags)
433 {
434 struct hw_perf_event *hwc = &event->hw;
435
436 if (flags & PERF_EF_RELOAD)
437 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439 hwc->state = 0;
440
441 /* Set the period for the event. */
442 mipspmu_event_set_period(event, hwc, hwc->idx);
443
444 /* Enable the event. */
445 mipsxx_pmu_enable_event(hwc, hwc->idx);
446 }
447
448 static void mipspmu_stop(struct perf_event *event, int flags)
449 {
450 struct hw_perf_event *hwc = &event->hw;
451
452 if (!(hwc->state & PERF_HES_STOPPED)) {
453 /* We are working on a local event. */
454 mipsxx_pmu_disable_event(hwc->idx);
455 barrier();
456 mipspmu_event_update(event, hwc, hwc->idx);
457 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458 }
459 }
460
461 static int mipspmu_add(struct perf_event *event, int flags)
462 {
463 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
464 struct hw_perf_event *hwc = &event->hw;
465 int idx;
466 int err = 0;
467
468 perf_pmu_disable(event->pmu);
469
470 /* To look for a free counter for this event. */
471 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472 if (idx < 0) {
473 err = idx;
474 goto out;
475 }
476
477 /*
478 * If there is an event in the counter we are going to use then
479 * make sure it is disabled.
480 */
481 event->hw.idx = idx;
482 mipsxx_pmu_disable_event(idx);
483 cpuc->events[idx] = event;
484
485 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486 if (flags & PERF_EF_START)
487 mipspmu_start(event, PERF_EF_RELOAD);
488
489 /* Propagate our changes to the userspace mapping. */
490 perf_event_update_userpage(event);
491
492 out:
493 perf_pmu_enable(event->pmu);
494 return err;
495 }
496
497 static void mipspmu_del(struct perf_event *event, int flags)
498 {
499 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
500 struct hw_perf_event *hwc = &event->hw;
501 int idx = hwc->idx;
502
503 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504
505 mipspmu_stop(event, PERF_EF_UPDATE);
506 cpuc->events[idx] = NULL;
507 clear_bit(idx, cpuc->used_mask);
508
509 perf_event_update_userpage(event);
510 }
511
512 static void mipspmu_read(struct perf_event *event)
513 {
514 struct hw_perf_event *hwc = &event->hw;
515
516 /* Don't read disabled counters! */
517 if (hwc->idx < 0)
518 return;
519
520 mipspmu_event_update(event, hwc, hwc->idx);
521 }
522
523 static void mipspmu_enable(struct pmu *pmu)
524 {
525 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526 write_unlock(&pmuint_rwlock);
527 #endif
528 resume_local_counters();
529 }
530
531 /*
532 * MIPS performance counters can be per-TC. The control registers can
533 * not be directly accessed accross CPUs. Hence if we want to do global
534 * control, we need cross CPU calls. on_each_cpu() can help us, but we
535 * can not make sure this function is called with interrupts enabled. So
536 * here we pause local counters and then grab a rwlock and leave the
537 * counters on other CPUs alone. If any counter interrupt raises while
538 * we own the write lock, simply pause local counters on that CPU and
539 * spin in the handler. Also we know we won't be switched to another
540 * CPU after pausing local counters and before grabbing the lock.
541 */
542 static void mipspmu_disable(struct pmu *pmu)
543 {
544 pause_local_counters();
545 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546 write_lock(&pmuint_rwlock);
547 #endif
548 }
549
550 static atomic_t active_events = ATOMIC_INIT(0);
551 static DEFINE_MUTEX(pmu_reserve_mutex);
552 static int (*save_perf_irq)(void);
553
554 static int mipspmu_get_irq(void)
555 {
556 int err;
557
558 if (mipspmu.irq >= 0) {
559 /* Request my own irq handler. */
560 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561 IRQF_PERCPU | IRQF_NOBALANCING,
562 "mips_perf_pmu", NULL);
563 if (err) {
564 pr_warning("Unable to request IRQ%d for MIPS "
565 "performance counters!\n", mipspmu.irq);
566 }
567 } else if (cp0_perfcount_irq < 0) {
568 /*
569 * We are sharing the irq number with the timer interrupt.
570 */
571 save_perf_irq = perf_irq;
572 perf_irq = mipsxx_pmu_handle_shared_irq;
573 err = 0;
574 } else {
575 pr_warning("The platform hasn't properly defined its "
576 "interrupt controller.\n");
577 err = -ENOENT;
578 }
579
580 return err;
581 }
582
583 static void mipspmu_free_irq(void)
584 {
585 if (mipspmu.irq >= 0)
586 free_irq(mipspmu.irq, NULL);
587 else if (cp0_perfcount_irq < 0)
588 perf_irq = save_perf_irq;
589 }
590
591 /*
592 * mipsxx/rm9000/loongson2 have different performance counters, they have
593 * specific low-level init routines.
594 */
595 static void reset_counters(void *arg);
596 static int __hw_perf_event_init(struct perf_event *event);
597
598 static void hw_perf_event_destroy(struct perf_event *event)
599 {
600 if (atomic_dec_and_mutex_lock(&active_events,
601 &pmu_reserve_mutex)) {
602 /*
603 * We must not call the destroy function with interrupts
604 * disabled.
605 */
606 on_each_cpu(reset_counters,
607 (void *)(long)mipspmu.num_counters, 1);
608 mipspmu_free_irq();
609 mutex_unlock(&pmu_reserve_mutex);
610 }
611 }
612
613 static int mipspmu_event_init(struct perf_event *event)
614 {
615 int err = 0;
616
617 /* does not support taken branch sampling */
618 if (has_branch_stack(event))
619 return -EOPNOTSUPP;
620
621 switch (event->attr.type) {
622 case PERF_TYPE_RAW:
623 case PERF_TYPE_HARDWARE:
624 case PERF_TYPE_HW_CACHE:
625 break;
626
627 default:
628 return -ENOENT;
629 }
630
631 if (event->cpu >= nr_cpumask_bits ||
632 (event->cpu >= 0 && !cpu_online(event->cpu)))
633 return -ENODEV;
634
635 if (!atomic_inc_not_zero(&active_events)) {
636 mutex_lock(&pmu_reserve_mutex);
637 if (atomic_read(&active_events) == 0)
638 err = mipspmu_get_irq();
639
640 if (!err)
641 atomic_inc(&active_events);
642 mutex_unlock(&pmu_reserve_mutex);
643 }
644
645 if (err)
646 return err;
647
648 return __hw_perf_event_init(event);
649 }
650
651 static struct pmu pmu = {
652 .pmu_enable = mipspmu_enable,
653 .pmu_disable = mipspmu_disable,
654 .event_init = mipspmu_event_init,
655 .add = mipspmu_add,
656 .del = mipspmu_del,
657 .start = mipspmu_start,
658 .stop = mipspmu_stop,
659 .read = mipspmu_read,
660 };
661
662 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
663 {
664 /*
665 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
666 * event_id.
667 */
668 #ifdef CONFIG_MIPS_MT_SMP
669 return ((unsigned int)pev->range << 24) |
670 (pev->cntr_mask & 0xffff00) |
671 (pev->event_id & 0xff);
672 #else
673 return (pev->cntr_mask & 0xffff00) |
674 (pev->event_id & 0xff);
675 #endif
676 }
677
678 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
679 {
680
681 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
682 return ERR_PTR(-EOPNOTSUPP);
683 return &(*mipspmu.general_event_map)[idx];
684 }
685
686 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687 {
688 unsigned int cache_type, cache_op, cache_result;
689 const struct mips_perf_event *pev;
690
691 cache_type = (config >> 0) & 0xff;
692 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693 return ERR_PTR(-EINVAL);
694
695 cache_op = (config >> 8) & 0xff;
696 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697 return ERR_PTR(-EINVAL);
698
699 cache_result = (config >> 16) & 0xff;
700 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701 return ERR_PTR(-EINVAL);
702
703 pev = &((*mipspmu.cache_event_map)
704 [cache_type]
705 [cache_op]
706 [cache_result]);
707
708 if (pev->cntr_mask == 0)
709 return ERR_PTR(-EOPNOTSUPP);
710
711 return pev;
712
713 }
714
715 static int validate_group(struct perf_event *event)
716 {
717 struct perf_event *sibling, *leader = event->group_leader;
718 struct cpu_hw_events fake_cpuc;
719
720 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
721
722 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
723 return -EINVAL;
724
725 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
726 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
727 return -EINVAL;
728 }
729
730 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
731 return -EINVAL;
732
733 return 0;
734 }
735
736 /* This is needed by specific irq handlers in perf_event_*.c */
737 static void handle_associated_event(struct cpu_hw_events *cpuc,
738 int idx, struct perf_sample_data *data,
739 struct pt_regs *regs)
740 {
741 struct perf_event *event = cpuc->events[idx];
742 struct hw_perf_event *hwc = &event->hw;
743
744 mipspmu_event_update(event, hwc, idx);
745 data->period = event->hw.last_period;
746 if (!mipspmu_event_set_period(event, hwc, idx))
747 return;
748
749 if (perf_event_overflow(event, data, regs))
750 mipsxx_pmu_disable_event(idx);
751 }
752
753
754 static int __n_counters(void)
755 {
756 if (!(read_c0_config1() & M_CONFIG1_PC))
757 return 0;
758 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
759 return 1;
760 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
761 return 2;
762 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
763 return 3;
764
765 return 4;
766 }
767
768 static int n_counters(void)
769 {
770 int counters;
771
772 switch (current_cpu_type()) {
773 case CPU_R10000:
774 counters = 2;
775 break;
776
777 case CPU_R12000:
778 case CPU_R14000:
779 counters = 4;
780 break;
781
782 default:
783 counters = __n_counters();
784 }
785
786 return counters;
787 }
788
789 static void reset_counters(void *arg)
790 {
791 int counters = (int)(long)arg;
792 switch (counters) {
793 case 4:
794 mipsxx_pmu_write_control(3, 0);
795 mipspmu.write_counter(3, 0);
796 case 3:
797 mipsxx_pmu_write_control(2, 0);
798 mipspmu.write_counter(2, 0);
799 case 2:
800 mipsxx_pmu_write_control(1, 0);
801 mipspmu.write_counter(1, 0);
802 case 1:
803 mipsxx_pmu_write_control(0, 0);
804 mipspmu.write_counter(0, 0);
805 }
806 }
807
808 /* 24K/34K/1004K cores can share the same event map. */
809 static const struct mips_perf_event mipsxxcore_event_map
810 [PERF_COUNT_HW_MAX] = {
811 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
812 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
813 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
814 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
815 };
816
817 /* 74K core has different branch event code. */
818 static const struct mips_perf_event mipsxx74Kcore_event_map
819 [PERF_COUNT_HW_MAX] = {
820 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
821 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
822 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
823 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
824 };
825
826 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
827 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
828 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
829 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
830 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
831 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
832 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
833 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
834 };
835
836 static const struct mips_perf_event bmips5000_event_map
837 [PERF_COUNT_HW_MAX] = {
838 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
839 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
840 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
841 };
842
843 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
844 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
845 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
846 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
847 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
848 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
849 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
850 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
851 };
852
853 /* 24K/34K/1004K cores can share the same cache event map. */
854 static const struct mips_perf_event mipsxxcore_cache_map
855 [PERF_COUNT_HW_CACHE_MAX]
856 [PERF_COUNT_HW_CACHE_OP_MAX]
857 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
858 [C(L1D)] = {
859 /*
860 * Like some other architectures (e.g. ARM), the performance
861 * counters don't differentiate between read and write
862 * accesses/misses, so this isn't strictly correct, but it's the
863 * best we can do. Writes and reads get combined.
864 */
865 [C(OP_READ)] = {
866 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
867 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
868 },
869 [C(OP_WRITE)] = {
870 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
871 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
872 },
873 },
874 [C(L1I)] = {
875 [C(OP_READ)] = {
876 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
877 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
878 },
879 [C(OP_WRITE)] = {
880 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
881 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
882 },
883 [C(OP_PREFETCH)] = {
884 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
885 /*
886 * Note that MIPS has only "hit" events countable for
887 * the prefetch operation.
888 */
889 },
890 },
891 [C(LL)] = {
892 [C(OP_READ)] = {
893 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
894 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
895 },
896 [C(OP_WRITE)] = {
897 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
898 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
899 },
900 },
901 [C(DTLB)] = {
902 [C(OP_READ)] = {
903 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
904 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
905 },
906 [C(OP_WRITE)] = {
907 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
908 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
909 },
910 },
911 [C(ITLB)] = {
912 [C(OP_READ)] = {
913 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
914 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
915 },
916 [C(OP_WRITE)] = {
917 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
918 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
919 },
920 },
921 [C(BPU)] = {
922 /* Using the same code for *HW_BRANCH* */
923 [C(OP_READ)] = {
924 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
925 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
926 },
927 [C(OP_WRITE)] = {
928 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
929 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
930 },
931 },
932 };
933
934 /* 74K core has completely different cache event map. */
935 static const struct mips_perf_event mipsxx74Kcore_cache_map
936 [PERF_COUNT_HW_CACHE_MAX]
937 [PERF_COUNT_HW_CACHE_OP_MAX]
938 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
939 [C(L1D)] = {
940 /*
941 * Like some other architectures (e.g. ARM), the performance
942 * counters don't differentiate between read and write
943 * accesses/misses, so this isn't strictly correct, but it's the
944 * best we can do. Writes and reads get combined.
945 */
946 [C(OP_READ)] = {
947 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
948 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
949 },
950 [C(OP_WRITE)] = {
951 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
952 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
953 },
954 },
955 [C(L1I)] = {
956 [C(OP_READ)] = {
957 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
958 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
959 },
960 [C(OP_WRITE)] = {
961 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
962 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
963 },
964 [C(OP_PREFETCH)] = {
965 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
966 /*
967 * Note that MIPS has only "hit" events countable for
968 * the prefetch operation.
969 */
970 },
971 },
972 [C(LL)] = {
973 [C(OP_READ)] = {
974 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
975 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
976 },
977 [C(OP_WRITE)] = {
978 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
979 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
980 },
981 },
982 [C(ITLB)] = {
983 [C(OP_READ)] = {
984 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
985 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
986 },
987 [C(OP_WRITE)] = {
988 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
989 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
990 },
991 },
992 [C(BPU)] = {
993 /* Using the same code for *HW_BRANCH* */
994 [C(OP_READ)] = {
995 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
996 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
997 },
998 [C(OP_WRITE)] = {
999 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1000 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1001 },
1002 },
1003 };
1004
1005 /* BMIPS5000 */
1006 static const struct mips_perf_event bmips5000_cache_map
1007 [PERF_COUNT_HW_CACHE_MAX]
1008 [PERF_COUNT_HW_CACHE_OP_MAX]
1009 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1010 [C(L1D)] = {
1011 /*
1012 * Like some other architectures (e.g. ARM), the performance
1013 * counters don't differentiate between read and write
1014 * accesses/misses, so this isn't strictly correct, but it's the
1015 * best we can do. Writes and reads get combined.
1016 */
1017 [C(OP_READ)] = {
1018 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1019 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1020 },
1021 [C(OP_WRITE)] = {
1022 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1023 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1024 },
1025 },
1026 [C(L1I)] = {
1027 [C(OP_READ)] = {
1028 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1029 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1030 },
1031 [C(OP_WRITE)] = {
1032 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1033 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1034 },
1035 [C(OP_PREFETCH)] = {
1036 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1037 /*
1038 * Note that MIPS has only "hit" events countable for
1039 * the prefetch operation.
1040 */
1041 },
1042 },
1043 [C(LL)] = {
1044 [C(OP_READ)] = {
1045 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1046 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1047 },
1048 [C(OP_WRITE)] = {
1049 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1050 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1051 },
1052 },
1053 [C(BPU)] = {
1054 /* Using the same code for *HW_BRANCH* */
1055 [C(OP_READ)] = {
1056 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1057 },
1058 [C(OP_WRITE)] = {
1059 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1060 },
1061 },
1062 };
1063
1064
1065 static const struct mips_perf_event octeon_cache_map
1066 [PERF_COUNT_HW_CACHE_MAX]
1067 [PERF_COUNT_HW_CACHE_OP_MAX]
1068 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1069 [C(L1D)] = {
1070 [C(OP_READ)] = {
1071 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1072 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1073 },
1074 [C(OP_WRITE)] = {
1075 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1076 },
1077 },
1078 [C(L1I)] = {
1079 [C(OP_READ)] = {
1080 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1081 },
1082 [C(OP_PREFETCH)] = {
1083 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1084 },
1085 },
1086 [C(DTLB)] = {
1087 /*
1088 * Only general DTLB misses are counted use the same event for
1089 * read and write.
1090 */
1091 [C(OP_READ)] = {
1092 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1093 },
1094 [C(OP_WRITE)] = {
1095 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1096 },
1097 },
1098 [C(ITLB)] = {
1099 [C(OP_READ)] = {
1100 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1101 },
1102 },
1103 };
1104
1105 static const struct mips_perf_event xlp_cache_map
1106 [PERF_COUNT_HW_CACHE_MAX]
1107 [PERF_COUNT_HW_CACHE_OP_MAX]
1108 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1109 [C(L1D)] = {
1110 [C(OP_READ)] = {
1111 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1112 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1113 },
1114 [C(OP_WRITE)] = {
1115 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1116 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1117 },
1118 [C(OP_PREFETCH)] = {
1119 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1120 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1121 },
1122 },
1123 [C(L1I)] = {
1124 [C(OP_READ)] = {
1125 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1126 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1127 },
1128 [C(OP_WRITE)] = {
1129 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1130 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1131 },
1132 [C(OP_PREFETCH)] = {
1133 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1134 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1135 },
1136 },
1137 [C(LL)] = {
1138 [C(OP_READ)] = {
1139 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1140 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1141 },
1142 [C(OP_WRITE)] = {
1143 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1144 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1145 },
1146 [C(OP_PREFETCH)] = {
1147 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1148 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1149 },
1150 },
1151 [C(DTLB)] = {
1152 /*
1153 * Only general DTLB misses are counted use the same event for
1154 * read and write.
1155 */
1156 [C(OP_READ)] = {
1157 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1158 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1159 },
1160 [C(OP_WRITE)] = {
1161 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1162 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1163 },
1164 [C(OP_PREFETCH)] = {
1165 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1166 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1167 },
1168 },
1169 [C(ITLB)] = {
1170 [C(OP_READ)] = {
1171 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1172 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1173 },
1174 [C(OP_WRITE)] = {
1175 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1176 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1177 },
1178 [C(OP_PREFETCH)] = {
1179 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1180 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1181 },
1182 },
1183 [C(BPU)] = {
1184 [C(OP_READ)] = {
1185 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1186 [C(RESULT_MISS)] = { 0x25, CNTR_ALL },
1187 },
1188 [C(OP_WRITE)] = {
1189 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1190 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1191 },
1192 [C(OP_PREFETCH)] = {
1193 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1194 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1195 },
1196 },
1197 };
1198
1199 #ifdef CONFIG_MIPS_MT_SMP
1200 static void check_and_calc_range(struct perf_event *event,
1201 const struct mips_perf_event *pev)
1202 {
1203 struct hw_perf_event *hwc = &event->hw;
1204
1205 if (event->cpu >= 0) {
1206 if (pev->range > V) {
1207 /*
1208 * The user selected an event that is processor
1209 * wide, while expecting it to be VPE wide.
1210 */
1211 hwc->config_base |= M_TC_EN_ALL;
1212 } else {
1213 /*
1214 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1215 * for both CPUs.
1216 */
1217 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1218 hwc->config_base |= M_TC_EN_VPE;
1219 }
1220 } else
1221 hwc->config_base |= M_TC_EN_ALL;
1222 }
1223 #else
1224 static void check_and_calc_range(struct perf_event *event,
1225 const struct mips_perf_event *pev)
1226 {
1227 }
1228 #endif
1229
1230 static int __hw_perf_event_init(struct perf_event *event)
1231 {
1232 struct perf_event_attr *attr = &event->attr;
1233 struct hw_perf_event *hwc = &event->hw;
1234 const struct mips_perf_event *pev;
1235 int err;
1236
1237 /* Returning MIPS event descriptor for generic perf event. */
1238 if (PERF_TYPE_HARDWARE == event->attr.type) {
1239 if (event->attr.config >= PERF_COUNT_HW_MAX)
1240 return -EINVAL;
1241 pev = mipspmu_map_general_event(event->attr.config);
1242 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1243 pev = mipspmu_map_cache_event(event->attr.config);
1244 } else if (PERF_TYPE_RAW == event->attr.type) {
1245 /* We are working on the global raw event. */
1246 mutex_lock(&raw_event_mutex);
1247 pev = mipspmu.map_raw_event(event->attr.config);
1248 } else {
1249 /* The event type is not (yet) supported. */
1250 return -EOPNOTSUPP;
1251 }
1252
1253 if (IS_ERR(pev)) {
1254 if (PERF_TYPE_RAW == event->attr.type)
1255 mutex_unlock(&raw_event_mutex);
1256 return PTR_ERR(pev);
1257 }
1258
1259 /*
1260 * We allow max flexibility on how each individual counter shared
1261 * by the single CPU operates (the mode exclusion and the range).
1262 */
1263 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1264
1265 /* Calculate range bits and validate it. */
1266 if (num_possible_cpus() > 1)
1267 check_and_calc_range(event, pev);
1268
1269 hwc->event_base = mipspmu_perf_event_encode(pev);
1270 if (PERF_TYPE_RAW == event->attr.type)
1271 mutex_unlock(&raw_event_mutex);
1272
1273 if (!attr->exclude_user)
1274 hwc->config_base |= M_PERFCTL_USER;
1275 if (!attr->exclude_kernel) {
1276 hwc->config_base |= M_PERFCTL_KERNEL;
1277 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1278 hwc->config_base |= M_PERFCTL_EXL;
1279 }
1280 if (!attr->exclude_hv)
1281 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1282
1283 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1284 /*
1285 * The event can belong to another cpu. We do not assign a local
1286 * counter for it for now.
1287 */
1288 hwc->idx = -1;
1289 hwc->config = 0;
1290
1291 if (!hwc->sample_period) {
1292 hwc->sample_period = mipspmu.max_period;
1293 hwc->last_period = hwc->sample_period;
1294 local64_set(&hwc->period_left, hwc->sample_period);
1295 }
1296
1297 err = 0;
1298 if (event->group_leader != event)
1299 err = validate_group(event);
1300
1301 event->destroy = hw_perf_event_destroy;
1302
1303 if (err)
1304 event->destroy(event);
1305
1306 return err;
1307 }
1308
1309 static void pause_local_counters(void)
1310 {
1311 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1312 int ctr = mipspmu.num_counters;
1313 unsigned long flags;
1314
1315 local_irq_save(flags);
1316 do {
1317 ctr--;
1318 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1319 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1320 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1321 } while (ctr > 0);
1322 local_irq_restore(flags);
1323 }
1324
1325 static void resume_local_counters(void)
1326 {
1327 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1328 int ctr = mipspmu.num_counters;
1329
1330 do {
1331 ctr--;
1332 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1333 } while (ctr > 0);
1334 }
1335
1336 static int mipsxx_pmu_handle_shared_irq(void)
1337 {
1338 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1339 struct perf_sample_data data;
1340 unsigned int counters = mipspmu.num_counters;
1341 u64 counter;
1342 int handled = IRQ_NONE;
1343 struct pt_regs *regs;
1344
1345 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1346 return handled;
1347 /*
1348 * First we pause the local counters, so that when we are locked
1349 * here, the counters are all paused. When it gets locked due to
1350 * perf_disable(), the timer interrupt handler will be delayed.
1351 *
1352 * See also mipsxx_pmu_start().
1353 */
1354 pause_local_counters();
1355 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1356 read_lock(&pmuint_rwlock);
1357 #endif
1358
1359 regs = get_irq_regs();
1360
1361 perf_sample_data_init(&data, 0, 0);
1362
1363 switch (counters) {
1364 #define HANDLE_COUNTER(n) \
1365 case n + 1: \
1366 if (test_bit(n, cpuc->used_mask)) { \
1367 counter = mipspmu.read_counter(n); \
1368 if (counter & mipspmu.overflow) { \
1369 handle_associated_event(cpuc, n, &data, regs); \
1370 handled = IRQ_HANDLED; \
1371 } \
1372 }
1373 HANDLE_COUNTER(3)
1374 HANDLE_COUNTER(2)
1375 HANDLE_COUNTER(1)
1376 HANDLE_COUNTER(0)
1377 }
1378
1379 /*
1380 * Do all the work for the pending perf events. We can do this
1381 * in here because the performance counter interrupt is a regular
1382 * interrupt, not NMI.
1383 */
1384 if (handled == IRQ_HANDLED)
1385 irq_work_run();
1386
1387 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1388 read_unlock(&pmuint_rwlock);
1389 #endif
1390 resume_local_counters();
1391 return handled;
1392 }
1393
1394 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1395 {
1396 return mipsxx_pmu_handle_shared_irq();
1397 }
1398
1399 /* 24K */
1400 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1401 ((b) == 0 || (b) == 1 || (b) == 11)
1402
1403 /* 34K */
1404 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1405 ((b) == 0 || (b) == 1 || (b) == 11)
1406 #ifdef CONFIG_MIPS_MT_SMP
1407 #define IS_RANGE_P_34K_EVENT(r, b) \
1408 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1409 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1410 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1411 ((b) >= 64 && (b) <= 67))
1412 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1413 #endif
1414
1415 /* 74K */
1416 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1417 ((b) == 0 || (b) == 1)
1418
1419 /* 1004K */
1420 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1421 ((b) == 0 || (b) == 1 || (b) == 11)
1422 #ifdef CONFIG_MIPS_MT_SMP
1423 #define IS_RANGE_P_1004K_EVENT(r, b) \
1424 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1425 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1426 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1427 (r) == 188 || (b) == 61 || (b) == 62 || \
1428 ((b) >= 64 && (b) <= 67))
1429 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1430 #endif
1431
1432 /* BMIPS5000 */
1433 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1434 ((b) == 0 || (b) == 1)
1435
1436
1437 /*
1438 * User can use 0-255 raw events, where 0-127 for the events of even
1439 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1440 * indicate the parity. So, for example, when user wants to take the
1441 * Event Num of 15 for odd counters (by referring to the user manual),
1442 * then 128 needs to be added to 15 as the input for the event config,
1443 * i.e., 143 (0x8F) to be used.
1444 */
1445 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1446 {
1447 unsigned int raw_id = config & 0xff;
1448 unsigned int base_id = raw_id & 0x7f;
1449
1450 raw_event.event_id = base_id;
1451
1452 switch (current_cpu_type()) {
1453 case CPU_24K:
1454 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1455 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1456 else
1457 raw_event.cntr_mask =
1458 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1459 #ifdef CONFIG_MIPS_MT_SMP
1460 /*
1461 * This is actually doing nothing. Non-multithreading
1462 * CPUs will not check and calculate the range.
1463 */
1464 raw_event.range = P;
1465 #endif
1466 break;
1467 case CPU_34K:
1468 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1469 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1470 else
1471 raw_event.cntr_mask =
1472 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1473 #ifdef CONFIG_MIPS_MT_SMP
1474 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1475 raw_event.range = P;
1476 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1477 raw_event.range = V;
1478 else
1479 raw_event.range = T;
1480 #endif
1481 break;
1482 case CPU_74K:
1483 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1484 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1485 else
1486 raw_event.cntr_mask =
1487 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1488 #ifdef CONFIG_MIPS_MT_SMP
1489 raw_event.range = P;
1490 #endif
1491 break;
1492 case CPU_1004K:
1493 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1494 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1495 else
1496 raw_event.cntr_mask =
1497 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1498 #ifdef CONFIG_MIPS_MT_SMP
1499 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1500 raw_event.range = P;
1501 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1502 raw_event.range = V;
1503 else
1504 raw_event.range = T;
1505 #endif
1506 break;
1507 case CPU_BMIPS5000:
1508 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1509 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1510 else
1511 raw_event.cntr_mask =
1512 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1513 }
1514
1515 return &raw_event;
1516 }
1517
1518 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1519 {
1520 unsigned int raw_id = config & 0xff;
1521 unsigned int base_id = raw_id & 0x7f;
1522
1523
1524 raw_event.cntr_mask = CNTR_ALL;
1525 raw_event.event_id = base_id;
1526
1527 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1528 if (base_id > 0x42)
1529 return ERR_PTR(-EOPNOTSUPP);
1530 } else {
1531 if (base_id > 0x3a)
1532 return ERR_PTR(-EOPNOTSUPP);
1533 }
1534
1535 switch (base_id) {
1536 case 0x00:
1537 case 0x0f:
1538 case 0x1e:
1539 case 0x1f:
1540 case 0x2f:
1541 case 0x34:
1542 case 0x3b ... 0x3f:
1543 return ERR_PTR(-EOPNOTSUPP);
1544 default:
1545 break;
1546 }
1547
1548 return &raw_event;
1549 }
1550
1551 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1552 {
1553 unsigned int raw_id = config & 0xff;
1554
1555 /* Only 1-63 are defined */
1556 if ((raw_id < 0x01) || (raw_id > 0x3f))
1557 return ERR_PTR(-EOPNOTSUPP);
1558
1559 raw_event.cntr_mask = CNTR_ALL;
1560 raw_event.event_id = raw_id;
1561
1562 return &raw_event;
1563 }
1564
1565 static int __init
1566 init_hw_perf_events(void)
1567 {
1568 int counters, irq;
1569 int counter_bits;
1570
1571 pr_info("Performance counters: ");
1572
1573 counters = n_counters();
1574 if (counters == 0) {
1575 pr_cont("No available PMU.\n");
1576 return -ENODEV;
1577 }
1578
1579 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1580 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1581 if (!cpu_has_mipsmt_pertccounters)
1582 counters = counters_total_to_per_cpu(counters);
1583 #endif
1584
1585 #ifdef MSC01E_INT_BASE
1586 if (cpu_has_veic) {
1587 /*
1588 * Using platform specific interrupt controller defines.
1589 */
1590 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1591 } else {
1592 #endif
1593 if ((cp0_perfcount_irq >= 0) &&
1594 (cp0_compare_irq != cp0_perfcount_irq))
1595 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1596 else
1597 irq = -1;
1598 #ifdef MSC01E_INT_BASE
1599 }
1600 #endif
1601
1602 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1603
1604 switch (current_cpu_type()) {
1605 case CPU_24K:
1606 mipspmu.name = "mips/24K";
1607 mipspmu.general_event_map = &mipsxxcore_event_map;
1608 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1609 break;
1610 case CPU_34K:
1611 mipspmu.name = "mips/34K";
1612 mipspmu.general_event_map = &mipsxxcore_event_map;
1613 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1614 break;
1615 case CPU_74K:
1616 mipspmu.name = "mips/74K";
1617 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1618 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1619 break;
1620 case CPU_1004K:
1621 mipspmu.name = "mips/1004K";
1622 mipspmu.general_event_map = &mipsxxcore_event_map;
1623 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1624 break;
1625 case CPU_LOONGSON1:
1626 mipspmu.name = "mips/loongson1";
1627 mipspmu.general_event_map = &mipsxxcore_event_map;
1628 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1629 break;
1630 case CPU_CAVIUM_OCTEON:
1631 case CPU_CAVIUM_OCTEON_PLUS:
1632 case CPU_CAVIUM_OCTEON2:
1633 mipspmu.name = "octeon";
1634 mipspmu.general_event_map = &octeon_event_map;
1635 mipspmu.cache_event_map = &octeon_cache_map;
1636 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1637 break;
1638 case CPU_BMIPS5000:
1639 mipspmu.name = "BMIPS5000";
1640 mipspmu.general_event_map = &bmips5000_event_map;
1641 mipspmu.cache_event_map = &bmips5000_cache_map;
1642 break;
1643 case CPU_XLP:
1644 mipspmu.name = "xlp";
1645 mipspmu.general_event_map = &xlp_event_map;
1646 mipspmu.cache_event_map = &xlp_cache_map;
1647 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1648 break;
1649 default:
1650 pr_cont("Either hardware does not support performance "
1651 "counters, or not yet implemented.\n");
1652 return -ENODEV;
1653 }
1654
1655 mipspmu.num_counters = counters;
1656 mipspmu.irq = irq;
1657
1658 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1659 mipspmu.max_period = (1ULL << 63) - 1;
1660 mipspmu.valid_count = (1ULL << 63) - 1;
1661 mipspmu.overflow = 1ULL << 63;
1662 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1663 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1664 counter_bits = 64;
1665 } else {
1666 mipspmu.max_period = (1ULL << 31) - 1;
1667 mipspmu.valid_count = (1ULL << 31) - 1;
1668 mipspmu.overflow = 1ULL << 31;
1669 mipspmu.read_counter = mipsxx_pmu_read_counter;
1670 mipspmu.write_counter = mipsxx_pmu_write_counter;
1671 counter_bits = 32;
1672 }
1673
1674 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1675
1676 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1677 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1678 irq < 0 ? " (share with timer interrupt)" : "");
1679
1680 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1681
1682 return 0;
1683 }
1684 early_initcall(init_hw_perf_events);