ia64: xen: Use irq accessor functions
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / xen / irq_xen.c
1 /******************************************************************************
2 * arch/ia64/xen/irq_xen.c
3 *
4 * Copyright (c) 2008 Isaku Yamahata <yamahata at valinux co jp>
5 * VA Linux Systems Japan K.K.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/cpu.h>
24
25 #include <xen/interface/xen.h>
26 #include <xen/interface/callback.h>
27 #include <xen/events.h>
28
29 #include <asm/xen/privop.h>
30
31 #include "irq_xen.h"
32
33 /***************************************************************************
34 * pv_irq_ops
35 * irq operations
36 */
37
38 static int
39 xen_assign_irq_vector(int irq)
40 {
41 struct physdev_irq irq_op;
42
43 irq_op.irq = irq;
44 if (HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op))
45 return -ENOSPC;
46
47 return irq_op.vector;
48 }
49
50 static void
51 xen_free_irq_vector(int vector)
52 {
53 struct physdev_irq irq_op;
54
55 if (vector < IA64_FIRST_DEVICE_VECTOR ||
56 vector > IA64_LAST_DEVICE_VECTOR)
57 return;
58
59 irq_op.vector = vector;
60 if (HYPERVISOR_physdev_op(PHYSDEVOP_free_irq_vector, &irq_op))
61 printk(KERN_WARNING "%s: xen_free_irq_vecotr fail vector=%d\n",
62 __func__, vector);
63 }
64
65
66 static DEFINE_PER_CPU(int, xen_timer_irq) = -1;
67 static DEFINE_PER_CPU(int, xen_ipi_irq) = -1;
68 static DEFINE_PER_CPU(int, xen_resched_irq) = -1;
69 static DEFINE_PER_CPU(int, xen_cmc_irq) = -1;
70 static DEFINE_PER_CPU(int, xen_cmcp_irq) = -1;
71 static DEFINE_PER_CPU(int, xen_cpep_irq) = -1;
72 #define NAME_SIZE 15
73 static DEFINE_PER_CPU(char[NAME_SIZE], xen_timer_name);
74 static DEFINE_PER_CPU(char[NAME_SIZE], xen_ipi_name);
75 static DEFINE_PER_CPU(char[NAME_SIZE], xen_resched_name);
76 static DEFINE_PER_CPU(char[NAME_SIZE], xen_cmc_name);
77 static DEFINE_PER_CPU(char[NAME_SIZE], xen_cmcp_name);
78 static DEFINE_PER_CPU(char[NAME_SIZE], xen_cpep_name);
79 #undef NAME_SIZE
80
81 struct saved_irq {
82 unsigned int irq;
83 struct irqaction *action;
84 };
85 /* 16 should be far optimistic value, since only several percpu irqs
86 * are registered early.
87 */
88 #define MAX_LATE_IRQ 16
89 static struct saved_irq saved_percpu_irqs[MAX_LATE_IRQ];
90 static unsigned short late_irq_cnt;
91 static unsigned short saved_irq_cnt;
92 static int xen_slab_ready;
93
94 #ifdef CONFIG_SMP
95 /* Dummy stub. Though we may check XEN_RESCHEDULE_VECTOR before __do_IRQ,
96 * it ends up to issue several memory accesses upon percpu data and
97 * thus adds unnecessary traffic to other paths.
98 */
99 static irqreturn_t
100 xen_dummy_handler(int irq, void *dev_id)
101 {
102
103 return IRQ_HANDLED;
104 }
105
106 static struct irqaction xen_ipi_irqaction = {
107 .handler = handle_IPI,
108 .flags = IRQF_DISABLED,
109 .name = "IPI"
110 };
111
112 static struct irqaction xen_resched_irqaction = {
113 .handler = xen_dummy_handler,
114 .flags = IRQF_DISABLED,
115 .name = "resched"
116 };
117
118 static struct irqaction xen_tlb_irqaction = {
119 .handler = xen_dummy_handler,
120 .flags = IRQF_DISABLED,
121 .name = "tlb_flush"
122 };
123 #endif
124
125 /*
126 * This is xen version percpu irq registration, which needs bind
127 * to xen specific evtchn sub-system. One trick here is that xen
128 * evtchn binding interface depends on kmalloc because related
129 * port needs to be freed at device/cpu down. So we cache the
130 * registration on BSP before slab is ready and then deal them
131 * at later point. For rest instances happening after slab ready,
132 * we hook them to xen evtchn immediately.
133 *
134 * FIXME: MCA is not supported by far, and thus "nomca" boot param is
135 * required.
136 */
137 static void
138 __xen_register_percpu_irq(unsigned int cpu, unsigned int vec,
139 struct irqaction *action, int save)
140 {
141 int irq = 0;
142
143 if (xen_slab_ready) {
144 switch (vec) {
145 case IA64_TIMER_VECTOR:
146 snprintf(per_cpu(xen_timer_name, cpu),
147 sizeof(per_cpu(xen_timer_name, cpu)),
148 "%s%d", action->name, cpu);
149 irq = bind_virq_to_irqhandler(VIRQ_ITC, cpu,
150 action->handler, action->flags,
151 per_cpu(xen_timer_name, cpu), action->dev_id);
152 per_cpu(xen_timer_irq, cpu) = irq;
153 break;
154 case IA64_IPI_RESCHEDULE:
155 snprintf(per_cpu(xen_resched_name, cpu),
156 sizeof(per_cpu(xen_resched_name, cpu)),
157 "%s%d", action->name, cpu);
158 irq = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, cpu,
159 action->handler, action->flags,
160 per_cpu(xen_resched_name, cpu), action->dev_id);
161 per_cpu(xen_resched_irq, cpu) = irq;
162 break;
163 case IA64_IPI_VECTOR:
164 snprintf(per_cpu(xen_ipi_name, cpu),
165 sizeof(per_cpu(xen_ipi_name, cpu)),
166 "%s%d", action->name, cpu);
167 irq = bind_ipi_to_irqhandler(XEN_IPI_VECTOR, cpu,
168 action->handler, action->flags,
169 per_cpu(xen_ipi_name, cpu), action->dev_id);
170 per_cpu(xen_ipi_irq, cpu) = irq;
171 break;
172 case IA64_CMC_VECTOR:
173 snprintf(per_cpu(xen_cmc_name, cpu),
174 sizeof(per_cpu(xen_cmc_name, cpu)),
175 "%s%d", action->name, cpu);
176 irq = bind_virq_to_irqhandler(VIRQ_MCA_CMC, cpu,
177 action->handler,
178 action->flags,
179 per_cpu(xen_cmc_name, cpu),
180 action->dev_id);
181 per_cpu(xen_cmc_irq, cpu) = irq;
182 break;
183 case IA64_CMCP_VECTOR:
184 snprintf(per_cpu(xen_cmcp_name, cpu),
185 sizeof(per_cpu(xen_cmcp_name, cpu)),
186 "%s%d", action->name, cpu);
187 irq = bind_ipi_to_irqhandler(XEN_CMCP_VECTOR, cpu,
188 action->handler,
189 action->flags,
190 per_cpu(xen_cmcp_name, cpu),
191 action->dev_id);
192 per_cpu(xen_cmcp_irq, cpu) = irq;
193 break;
194 case IA64_CPEP_VECTOR:
195 snprintf(per_cpu(xen_cpep_name, cpu),
196 sizeof(per_cpu(xen_cpep_name, cpu)),
197 "%s%d", action->name, cpu);
198 irq = bind_ipi_to_irqhandler(XEN_CPEP_VECTOR, cpu,
199 action->handler,
200 action->flags,
201 per_cpu(xen_cpep_name, cpu),
202 action->dev_id);
203 per_cpu(xen_cpep_irq, cpu) = irq;
204 break;
205 case IA64_CPE_VECTOR:
206 case IA64_MCA_RENDEZ_VECTOR:
207 case IA64_PERFMON_VECTOR:
208 case IA64_MCA_WAKEUP_VECTOR:
209 case IA64_SPURIOUS_INT_VECTOR:
210 /* No need to complain, these aren't supported. */
211 break;
212 default:
213 printk(KERN_WARNING "Percpu irq %d is unsupported "
214 "by xen!\n", vec);
215 break;
216 }
217 BUG_ON(irq < 0);
218
219 if (irq > 0) {
220 /*
221 * Mark percpu. Without this, migrate_irqs() will
222 * mark the interrupt for migrations and trigger it
223 * on cpu hotplug.
224 */
225 irq_set_status_flags(irq, IRQ_PER_CPU);
226 }
227 }
228
229 /* For BSP, we cache registered percpu irqs, and then re-walk
230 * them when initializing APs
231 */
232 if (!cpu && save) {
233 BUG_ON(saved_irq_cnt == MAX_LATE_IRQ);
234 saved_percpu_irqs[saved_irq_cnt].irq = vec;
235 saved_percpu_irqs[saved_irq_cnt].action = action;
236 saved_irq_cnt++;
237 if (!xen_slab_ready)
238 late_irq_cnt++;
239 }
240 }
241
242 static void
243 xen_register_percpu_irq(ia64_vector vec, struct irqaction *action)
244 {
245 __xen_register_percpu_irq(smp_processor_id(), vec, action, 1);
246 }
247
248 static void
249 xen_bind_early_percpu_irq(void)
250 {
251 int i;
252
253 xen_slab_ready = 1;
254 /* There's no race when accessing this cached array, since only
255 * BSP will face with such step shortly
256 */
257 for (i = 0; i < late_irq_cnt; i++)
258 __xen_register_percpu_irq(smp_processor_id(),
259 saved_percpu_irqs[i].irq,
260 saved_percpu_irqs[i].action, 0);
261 }
262
263 /* FIXME: There's no obvious point to check whether slab is ready. So
264 * a hack is used here by utilizing a late time hook.
265 */
266
267 #ifdef CONFIG_HOTPLUG_CPU
268 static int __devinit
269 unbind_evtchn_callback(struct notifier_block *nfb,
270 unsigned long action, void *hcpu)
271 {
272 unsigned int cpu = (unsigned long)hcpu;
273
274 if (action == CPU_DEAD) {
275 /* Unregister evtchn. */
276 if (per_cpu(xen_cpep_irq, cpu) >= 0) {
277 unbind_from_irqhandler(per_cpu(xen_cpep_irq, cpu),
278 NULL);
279 per_cpu(xen_cpep_irq, cpu) = -1;
280 }
281 if (per_cpu(xen_cmcp_irq, cpu) >= 0) {
282 unbind_from_irqhandler(per_cpu(xen_cmcp_irq, cpu),
283 NULL);
284 per_cpu(xen_cmcp_irq, cpu) = -1;
285 }
286 if (per_cpu(xen_cmc_irq, cpu) >= 0) {
287 unbind_from_irqhandler(per_cpu(xen_cmc_irq, cpu), NULL);
288 per_cpu(xen_cmc_irq, cpu) = -1;
289 }
290 if (per_cpu(xen_ipi_irq, cpu) >= 0) {
291 unbind_from_irqhandler(per_cpu(xen_ipi_irq, cpu), NULL);
292 per_cpu(xen_ipi_irq, cpu) = -1;
293 }
294 if (per_cpu(xen_resched_irq, cpu) >= 0) {
295 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu),
296 NULL);
297 per_cpu(xen_resched_irq, cpu) = -1;
298 }
299 if (per_cpu(xen_timer_irq, cpu) >= 0) {
300 unbind_from_irqhandler(per_cpu(xen_timer_irq, cpu),
301 NULL);
302 per_cpu(xen_timer_irq, cpu) = -1;
303 }
304 }
305 return NOTIFY_OK;
306 }
307
308 static struct notifier_block unbind_evtchn_notifier = {
309 .notifier_call = unbind_evtchn_callback,
310 .priority = 0
311 };
312 #endif
313
314 void xen_smp_intr_init_early(unsigned int cpu)
315 {
316 #ifdef CONFIG_SMP
317 unsigned int i;
318
319 for (i = 0; i < saved_irq_cnt; i++)
320 __xen_register_percpu_irq(cpu, saved_percpu_irqs[i].irq,
321 saved_percpu_irqs[i].action, 0);
322 #endif
323 }
324
325 void xen_smp_intr_init(void)
326 {
327 #ifdef CONFIG_SMP
328 unsigned int cpu = smp_processor_id();
329 struct callback_register event = {
330 .type = CALLBACKTYPE_event,
331 .address = { .ip = (unsigned long)&xen_event_callback },
332 };
333
334 if (cpu == 0) {
335 /* Initialization was already done for boot cpu. */
336 #ifdef CONFIG_HOTPLUG_CPU
337 /* Register the notifier only once. */
338 register_cpu_notifier(&unbind_evtchn_notifier);
339 #endif
340 return;
341 }
342
343 /* This should be piggyback when setup vcpu guest context */
344 BUG_ON(HYPERVISOR_callback_op(CALLBACKOP_register, &event));
345 #endif /* CONFIG_SMP */
346 }
347
348 void __init
349 xen_irq_init(void)
350 {
351 struct callback_register event = {
352 .type = CALLBACKTYPE_event,
353 .address = { .ip = (unsigned long)&xen_event_callback },
354 };
355
356 xen_init_IRQ();
357 BUG_ON(HYPERVISOR_callback_op(CALLBACKOP_register, &event));
358 late_time_init = xen_bind_early_percpu_irq;
359 }
360
361 void
362 xen_platform_send_ipi(int cpu, int vector, int delivery_mode, int redirect)
363 {
364 #ifdef CONFIG_SMP
365 /* TODO: we need to call vcpu_up here */
366 if (unlikely(vector == ap_wakeup_vector)) {
367 /* XXX
368 * This should be in __cpu_up(cpu) in ia64 smpboot.c
369 * like x86. But don't want to modify it,
370 * keep it untouched.
371 */
372 xen_smp_intr_init_early(cpu);
373
374 xen_send_ipi(cpu, vector);
375 /* vcpu_prepare_and_up(cpu); */
376 return;
377 }
378 #endif
379
380 switch (vector) {
381 case IA64_IPI_VECTOR:
382 xen_send_IPI_one(cpu, XEN_IPI_VECTOR);
383 break;
384 case IA64_IPI_RESCHEDULE:
385 xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
386 break;
387 case IA64_CMCP_VECTOR:
388 xen_send_IPI_one(cpu, XEN_CMCP_VECTOR);
389 break;
390 case IA64_CPEP_VECTOR:
391 xen_send_IPI_one(cpu, XEN_CPEP_VECTOR);
392 break;
393 case IA64_TIMER_VECTOR: {
394 /* this is used only once by check_sal_cache_flush()
395 at boot time */
396 static int used = 0;
397 if (!used) {
398 xen_send_ipi(cpu, IA64_TIMER_VECTOR);
399 used = 1;
400 break;
401 }
402 /* fallthrough */
403 }
404 default:
405 printk(KERN_WARNING "Unsupported IPI type 0x%x\n",
406 vector);
407 notify_remote_via_irq(0); /* defaults to 0 irq */
408 break;
409 }
410 }
411
412 static void __init
413 xen_register_ipi(void)
414 {
415 #ifdef CONFIG_SMP
416 register_percpu_irq(IA64_IPI_VECTOR, &xen_ipi_irqaction);
417 register_percpu_irq(IA64_IPI_RESCHEDULE, &xen_resched_irqaction);
418 register_percpu_irq(IA64_IPI_LOCAL_TLB_FLUSH, &xen_tlb_irqaction);
419 #endif
420 }
421
422 static void
423 xen_resend_irq(unsigned int vector)
424 {
425 (void)resend_irq_on_evtchn(vector);
426 }
427
428 const struct pv_irq_ops xen_irq_ops __initdata = {
429 .register_ipi = xen_register_ipi,
430
431 .assign_irq_vector = xen_assign_irq_vector,
432 .free_irq_vector = xen_free_irq_vector,
433 .register_percpu_irq = xen_register_percpu_irq,
434
435 .resend_irq = xen_resend_irq,
436 };