Merge branch 'x86/paravirt' into x86/cpu
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / sn / pci / tioce_provider.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2003-2006 Silicon Graphics, Inc. All Rights Reserved.
7 */
8
9 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <asm/sn/sn_sal.h>
13 #include <asm/sn/addrs.h>
14 #include <asm/sn/io.h>
15 #include <asm/sn/pcidev.h>
16 #include <asm/sn/pcibus_provider_defs.h>
17 #include <asm/sn/tioce_provider.h>
18
19 /*
20 * 1/26/2006
21 *
22 * WAR for SGI PV 944642. For revA TIOCE, need to use the following recipe
23 * (taken from the above PV) before and after accessing tioce internal MMR's
24 * to avoid tioce lockups.
25 *
26 * The recipe as taken from the PV:
27 *
28 * if(mmr address < 0x45000) {
29 * if(mmr address == 0 or 0x80)
30 * mmr wrt or read address 0xc0
31 * else if(mmr address == 0x148 or 0x200)
32 * mmr wrt or read address 0x28
33 * else
34 * mmr wrt or read address 0x158
35 *
36 * do desired mmr access (rd or wrt)
37 *
38 * if(mmr address == 0x100)
39 * mmr wrt or read address 0x38
40 * mmr wrt or read address 0xb050
41 * } else
42 * do desired mmr access
43 *
44 * According to hw, we can use reads instead of writes to the above address
45 *
46 * Note this WAR can only to be used for accessing internal MMR's in the
47 * TIOCE Coretalk Address Range 0x0 - 0x07ff_ffff. This includes the
48 * "Local CE Registers and Memories" and "PCI Compatible Config Space" address
49 * spaces from table 2-1 of the "CE Programmer's Reference Overview" document.
50 *
51 * All registers defined in struct tioce will meet that criteria.
52 */
53
54 static void inline
55 tioce_mmr_war_pre(struct tioce_kernel *kern, void __iomem *mmr_addr)
56 {
57 u64 mmr_base;
58 u64 mmr_offset;
59
60 if (kern->ce_common->ce_rev != TIOCE_REV_A)
61 return;
62
63 mmr_base = kern->ce_common->ce_pcibus.bs_base;
64 mmr_offset = (unsigned long)mmr_addr - mmr_base;
65
66 if (mmr_offset < 0x45000) {
67 u64 mmr_war_offset;
68
69 if (mmr_offset == 0 || mmr_offset == 0x80)
70 mmr_war_offset = 0xc0;
71 else if (mmr_offset == 0x148 || mmr_offset == 0x200)
72 mmr_war_offset = 0x28;
73 else
74 mmr_war_offset = 0x158;
75
76 readq_relaxed((void __iomem *)(mmr_base + mmr_war_offset));
77 }
78 }
79
80 static void inline
81 tioce_mmr_war_post(struct tioce_kernel *kern, void __iomem *mmr_addr)
82 {
83 u64 mmr_base;
84 u64 mmr_offset;
85
86 if (kern->ce_common->ce_rev != TIOCE_REV_A)
87 return;
88
89 mmr_base = kern->ce_common->ce_pcibus.bs_base;
90 mmr_offset = (unsigned long)mmr_addr - mmr_base;
91
92 if (mmr_offset < 0x45000) {
93 if (mmr_offset == 0x100)
94 readq_relaxed((void __iomem *)(mmr_base + 0x38));
95 readq_relaxed((void __iomem *)(mmr_base + 0xb050));
96 }
97 }
98
99 /* load mmr contents into a variable */
100 #define tioce_mmr_load(kern, mmrp, varp) do {\
101 tioce_mmr_war_pre(kern, mmrp); \
102 *(varp) = readq_relaxed(mmrp); \
103 tioce_mmr_war_post(kern, mmrp); \
104 } while (0)
105
106 /* store variable contents into mmr */
107 #define tioce_mmr_store(kern, mmrp, varp) do {\
108 tioce_mmr_war_pre(kern, mmrp); \
109 writeq(*varp, mmrp); \
110 tioce_mmr_war_post(kern, mmrp); \
111 } while (0)
112
113 /* store immediate value into mmr */
114 #define tioce_mmr_storei(kern, mmrp, val) do {\
115 tioce_mmr_war_pre(kern, mmrp); \
116 writeq(val, mmrp); \
117 tioce_mmr_war_post(kern, mmrp); \
118 } while (0)
119
120 /* set bits (immediate value) into mmr */
121 #define tioce_mmr_seti(kern, mmrp, bits) do {\
122 u64 tmp; \
123 tioce_mmr_load(kern, mmrp, &tmp); \
124 tmp |= (bits); \
125 tioce_mmr_store(kern, mmrp, &tmp); \
126 } while (0)
127
128 /* clear bits (immediate value) into mmr */
129 #define tioce_mmr_clri(kern, mmrp, bits) do { \
130 u64 tmp; \
131 tioce_mmr_load(kern, mmrp, &tmp); \
132 tmp &= ~(bits); \
133 tioce_mmr_store(kern, mmrp, &tmp); \
134 } while (0)
135
136 /**
137 * Bus address ranges for the 5 flavors of TIOCE DMA
138 */
139
140 #define TIOCE_D64_MIN 0x8000000000000000UL
141 #define TIOCE_D64_MAX 0xffffffffffffffffUL
142 #define TIOCE_D64_ADDR(a) ((a) >= TIOCE_D64_MIN)
143
144 #define TIOCE_D32_MIN 0x0000000080000000UL
145 #define TIOCE_D32_MAX 0x00000000ffffffffUL
146 #define TIOCE_D32_ADDR(a) ((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
147
148 #define TIOCE_M32_MIN 0x0000000000000000UL
149 #define TIOCE_M32_MAX 0x000000007fffffffUL
150 #define TIOCE_M32_ADDR(a) ((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
151
152 #define TIOCE_M40_MIN 0x0000004000000000UL
153 #define TIOCE_M40_MAX 0x0000007fffffffffUL
154 #define TIOCE_M40_ADDR(a) ((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
155
156 #define TIOCE_M40S_MIN 0x0000008000000000UL
157 #define TIOCE_M40S_MAX 0x000000ffffffffffUL
158 #define TIOCE_M40S_ADDR(a) ((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
159
160 /*
161 * ATE manipulation macros.
162 */
163
164 #define ATE_PAGESHIFT(ps) (__ffs(ps))
165 #define ATE_PAGEMASK(ps) ((ps)-1)
166
167 #define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
168 #define ATE_NPAGES(start, len, pagesize) \
169 (ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
170
171 #define ATE_VALID(ate) ((ate) & (1UL << 63))
172 #define ATE_MAKE(addr, ps, msi) \
173 (((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63) | ((msi)?(1UL << 62):0))
174
175 /*
176 * Flavors of ate-based mapping supported by tioce_alloc_map()
177 */
178
179 #define TIOCE_ATE_M32 1
180 #define TIOCE_ATE_M40 2
181 #define TIOCE_ATE_M40S 3
182
183 #define KB(x) ((u64)(x) << 10)
184 #define MB(x) ((u64)(x) << 20)
185 #define GB(x) ((u64)(x) << 30)
186
187 /**
188 * tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
189 * @ct_addr: system coretalk address
190 *
191 * Map @ct_addr into 64-bit CE bus space. No device context is necessary
192 * and no CE mapping are consumed.
193 *
194 * Bits 53:0 come from the coretalk address. The remaining bits are set as
195 * follows:
196 *
197 * 63 - must be 1 to indicate d64 mode to CE hardware
198 * 62 - barrier bit ... controlled with tioce_dma_barrier()
199 * 61 - msi bit ... specified through dma_flags
200 * 60:54 - reserved, MBZ
201 */
202 static u64
203 tioce_dma_d64(unsigned long ct_addr, int dma_flags)
204 {
205 u64 bus_addr;
206
207 bus_addr = ct_addr | (1UL << 63);
208 if (dma_flags & SN_DMA_MSI)
209 bus_addr |= (1UL << 61);
210
211 return bus_addr;
212 }
213
214 /**
215 * pcidev_to_tioce - return misc ce related pointers given a pci_dev
216 * @pci_dev: pci device context
217 * @base: ptr to store struct tioce_mmr * for the CE holding this device
218 * @kernel: ptr to store struct tioce_kernel * for the CE holding this device
219 * @port: ptr to store the CE port number that this device is on
220 *
221 * Return pointers to various CE-related structures for the CE upstream of
222 * @pci_dev.
223 */
224 static inline void
225 pcidev_to_tioce(struct pci_dev *pdev, struct tioce __iomem **base,
226 struct tioce_kernel **kernel, int *port)
227 {
228 struct pcidev_info *pcidev_info;
229 struct tioce_common *ce_common;
230 struct tioce_kernel *ce_kernel;
231
232 pcidev_info = SN_PCIDEV_INFO(pdev);
233 ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
234 ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
235
236 if (base)
237 *base = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
238 if (kernel)
239 *kernel = ce_kernel;
240
241 /*
242 * we use port as a zero-based value internally, even though the
243 * documentation is 1-based.
244 */
245 if (port)
246 *port =
247 (pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
248 }
249
250 /**
251 * tioce_alloc_map - Given a coretalk address, map it to pcie bus address
252 * space using one of the various ATE-based address modes.
253 * @ce_kern: tioce context
254 * @type: map mode to use
255 * @port: 0-based port that the requesting device is downstream of
256 * @ct_addr: the coretalk address to map
257 * @len: number of bytes to map
258 *
259 * Given the addressing type, set up various parameters that define the
260 * ATE pool to use. Search for a contiguous block of entries to cover the
261 * length, and if enough resources exist, fill in the ATEs and construct a
262 * tioce_dmamap struct to track the mapping.
263 */
264 static u64
265 tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
266 u64 ct_addr, int len, int dma_flags)
267 {
268 int i;
269 int j;
270 int first;
271 int last;
272 int entries;
273 int nates;
274 u64 pagesize;
275 int msi_capable, msi_wanted;
276 u64 *ate_shadow;
277 u64 __iomem *ate_reg;
278 u64 addr;
279 struct tioce __iomem *ce_mmr;
280 u64 bus_base;
281 struct tioce_dmamap *map;
282
283 ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
284
285 switch (type) {
286 case TIOCE_ATE_M32:
287 /*
288 * The first 64 entries of the ate3240 pool are dedicated to
289 * super-page (TIOCE_ATE_M40S) mode.
290 */
291 first = 64;
292 entries = TIOCE_NUM_M3240_ATES - 64;
293 ate_shadow = ce_kern->ce_ate3240_shadow;
294 ate_reg = ce_mmr->ce_ure_ate3240;
295 pagesize = ce_kern->ce_ate3240_pagesize;
296 bus_base = TIOCE_M32_MIN;
297 msi_capable = 1;
298 break;
299 case TIOCE_ATE_M40:
300 first = 0;
301 entries = TIOCE_NUM_M40_ATES;
302 ate_shadow = ce_kern->ce_ate40_shadow;
303 ate_reg = ce_mmr->ce_ure_ate40;
304 pagesize = MB(64);
305 bus_base = TIOCE_M40_MIN;
306 msi_capable = 0;
307 break;
308 case TIOCE_ATE_M40S:
309 /*
310 * ate3240 entries 0-31 are dedicated to port1 super-page
311 * mappings. ate3240 entries 32-63 are dedicated to port2.
312 */
313 first = port * 32;
314 entries = 32;
315 ate_shadow = ce_kern->ce_ate3240_shadow;
316 ate_reg = ce_mmr->ce_ure_ate3240;
317 pagesize = GB(16);
318 bus_base = TIOCE_M40S_MIN;
319 msi_capable = 0;
320 break;
321 default:
322 return 0;
323 }
324
325 msi_wanted = dma_flags & SN_DMA_MSI;
326 if (msi_wanted && !msi_capable)
327 return 0;
328
329 nates = ATE_NPAGES(ct_addr, len, pagesize);
330 if (nates > entries)
331 return 0;
332
333 last = first + entries - nates;
334 for (i = first; i <= last; i++) {
335 if (ATE_VALID(ate_shadow[i]))
336 continue;
337
338 for (j = i; j < i + nates; j++)
339 if (ATE_VALID(ate_shadow[j]))
340 break;
341
342 if (j >= i + nates)
343 break;
344 }
345
346 if (i > last)
347 return 0;
348
349 map = kzalloc(sizeof(struct tioce_dmamap), GFP_ATOMIC);
350 if (!map)
351 return 0;
352
353 addr = ct_addr;
354 for (j = 0; j < nates; j++) {
355 u64 ate;
356
357 ate = ATE_MAKE(addr, pagesize, msi_wanted);
358 ate_shadow[i + j] = ate;
359 tioce_mmr_storei(ce_kern, &ate_reg[i + j], ate);
360 addr += pagesize;
361 }
362
363 map->refcnt = 1;
364 map->nbytes = nates * pagesize;
365 map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
366 map->pci_start = bus_base + (i * pagesize);
367 map->ate_hw = &ate_reg[i];
368 map->ate_shadow = &ate_shadow[i];
369 map->ate_count = nates;
370
371 list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
372
373 return (map->pci_start + (ct_addr - map->ct_start));
374 }
375
376 /**
377 * tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
378 * @pdev: linux pci_dev representing the function
379 * @paddr: system physical address
380 *
381 * Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
382 */
383 static u64
384 tioce_dma_d32(struct pci_dev *pdev, u64 ct_addr, int dma_flags)
385 {
386 int dma_ok;
387 int port;
388 struct tioce __iomem *ce_mmr;
389 struct tioce_kernel *ce_kern;
390 u64 ct_upper;
391 u64 ct_lower;
392 dma_addr_t bus_addr;
393
394 if (dma_flags & SN_DMA_MSI)
395 return 0;
396
397 ct_upper = ct_addr & ~0x3fffffffUL;
398 ct_lower = ct_addr & 0x3fffffffUL;
399
400 pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
401
402 if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
403 u64 tmp;
404
405 ce_kern->ce_port[port].dirmap_shadow = ct_upper;
406 tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
407 ct_upper);
408 tmp = ce_mmr->ce_ure_dir_map[port];
409 dma_ok = 1;
410 } else
411 dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
412
413 if (dma_ok) {
414 ce_kern->ce_port[port].dirmap_refcnt++;
415 bus_addr = TIOCE_D32_MIN + ct_lower;
416 } else
417 bus_addr = 0;
418
419 return bus_addr;
420 }
421
422 /**
423 * tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
424 * the barrier bit.
425 * @bus_addr: bus address to swizzle
426 *
427 * Given a TIOCE bus address, set the appropriate bit to indicate barrier
428 * attributes.
429 */
430 static u64
431 tioce_dma_barrier(u64 bus_addr, int on)
432 {
433 u64 barrier_bit;
434
435 /* barrier not supported in M40/M40S mode */
436 if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
437 return bus_addr;
438
439 if (TIOCE_D64_ADDR(bus_addr))
440 barrier_bit = (1UL << 62);
441 else /* must be m32 or d32 */
442 barrier_bit = (1UL << 30);
443
444 return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
445 }
446
447 /**
448 * tioce_dma_unmap - release CE mapping resources
449 * @pdev: linux pci_dev representing the function
450 * @bus_addr: bus address returned by an earlier tioce_dma_map
451 * @dir: mapping direction (unused)
452 *
453 * Locate mapping resources associated with @bus_addr and release them.
454 * For mappings created using the direct modes there are no resources
455 * to release.
456 */
457 void
458 tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
459 {
460 int i;
461 int port;
462 struct tioce_kernel *ce_kern;
463 struct tioce __iomem *ce_mmr;
464 unsigned long flags;
465
466 bus_addr = tioce_dma_barrier(bus_addr, 0);
467 pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
468
469 /* nothing to do for D64 */
470
471 if (TIOCE_D64_ADDR(bus_addr))
472 return;
473
474 spin_lock_irqsave(&ce_kern->ce_lock, flags);
475
476 if (TIOCE_D32_ADDR(bus_addr)) {
477 if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
478 ce_kern->ce_port[port].dirmap_shadow = 0;
479 tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
480 0);
481 }
482 } else {
483 struct tioce_dmamap *map;
484
485 list_for_each_entry(map, &ce_kern->ce_dmamap_list,
486 ce_dmamap_list) {
487 u64 last;
488
489 last = map->pci_start + map->nbytes - 1;
490 if (bus_addr >= map->pci_start && bus_addr <= last)
491 break;
492 }
493
494 if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
495 printk(KERN_WARNING
496 "%s: %s - no map found for bus_addr 0x%llx\n",
497 __func__, pci_name(pdev), bus_addr);
498 } else if (--map->refcnt == 0) {
499 for (i = 0; i < map->ate_count; i++) {
500 map->ate_shadow[i] = 0;
501 tioce_mmr_storei(ce_kern, &map->ate_hw[i], 0);
502 }
503
504 list_del(&map->ce_dmamap_list);
505 kfree(map);
506 }
507 }
508
509 spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
510 }
511
512 /**
513 * tioce_do_dma_map - map pages for PCI DMA
514 * @pdev: linux pci_dev representing the function
515 * @paddr: host physical address to map
516 * @byte_count: bytes to map
517 *
518 * This is the main wrapper for mapping host physical pages to CE PCI space.
519 * The mapping mode used is based on the device's dma_mask.
520 */
521 static u64
522 tioce_do_dma_map(struct pci_dev *pdev, u64 paddr, size_t byte_count,
523 int barrier, int dma_flags)
524 {
525 unsigned long flags;
526 u64 ct_addr;
527 u64 mapaddr = 0;
528 struct tioce_kernel *ce_kern;
529 struct tioce_dmamap *map;
530 int port;
531 u64 dma_mask;
532
533 dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
534
535 /* cards must be able to address at least 31 bits */
536 if (dma_mask < 0x7fffffffUL)
537 return 0;
538
539 if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
540 ct_addr = PHYS_TO_TIODMA(paddr);
541 else
542 ct_addr = paddr;
543
544 /*
545 * If the device can generate 64 bit addresses, create a D64 map.
546 */
547 if (dma_mask == ~0UL) {
548 mapaddr = tioce_dma_d64(ct_addr, dma_flags);
549 if (mapaddr)
550 goto dma_map_done;
551 }
552
553 pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
554
555 spin_lock_irqsave(&ce_kern->ce_lock, flags);
556
557 /*
558 * D64 didn't work ... See if we have an existing map that covers
559 * this address range. Must account for devices dma_mask here since
560 * an existing map might have been done in a mode using more pci
561 * address bits than this device can support.
562 */
563 list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
564 u64 last;
565
566 last = map->ct_start + map->nbytes - 1;
567 if (ct_addr >= map->ct_start &&
568 ct_addr + byte_count - 1 <= last &&
569 map->pci_start <= dma_mask) {
570 map->refcnt++;
571 mapaddr = map->pci_start + (ct_addr - map->ct_start);
572 break;
573 }
574 }
575
576 /*
577 * If we don't have a map yet, and the card can generate 40
578 * bit addresses, try the M40/M40S modes. Note these modes do not
579 * support a barrier bit, so if we need a consistent map these
580 * won't work.
581 */
582 if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
583 /*
584 * We have two options for 40-bit mappings: 16GB "super" ATEs
585 * and 64MB "regular" ATEs. We'll try both if needed for a
586 * given mapping but which one we try first depends on the
587 * size. For requests >64MB, prefer to use a super page with
588 * regular as the fallback. Otherwise, try in the reverse order.
589 */
590
591 if (byte_count > MB(64)) {
592 mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
593 port, ct_addr, byte_count,
594 dma_flags);
595 if (!mapaddr)
596 mapaddr =
597 tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
598 ct_addr, byte_count,
599 dma_flags);
600 } else {
601 mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
602 ct_addr, byte_count,
603 dma_flags);
604 if (!mapaddr)
605 mapaddr =
606 tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
607 port, ct_addr, byte_count,
608 dma_flags);
609 }
610 }
611
612 /*
613 * 32-bit direct is the next mode to try
614 */
615 if (!mapaddr && dma_mask >= 0xffffffffUL)
616 mapaddr = tioce_dma_d32(pdev, ct_addr, dma_flags);
617
618 /*
619 * Last resort, try 32-bit ATE-based map.
620 */
621 if (!mapaddr)
622 mapaddr =
623 tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
624 byte_count, dma_flags);
625
626 spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
627
628 dma_map_done:
629 if (mapaddr && barrier)
630 mapaddr = tioce_dma_barrier(mapaddr, 1);
631
632 return mapaddr;
633 }
634
635 /**
636 * tioce_dma - standard pci dma map interface
637 * @pdev: pci device requesting the map
638 * @paddr: system physical address to map into pci space
639 * @byte_count: # bytes to map
640 *
641 * Simply call tioce_do_dma_map() to create a map with the barrier bit clear
642 * in the address.
643 */
644 static u64
645 tioce_dma(struct pci_dev *pdev, unsigned long paddr, size_t byte_count, int dma_flags)
646 {
647 return tioce_do_dma_map(pdev, paddr, byte_count, 0, dma_flags);
648 }
649
650 /**
651 * tioce_dma_consistent - consistent pci dma map interface
652 * @pdev: pci device requesting the map
653 * @paddr: system physical address to map into pci space
654 * @byte_count: # bytes to map
655 *
656 * Simply call tioce_do_dma_map() to create a map with the barrier bit set
657 * in the address.
658 */
659 static u64
660 tioce_dma_consistent(struct pci_dev *pdev, unsigned long paddr, size_t byte_count, int dma_flags)
661 {
662 return tioce_do_dma_map(pdev, paddr, byte_count, 1, dma_flags);
663 }
664
665 /**
666 * tioce_error_intr_handler - SGI TIO CE error interrupt handler
667 * @irq: unused
668 * @arg: pointer to tioce_common struct for the given CE
669 *
670 * Handle a CE error interrupt. Simply a wrapper around a SAL call which
671 * defers processing to the SGI prom.
672 */
673 static irqreturn_t
674 tioce_error_intr_handler(int irq, void *arg)
675 {
676 struct tioce_common *soft = arg;
677 struct ia64_sal_retval ret_stuff;
678 ret_stuff.status = 0;
679 ret_stuff.v0 = 0;
680
681 SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
682 soft->ce_pcibus.bs_persist_segment,
683 soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
684
685 if (ret_stuff.v0)
686 panic("tioce_error_intr_handler: Fatal TIOCE error");
687
688 return IRQ_HANDLED;
689 }
690
691 /**
692 * tioce_reserve_m32 - reserve M32 ATEs for the indicated address range
693 * @tioce_kernel: TIOCE context to reserve ATEs for
694 * @base: starting bus address to reserve
695 * @limit: last bus address to reserve
696 *
697 * If base/limit falls within the range of bus space mapped through the
698 * M32 space, reserve the resources corresponding to the range.
699 */
700 static void
701 tioce_reserve_m32(struct tioce_kernel *ce_kern, u64 base, u64 limit)
702 {
703 int ate_index, last_ate, ps;
704 struct tioce __iomem *ce_mmr;
705
706 ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
707 ps = ce_kern->ce_ate3240_pagesize;
708 ate_index = ATE_PAGE(base, ps);
709 last_ate = ate_index + ATE_NPAGES(base, limit-base+1, ps) - 1;
710
711 if (ate_index < 64)
712 ate_index = 64;
713
714 if (last_ate >= TIOCE_NUM_M3240_ATES)
715 last_ate = TIOCE_NUM_M3240_ATES - 1;
716
717 while (ate_index <= last_ate) {
718 u64 ate;
719
720 ate = ATE_MAKE(0xdeadbeef, ps, 0);
721 ce_kern->ce_ate3240_shadow[ate_index] = ate;
722 tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_ate3240[ate_index],
723 ate);
724 ate_index++;
725 }
726 }
727
728 /**
729 * tioce_kern_init - init kernel structures related to a given TIOCE
730 * @tioce_common: ptr to a cached tioce_common struct that originated in prom
731 */
732 static struct tioce_kernel *
733 tioce_kern_init(struct tioce_common *tioce_common)
734 {
735 int i;
736 int ps;
737 int dev;
738 u32 tmp;
739 unsigned int seg, bus;
740 struct tioce __iomem *tioce_mmr;
741 struct tioce_kernel *tioce_kern;
742
743 tioce_kern = kzalloc(sizeof(struct tioce_kernel), GFP_KERNEL);
744 if (!tioce_kern) {
745 return NULL;
746 }
747
748 tioce_kern->ce_common = tioce_common;
749 spin_lock_init(&tioce_kern->ce_lock);
750 INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
751 tioce_common->ce_kernel_private = (u64) tioce_kern;
752
753 /*
754 * Determine the secondary bus number of the port2 logical PPB.
755 * This is used to decide whether a given pci device resides on
756 * port1 or port2. Note: We don't have enough plumbing set up
757 * here to use pci_read_config_xxx() so use raw_pci_read().
758 */
759
760 seg = tioce_common->ce_pcibus.bs_persist_segment;
761 bus = tioce_common->ce_pcibus.bs_persist_busnum;
762
763 raw_pci_read(seg, bus, PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1,&tmp);
764 tioce_kern->ce_port1_secondary = (u8) tmp;
765
766 /*
767 * Set PMU pagesize to the largest size available, and zero out
768 * the ATEs.
769 */
770
771 tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
772 tioce_mmr_clri(tioce_kern, &tioce_mmr->ce_ure_page_map,
773 CE_URE_PAGESIZE_MASK);
774 tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_ure_page_map,
775 CE_URE_256K_PAGESIZE);
776 ps = tioce_kern->ce_ate3240_pagesize = KB(256);
777
778 for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
779 tioce_kern->ce_ate40_shadow[i] = 0;
780 tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate40[i], 0);
781 }
782
783 for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
784 tioce_kern->ce_ate3240_shadow[i] = 0;
785 tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate3240[i], 0);
786 }
787
788 /*
789 * Reserve ATEs corresponding to reserved address ranges. These
790 * include:
791 *
792 * Memory space covered by each PPB mem base/limit register
793 * Memory space covered by each PPB prefetch base/limit register
794 *
795 * These bus ranges are for pio (downstream) traffic only, and so
796 * cannot be used for DMA.
797 */
798
799 for (dev = 1; dev <= 2; dev++) {
800 u64 base, limit;
801
802 /* mem base/limit */
803
804 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
805 PCI_MEMORY_BASE, 2, &tmp);
806 base = (u64)tmp << 16;
807
808 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
809 PCI_MEMORY_LIMIT, 2, &tmp);
810 limit = (u64)tmp << 16;
811 limit |= 0xfffffUL;
812
813 if (base < limit)
814 tioce_reserve_m32(tioce_kern, base, limit);
815
816 /*
817 * prefetch mem base/limit. The tioce ppb's have 64-bit
818 * decoders, so read the upper portions w/o checking the
819 * attributes.
820 */
821
822 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
823 PCI_PREF_MEMORY_BASE, 2, &tmp);
824 base = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
825
826 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
827 PCI_PREF_BASE_UPPER32, 4, &tmp);
828 base |= (u64)tmp << 32;
829
830 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
831 PCI_PREF_MEMORY_LIMIT, 2, &tmp);
832
833 limit = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
834 limit |= 0xfffffUL;
835
836 raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
837 PCI_PREF_LIMIT_UPPER32, 4, &tmp);
838 limit |= (u64)tmp << 32;
839
840 if ((base < limit) && TIOCE_M32_ADDR(base))
841 tioce_reserve_m32(tioce_kern, base, limit);
842 }
843
844 return tioce_kern;
845 }
846
847 /**
848 * tioce_force_interrupt - implement altix force_interrupt() backend for CE
849 * @sn_irq_info: sn asic irq that we need an interrupt generated for
850 *
851 * Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
852 * force a secondary interrupt to be generated. This is to work around an
853 * asic issue where there is a small window of opportunity for a legacy device
854 * interrupt to be lost.
855 */
856 static void
857 tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
858 {
859 struct pcidev_info *pcidev_info;
860 struct tioce_common *ce_common;
861 struct tioce_kernel *ce_kern;
862 struct tioce __iomem *ce_mmr;
863 u64 force_int_val;
864
865 if (!sn_irq_info->irq_bridge)
866 return;
867
868 if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
869 return;
870
871 pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
872 if (!pcidev_info)
873 return;
874
875 ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
876 ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
877 ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
878
879 /*
880 * TIOCE Rev A workaround (PV 945826), force an interrupt by writing
881 * the TIO_INTx register directly (1/26/2006)
882 */
883 if (ce_common->ce_rev == TIOCE_REV_A) {
884 u64 int_bit_mask = (1ULL << sn_irq_info->irq_int_bit);
885 u64 status;
886
887 tioce_mmr_load(ce_kern, &ce_mmr->ce_adm_int_status, &status);
888 if (status & int_bit_mask) {
889 u64 force_irq = (1 << 8) | sn_irq_info->irq_irq;
890 u64 ctalk = sn_irq_info->irq_xtalkaddr;
891 u64 nasid, offset;
892
893 nasid = (ctalk & CTALK_NASID_MASK) >> CTALK_NASID_SHFT;
894 offset = (ctalk & CTALK_NODE_OFFSET);
895 HUB_S(TIO_IOSPACE_ADDR(nasid, offset), force_irq);
896 }
897
898 return;
899 }
900
901 /*
902 * irq_int_bit is originally set up by prom, and holds the interrupt
903 * bit shift (not mask) as defined by the bit definitions in the
904 * ce_adm_int mmr. These shifts are not the same for the
905 * ce_adm_force_int register, so do an explicit mapping here to make
906 * things clearer.
907 */
908
909 switch (sn_irq_info->irq_int_bit) {
910 case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
911 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
912 break;
913 case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
914 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
915 break;
916 case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
917 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
918 break;
919 case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
920 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
921 break;
922 case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
923 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
924 break;
925 case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
926 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
927 break;
928 case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
929 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
930 break;
931 case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
932 force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
933 break;
934 default:
935 return;
936 }
937 tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_force_int, force_int_val);
938 }
939
940 /**
941 * tioce_target_interrupt - implement set_irq_affinity for tioce resident
942 * functions. Note: only applies to line interrupts, not MSI's.
943 *
944 * @sn_irq_info: SN IRQ context
945 *
946 * Given an sn_irq_info, set the associated CE device's interrupt destination
947 * register. Since the interrupt destination registers are on a per-ce-slot
948 * basis, this will retarget line interrupts for all functions downstream of
949 * the slot.
950 */
951 static void
952 tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
953 {
954 struct pcidev_info *pcidev_info;
955 struct tioce_common *ce_common;
956 struct tioce_kernel *ce_kern;
957 struct tioce __iomem *ce_mmr;
958 int bit;
959 u64 vector;
960
961 pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
962 if (!pcidev_info)
963 return;
964
965 ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
966 ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
967 ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
968
969 bit = sn_irq_info->irq_int_bit;
970
971 tioce_mmr_seti(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
972 vector = (u64)sn_irq_info->irq_irq << INTR_VECTOR_SHFT;
973 vector |= sn_irq_info->irq_xtalkaddr;
974 tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_int_dest[bit], vector);
975 tioce_mmr_clri(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
976
977 tioce_force_interrupt(sn_irq_info);
978 }
979
980 /**
981 * tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
982 * @prom_bussoft: Common prom/kernel struct representing the bus
983 *
984 * Replicates the tioce_common pointed to by @prom_bussoft in kernel
985 * space. Allocates and initializes a kernel-only area for a given CE,
986 * and sets up an irq for handling CE error interrupts.
987 *
988 * On successful setup, returns the kernel version of tioce_common back to
989 * the caller.
990 */
991 static void *
992 tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
993 {
994 struct tioce_common *tioce_common;
995 struct tioce_kernel *tioce_kern;
996 struct tioce __iomem *tioce_mmr;
997
998 /*
999 * Allocate kernel bus soft and copy from prom.
1000 */
1001
1002 tioce_common = kzalloc(sizeof(struct tioce_common), GFP_KERNEL);
1003 if (!tioce_common)
1004 return NULL;
1005
1006 memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
1007 tioce_common->ce_pcibus.bs_base = (unsigned long)
1008 ioremap(REGION_OFFSET(tioce_common->ce_pcibus.bs_base),
1009 sizeof(struct tioce_common));
1010
1011 tioce_kern = tioce_kern_init(tioce_common);
1012 if (tioce_kern == NULL) {
1013 kfree(tioce_common);
1014 return NULL;
1015 }
1016
1017 /*
1018 * Clear out any transient errors before registering the error
1019 * interrupt handler.
1020 */
1021
1022 tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
1023 tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_int_status_alias, ~0ULL);
1024 tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_error_summary_alias,
1025 ~0ULL);
1026 tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_dre_comp_err_addr, 0ULL);
1027
1028 if (request_irq(SGI_PCIASIC_ERROR,
1029 tioce_error_intr_handler,
1030 IRQF_SHARED, "TIOCE error", (void *)tioce_common))
1031 printk(KERN_WARNING
1032 "%s: Unable to get irq %d. "
1033 "Error interrupts won't be routed for "
1034 "TIOCE bus %04x:%02x\n",
1035 __func__, SGI_PCIASIC_ERROR,
1036 tioce_common->ce_pcibus.bs_persist_segment,
1037 tioce_common->ce_pcibus.bs_persist_busnum);
1038
1039 sn_set_err_irq_affinity(SGI_PCIASIC_ERROR);
1040 return tioce_common;
1041 }
1042
1043 static struct sn_pcibus_provider tioce_pci_interfaces = {
1044 .dma_map = tioce_dma,
1045 .dma_map_consistent = tioce_dma_consistent,
1046 .dma_unmap = tioce_dma_unmap,
1047 .bus_fixup = tioce_bus_fixup,
1048 .force_interrupt = tioce_force_interrupt,
1049 .target_interrupt = tioce_target_interrupt
1050 };
1051
1052 /**
1053 * tioce_init_provider - init SN PCI provider ops for TIO CE
1054 */
1055 int
1056 tioce_init_provider(void)
1057 {
1058 sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
1059 return 0;
1060 }